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Abstract 

Solving a large-scale life cycle constrained optimization problem is challenging when adjoint gradient information is not 
available. In this paper, we present a methodology for the solution of a bound-constrained optimization problem, using the 
Stochastic Simplex Approximated Gradient (StoSAG) combined with Projected Fletcher – Reeves – Polak – Ribiere (FR – 
PR) Conjugate Gradient method. Conjugate gradient methods have proven to be among the most useful techniques for solving 
large linear systems of equations, while could also be adapted to solve nonlinear optimization problems. The first nonlinear 
conjugate gradient method was introduced by Fletcher and Reeves in the 60s, which had gained huge popularity since then. 
Over the years, many variants of this original scheme have been proposed, and some have proven their efficiency and have 
been widely used in practice, including the Polak – Ribiere (PR) and its hybrid version with the original Fletcher–Reeves, 
known as FR – PR. The key features of these algorithms are that they require no matrix storage and are faster than the traditional 
steepest descent/ascent methods with a superlinear convergence rate. Our discussion is focused on the application of our 
algorithmic procedures to waterflooding optimization variables are the well controls and the objective function is the life-cycle 
net present value (NPV) of production. The results show that the Projected Conjugate Gradient algorithm is more efficient 
than traditional optimization algorithms, saving up to 20% of iterations to converge optimization problems. 
 
Keyword: Constrained Optimization, Numerical Optimization, Stochastic Gradient, Linear Programming, Field Development 

1. Introduction 

Life-cycle production optimization is a crucial step in closed-loop reservoir management, defined as the 
maximization/minimization of a predefined objective function via changing the controls of the wells at different 
control time steps during a reservoir’s lifetime (Brouwer et al., 2004; Jansen et al., 2005; Chen et al., 2016). In 
cases of interest to us, the objective function is evaluated by the reservoir simulator that generates the solution of 
the discretized system of nonlinear partial differential equations. Even though there are numerous problems of 
interest, the specific application considered here refers to the optimization of the well controls problem that 
maximizes the net present value (NPV), either life-cycle NPV or short-term NPV. 

The methods to solve this joint optimization problem include both gradient-based and derivative-free methods. 
Generally speaking, the latter, derivative-free methods, such as the genetic algorithm (Gen and Cheng, 2000) and 
particle swarm optimization (Isebor et al., 2014) are very computationally expensive compared to their gradient-
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based counterparts. Especially when the size of the variables becomes considerable, these derivative-free methods 
will become computationally infeasible. Hence, gradient-based methods are usually a better approach.  

However, when dealing with commercial simulators, typically they either have very limited or no adjoint 
capability at all, thus stochastic gradients are considered as the best alternative approach. The Stochastic Simplex 
Approximated Gradient (StoSAG, Fonseca et al. (2016)) has proven to provide a sound alternative for production 
optimization. In this work, the objective function is evaluated by use of a commercial reservoir simulator to 
generate a solution. As these simulators have limited to no adjoint capability, a stochastic gradient approach was 
implemented.  

Liu and Reynolds, 2019, introduced a modification of StoSAG using sequential quadratic programming (SQP) 
filter algorithm for waterflooding optimization with nonlinear constraints. The algorithm needs to determine the 
Hessian matrix numerically by using the quasi-newton method (BFGS), which results in a slower convergence. 
Therefore, the objective of this work is to perform a deterministic NPV optimization with a stochastic gradient 
approach (StoSAG) combined with Projected FR – PR Conjugate Gradient method to make the optimization 
process more efficient and faster. The results section consists of two examples, which are designed to illustrate 
the robustness and efficiency of our algorithm. 

2. Methodology 

This section will cover the basic concepts of the general joint optimization problem and the continuous 
optimization subproblem, as the first step in the general joint optimization two-stage approach. 

2.1. Joint Optimization Problem Statement 

In joint optimization problems that involve both well locations (denoted as x) and well controls (denoted as u), 
our goal is to determine wells’ optimal controls that can maximize the net present value (NPV) from the reservoir 
which is necessary for a reservoir development plan. For a three-phase deterministic reservoir model under 
waterflooding, the NPV objective function is mathematically stated as: 

𝐽 𝑢 =
∆𝑡&

(1 + 𝑏)
,-
./0

𝑐2𝑞2,5& + 𝑐6𝑞6,5& − 𝑐8𝑞8,5&
9:

5;<

− 𝑐8=𝑞8=,5&

9>

5;<

9?

&;<

 
(1) 

where u is a 𝑁A-dimensional column vector containing both production and injection wells’ controls i.e., u = 
[𝑢<,…,	𝑢9C]T = [𝑢<,<, 𝑢D,<, … , 𝑢9?,<, … , 𝑢9?,9FGHH]T, in which 𝑁I  is the number of control steps and 𝑁8JKK  is the 
total number of wells in the optimization problem. Typical well controls are the water injection rate of injectors, 
the production rate of producers, and the bottom hole pressure of wells. The time elapsed at the end of the nth 
control time step is denoted by 𝑡& , and ∆𝑡&  is nth control time step size. 𝑁L  and 𝑁M  denote the number of 
production and injection wells drilled in the reservoir, respectively. 𝑞2,5&  (STB/D), 𝑞8,5&  (STB/D) and 𝑞6,5&  (Mcf/D), 
denote the average oil, water, and gas production rates at the jth well over the nth time step, whereas 𝑞8=,5&  (STB/D) 
is the average water injection rate at the jth injection well over the nth control time step. The oil price is represented 
as 𝑐2 ($/STB); 𝑐6 ($/Mscf) denotes the gas price; 𝑐8  ($/STB) represents the disposal cost of produced water; 𝑐8=  
($/STB) is the water injection cost and b is the annual discount/interest rate. This work considers the well controls 
as bound linear constraints which occur whenever the constraints and the operational controls are of the same 
type. Operational controls exist for several practical reasons. Consider the example of a producer operating under 
a bottom-hole-pressure controlled schedule, there exists a minimum allowable bottom-hole pressure (BHP) 
required for seamless production. Likewise, to prevent damage to the formation, an injector operating under a 
rate-controlled schedule is set to have a maximum injection rate. The general production optimization problem 
can be mathematically stated as the following: 

Maximize 𝐽 𝑢 , 𝑢 ∈ 𝑅9C	 
(2.a) 

Subject to 𝑢=K28 ≤ 	𝑢= 	≤ 𝑢=
AQ, 𝑖 = 	1, 2, … , 𝑁A 

(2.b) 

where 𝑢=
AQand 𝑢=K28 denote the upper bound and lower bound of the ith control variable, respectively. In a more 

general form: 
Maximize 𝐽 𝑢 , 𝑢 ∈ 𝑅9C	 

(3.a) 
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Subject to 𝐴𝑢	 ≤ 𝑏 
(3.b) 

where A is a 2𝑁A × 𝑁A sparse matrix and b is a 2𝑁A-column vector resulted from the conversion of bound 
constraints into general linear constraints 

 In this work, the producers are operating under BHP-controlled schedules, while the injectors are operating 
under injection rate-controlled schedules. The economic parameters: oil price  𝑐2 = $63/STB, gas price 𝑐6 = 
$0.04/Mscf, water disposal cost 𝑐8 = $5/STB, water injection cost 𝑐8=  =$5/STB, and annual discount rate b = 
0.1. 

2.2. The Stochastic Simplex Approximate Gradient (StoSAG) 

The algorithm is introduced by Fonseca et al. (2016) as a stochastic gradient approach 
based on 𝑁Q perturbations for robust optimization with geological uncertainty (𝑁J  realizations). In this work, we 
consider a deterministic optimization without geological uncertainty (i.e. Ne = 1), whose gradient is usually 
referred to as the "Simplex gradient" in some other literature. Furthermore, at each iteration 𝑢U , with 
corresponding objective function value 𝐽 𝑢U , each perturbation 𝑢Q of the 𝑁Q perturbations are assumed to be 
sampled from the normal distribution with mean 𝑢U: 

𝑢Q~𝒩 𝑢U, 𝐶Y  (4) 

where 𝐶Y  is the spherical covariance with temporal correlation length L: 

𝐶Y =
𝜎D 1 −

3
2
ℎ
𝐿
+
1
2
ℎ
𝐿

.

, ℎ ≤ 𝐿

0,																																																		ℎ	 > 𝐿
							 

(5) 

For each perturbation vector 𝑢Q, we can evaluate the corresponding objective function 𝐽 𝑢Q . We can then 
form the corresponding 𝑁Q × 𝑁A perturbation matrix:  

∆𝑈Q = 𝑢< − 𝑢U , 𝑢D − 𝑢U , … , 𝑢9a − 𝑢U
b

 
(6) 

and the 𝑁Q × 1 perturbation vector: 

∆𝐽Q = 𝐽 𝑢< − 𝐽 𝑢U , 𝐽 𝑢D − 𝐽 𝑢U , … , 𝐽 𝑢9a − 𝐽 𝑢U
b

 
(7) 

The stochastic gradient could be then computed as: 

𝛻𝐽 𝑢U = 𝛥𝑈Q𝛥𝑈Qb
e<𝛥𝑈Q𝛥𝐽Q = 	 ∆𝑈Qb

f∆𝐽Q (8) 

where in the second equality, the superscript † denotes the Moore-Penrose pseudo-inverse, which could be 
computed using Singular Value Decomposition (SVD). The second equality is preferred in large-scale problems, 
but for our purposes, we use the first equality due to its superior computational speed (inverse vs. pseudo-inverse) 
in small and medium scaled problems. Algorithm 1 summarizes the overall StoSAG procedures. 
 

Algorithm 1 StoSAG for a continuous deterministic optimization problem 
• Preset the number of perturbations 𝑁Q, and the perturbation size 𝜎. Generate the block-diagonal 
covariance matrix 𝐶Y  from spherical variogram (5) 
• Sample the perturbations 𝑢Q~𝒩 𝑢U, 𝐶Y . Construct the (𝑁Q × 𝑁A) perturbation matrix ∆𝑈Q (6) 
• Construct the (𝑁Q × 1) perturbation vector ∆𝐽Q as described in (7) 
Compute the objective function gradient ∇𝐽 𝑢U  using (8). 

 

2.3. Projected Conjugate Gradient (CG) 

There are multiple approaches used to solve the bound-constrained continuous optimization subproblem (1) 
using stochastic gradients. One could perform a logarithmic transform to make the problem (1) unconstrained as 
follows: 
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𝑤= = 𝑙𝑜𝑔
𝑢= − 𝑢=K28

𝑢=
AQ − 𝑢=

 
(9) 

where 𝑤=  is the log-transformed variable corresponding to the original well control 𝑢= . The original control 𝑢=  
could be easily recovered from the inverse logarithmic transform, given by: 

𝑢= =
𝑢=
AQ𝑒8n − 𝑢=K28

1 + 𝑒8n
 

(10) 

 

However, this method will not result in values at the upper and lower bounds, but rather asymptotic to these 
limits. Therefore, we could alternatively follow the steepest ascent procedures in the untransformed space with 
gradient projection as follows: 

• Compute the gradient of the objective function 𝛻𝐽 𝑢  using the standard StoSAG procedures as described 
in Algorithm 1. 

• Perform gradient projection with the steepest ascent to ensure the search direction is feasible within the 
boxed region created by bound constraints: 

𝑑U = 𝐼 − 𝐴qb 𝐴q𝐴qb e< 𝛻𝐽 𝑢U  (11) 

where Aa is the matrix whose rows consist of only active linear constraints from (2b). 
• Inexact line search (backtracking) as the step acceptance criterion: 

𝑢Ur< = 𝑢U + 𝛼
𝑑U
𝑑U t

,						𝛼	 ∈ 0,1 					𝑠. 𝑡.				𝐽 𝑢Ur< > 	𝐽 𝑢U 		 
(12) 

However, due to the random nature of stochastic gradients, if the direction is far from ascending, more 
optimization iterations would be required. As a consequence, it leads to an increase in reservoir simulation calls, 
which ultimately would accumulate up the overall cost. Therefore, we make a slight modification to the above 
procedures for the continuous optimization subproblem by replacing the steepest ascent with the conjugate 
gradient (CG) approach, due to its superiority in terms of a number of iterations needed. At each iteration k, the 
Fletcher-Reeves (FR) CG weighting factor update is: 

𝛽Uxy =
𝛻𝐽 𝑢U D

D

𝛻𝐽 𝑢Ue< D
D 

(13) 

and the Polak-Ribiere (PR) weighting factor update is: 

𝛽ULy =
𝛻𝐽 𝑢U b 𝛻𝐽 𝑢U − 𝛻𝐽 𝑢Ue<

𝛻𝐽 𝑢Ue< D
D  

(14) 

The combined weighting factor update strategy for Fletcher-Reeves-Polak-Ribiere (FR-PR) CG is as follows: 

𝛽U =
−𝛽Uxy,																						𝛽ULy < −𝛽Uxy

𝛽ULy,																	 𝛽ULy ≤ −𝛽Uxy

𝛽Uxy,																								𝛽ULy > 𝛽Uxy
 

(15) 

The unprojected FR-PR CG ascent search direction is then defined as: 
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𝑑UxyeLy =
𝛻𝐽 𝑢U ,																																																					𝑘 = 0
𝛻𝐽 𝑢U + 𝛽U𝑑Ue<,																																		𝑘 ≥ 1 

(16) 

where 𝑑Ue< is the actual (projected) search direction used in the last iteration. The projected direction at the 
current iteration can be computed from the gradient projection equation (11) using 𝑑UxyeLy  instead of 𝛻𝐽 𝑢U . 
The overall resultant algorithm is summarized in Algorithm 2.  

Algorithm 2 Projected FR CG for bound-constrained continuous maximization 
1. Preset 𝑛6~q�,�q� , 𝑛IA,�,�q� , maximum backtracking step size 𝛼�q� , step size reduction factor 𝜌, 

and the maximum number of reservoir simulation runs 𝑁�=� . Specify the 
number of perturbations 𝑁QJ~, , and perturbation size 𝜎 for StoSAG. 

2. Initialize: iteration index k = 0, and the design vector 𝑢�. 
3. Set 𝑛6~q�  = 1 and 𝑛IA,� = 0. 
4. Compute the gradient of the objective function 𝛻𝐽 𝑢U  using the standard StoSAG 

procedures as described in Algorithm 1. Go to Step 5. 
5. Compute the unprojected Fletcher-Reeves-Polak-Ribiere (FR-PR) ascent direction 𝑑UxyeLy	using (13). 

Go to Step 6.  
6. Perform gradient projection with the steepest ascent to ensure the search direction is feasible within the 

boxed region created by bound constraints: 
𝑑U = 𝐼 − 𝐴qb 𝐴q𝐴qb e< 𝑑UxyeLy  

7. Perform inexact line search (backtracking) as described in (10). If backtracking succeeds, go to Step 8. 
Else if backtracking fails with 𝑛IA,� 	= 	𝑛IA,�,�q�  then: 

• If 𝑛6~q�   ≤  𝑛6~q�,�q� , go back to Step 4. 
• Else, terminate the algorithm. 
8. Check for convergence. If not, set k = k + 1 update 𝑢U = 𝑢U + 1, save the following parameters as 

prior information: 𝑑Ue< = 𝑑U , 𝛻𝐽 𝑢Ue< = 	𝛻𝐽 𝑢U   and go back to Step 4. 
Computational Results 
Example 1: 
In this example, we will demonstrate the computational superiority of FR-PR CG over the traditional steepest 

ascent. This case study considers a three-phase reservoir in a 20×20×3 uniform Cartesian grid, under a water-
alternating-gas (WAG) injection process. Each grid has a dimension of 100×100×30 ft. There are two wells, 1 
injector, and 1 producer, both vertical and fully perforated. The initial pressure of the reservoir is 4400 psi, with 
the irreducible water saturation and residual oil saturation bringing 0.3 and 0.2, respectively. In order to model 
the WAG process with CO2 injection, we need to run a compositional model using CMG-GEM 
simulator. 

Table 1. Lower and upper limits of the well controls in Example 1 

Variable Lower Limit Upper Limit 

Producer BHP (psi) 500 2000 

Water injection rate (stb/d) 1000 4000 

CO2 injection rate (MMscf/d) 5 20 

 

(a) Layer 1 (b) Layer 2 (c) Layer 3 

Fig. 1. Permeability distribution of each layer in Example 1. 
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Table 1 summarizes the well controls in lower and upper bounds. We perform a five-cycle WAG optimization 
for a total of 3,600 days in their lifetime, in which each cycle consists of a half-cycle water injection period 
followed by a half-cycle of the CO2 injection period. Hence, in this example, the number of well controls is 10 × 
2 = 20, and the number of well location integers is 2 × 2 = 4. During the gradient calculations using StoSAG 
procedures, we use the number of perturbations 𝑁Q  = 10, with the spherical variogram with the temporal 
correlation length of 5. For the NPV computations, the oil price is set to $63/STB, the water disposal cost is 
$5/STB, and the water injection cost is set to $5/STB. The gas price is $0.04/Mscf (excluding CO2), CO2 injection 
cost is $1,5/Mscf, CO2 treatment (disposal) cost is $0.35/Mscf and the annual discount rate is 0:1. All producers 
are initialized at 1,250 psi, while all injectors are initialized at 2,500 STB/d for water injection rates and 12.5 
MMscf/d for CO2 injection rates. 

To visually demonstrate the superiority of projected CG over the traditional steepest ascent, Figure 2 compares 
the optimization results of these two algorithms using the same number of perturbations (𝑁Q = 10). As projected 
CG takes four optimization iterations less than the steepest ascent, roughly 40 reservoir simulations are saved. 

 

Fig. 2. Comparison between Projected CG and Steepest Ascent, Example 1 

Example 2: 
In this section, we will demonstrate the application of our algorithm onto a 3D synthetic reservoir modeled in 

CMG IMEX, shown in Figure 3. The reservoir grid dimension is 20×20×3, with four injectors located at the 
corners, and one producer located at the center. The injectors are perforated at Layer 3, while the producer is 
perforated at Layers 1 and 2. The initial reservoir pressure is 4,400 psi. The waterflooding process is simulated 
for a total lifetime of 3,600 days, divided into 10 equal control time steps (360-day each). Therefore, the total 
number of well controls is 10×5 = 50. As usual, the injectors are rate-controlled, whereas the producer is BHP-
controlled. The upper and lower limits of the design variables are summarized in Table 2. 

 

Fig. 3. 3D schematic of the synthetic reservoir. 

Table 2.  Lower and upper limits of the well controls in Example 2 
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Variable Lower Limit Upper Limit 

Producer BHP (psi) 2000 4000 

Water injection rate (stb/d) 0 1200 

Before optimization, we normalized our design variables to the scale [0,1]. The StoSAG parameters in 
normalized scale are Np = 15, σ = 0.01, L = 5. In normalized scale, the design variables are initialized to be 0:5, 
resulting in the corresponding NPV of $8.45×107. Figure 4 shows the optimization results from iteration to 
iteration. The algorithm converges after 33 optimization runs (or 537 reservoir simulations). The algorithm has 
improved the NPV to its optimal value of $1.55 × 108. 

 

(a) NPV vs. number of iterations (b) NPV vs. number of simulations 

Fig. 4. NPV optimization results. 
The optimal well controls are shown in Figure 5 and Figure 6 for injectors and producers, respectively. All four 

injectors are operating at maximum rates at the early times, and decreasing over time to reduce the water 
production at the producer. The producer is set to operate at the upper bound throughout the lifetime. This can be 
explained by the long total lifetime (3,600 days), if the BHP is lowered at any of the control time steps, more 
water production would be observed, hence decreasing the NPV due to the water treatment cost. 

  
   a) Injector 1 b) Injector 2 

  
c) Injector 3 d) Injector 4 

Fig. 5. Optimal Injection Schedule 
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Fig. 6. Optimal Production Schedule of Producer 

The water saturation distributions are shown in Figure 7, which compares the initial and final water saturation 
distribution. It can be seen that, at the final time, most of the reservoir volume is full of water, with a small zone 
in Layer 1 still containing some oil. 

 

 

Fig.7. Comparison of water saturation distribution. 

3. Conclusions 

The projected CG has a better performance than the traditional steepest ascent, and required fewer iterations 
to converge.   

The solution is unique in the simple case (Example 1), but when there are multiple wells presented (Example 
2), we would encounter non-unique solutions. Especially if local homogeneity is observed.  
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