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A B S T R A C T   

This study aims to predict ground vibration intensity in mine blasting, which is measured by peak particle ve
locity (PPV), using three novel intelligent models based on metaheuristic algorithms and extreme learning 
machine (ELM) model, including salp swarm optimization (SalSO), sparrow search optimization (SpaSO), and 
moth-flame optimization (MFO), named as SpaSO-ELM, SalSO-ELM, and MFO-ELM models. In this study, the 
SpaSO, SalSO and MFO algorithms were utilized to optimize the weights of the ELM for predicting PPV based on 
their different optimization mechanisms. In order to assess the performance of these models, 216 blasting records 
were considered and the corresponding PPV values were measured at the Coc Sau open-pit coal mine (located in 
the North of Vietnam). The algorithms’ parameters were structured with different activation functions of the 
ELM model. Furthermore, in order to diagnose the improvement of the SpaSO-ELM, SalSO-ELM, and MFO-ELM 
models, the standalone ELM and two empirical models (linear and nonlinear models) were also investigated and 
evaluated. The results revealed that nonlinear models are potential candidates for predicting PPV, and the ELM- 
based models are robust solutions to model the nonlinear relationships of the dataset. The developed models 
were then also validated in practical engineering, and the findings indicated that the SpaSO-ELM model is the 
best intelligent model for predicting PPV in this study with an accuracy of 91.4%. The remaining hybrid models 
provided slightly lower performances with the accuracies in the range of 89.8%—90.5%. Although the nonlinear 
empirical model predicted PPV much better than the linear model; its performance is still significantly lower than 
the proposed hybrid intelligent models. Thus, the optimized metaheuristic-based ELM models proposed in this 
study are considered as the high reliability models for predicting blast-induced ground vibration intensity in 
open-pit mines to ensure the safety of the surroundings.   

1. Introduction 

Surface mining is one of the most common methods to exploit min
erals, fossil fuels and metals with high mechanization and productivity. 

Among rock fragment methods used in open pit mines, drilling-blasting 
is the most common method to fragment rocks before the next unit 
operations are conducted, such as loading, hauling. Many reports indi
cated that the blasting’s advantages are significant and undeniable. 
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Nevertheless, its adverse effects are substantial, such as blast-induced 
ground vibration (BIGV), flyrock, airblast, and air pollution [1–4]. Of 
these side effects, BIGV is considered a dangerous phenomenon that 
profoundly impacts the neighboring fields, especially open-pit mines 
located near residential areas. Although such hazardous in blasting has 
also been assessed and probabilistic risk-based models was proposed to 
deal with these problems, aiming to ensure the blast safety hazards [5]. 
However, blasting is still considered a complex problem with various 
accident risk groups can be occurred [6]. As a matter of fact, many 
structures have been cracked by BIGV, and a lot of slopes/benches have 
been subsided or became unstable due to the high intensity of BIGV in 
open-pit mines [7,8]. Therefore, accurate BIGV intensity prediction is 
imperative not only in terms of the neighboring structures but also the 
production aspect of open-pit mines. 

For this purpose, many researchers studied and proposed a variety of 
empirical equations for estimating BIGV intensity since the 1950s of the 
21st century, and they used the peak particle velocity (PPV) to measure 
the intensity of BIGV [8–11]. Such empirical equations demonstrated 
the convenience and ability to predict PPV from blasting parameters. 
However, the accuracies obtained from empirical equations, are still in 
very modest level. 

In recent years, artificial intelligence (AI) techniques with data- 
driven methods have been introduced and implemented as state-of- 
the-art techniques not only for blasting issues but also other aspects in 
the mining industry as well as reliability and safety systems [12–18]. 
The AI-based Bayesian approach was also introduced to assess the safety 
of blasting operations [6]. For predicting PPV, many researchers studied 
and proposed various AI-based models with promising results. Monjezi, 
Hasanipanah [19] considered and predicted PPV using only 20 blast 
vibration records and an artificial neural network (ANN) model. Their 
results showed high acquiescence of the used ANN model in predicting 
PPV with an R2 (determination coefficient) of 0.927. Similar approach 
was also applied at the E-Gohar iron mine (Iran) for predicting PPV with 
an R2 of 0.957 and MSE (mean squared error) of 0.000722 [20]. In 
another study, Hasanipanah et al. [21] evaluated the feasibility of using 
support vector machine (SVM) for the purpose of PPV prediction, and 
they found that this is a potential machine learning model for this task 
with an outstanding testing results of R2 and RMSE (root mean squared 
error) values as 0.957 and 0.34, respectively, with MAPE (mean absolute 
percentage error) as 6.36%. By the combination of ANN and another 
machine learning algorithm based on the experiences of nearest neigh
bors, i.e., K-nearest neighbors (KNN), Amiri et al. [22] proposed the 
integrated ANN-KNN model applied for predicting PPV with an accuracy 
improvement of ~2% as compared to traditional ANN model (92.21%). 
In similar way of machine learning approach, Hasanipanah et al. [23] 
developed the CART model (classification and regression trees) to pre
dict PPV under the combination of decision trees in a model. Different 
empirical models were also compared with the CART’s results, and they 
showed that the CART’s accuracy was better ~7—15% compared to the 
empirical models. Among AI techniques, metaheuristic algorithms are 
also recommended as a robust approach to solve optimization problems 
in engineering, and Armaghani et al. [24], therefore, investigated the 
feasibility of the imperialist competitive algorithm (ICA) to predict PPV 
values with the consideration of the power and quadratic equations. 
Their results revealed that the use of metaheuristic algorithms is a new 
approach that can improve the accuracy of the previous machine lear
ning/AI models in predicting accurate PPV. 

Since 2019, metaheuristic algorithms have gradually been applied 
more commonly in PPV prediction with significantly improved results. 
Azimi et al. [25] considered applying the genetic algorithm (GA) in 
predicting PPV by optimizing an ANN model, and they found that GA 
could significantly support the ANN model in the improvement of PPV 
predictions (R2 = 0.988, MAE = 1.451). Bui, Jaroonpattanapong [26] 
also applied another metaheuristic algorithm in predicting PPV for 
optimizing the KNN model, namely particle swarm optimization 
(PSO)-KNN model. It scored 97% of accuracy with the Tri weight kernel 

function. By the use of firefly algorithm (FA) for the same purposes as 
those used by Azimi et al. [25], Shang et al. [27] developed the FA-ANN 
model with an accuracy approximately 96.6%. Zhang et al. [28] also 
combined the PSO algorithm and XGBoost model (extreme gradient 
boosting machine) for predicting PPV, named as PSO-XGBoost. Similar 
results were also reported in the PSO-XGBoost model with R2, RMSE and 
VAF (variance accounted for) were 0.968, 0.583 and 96.083, respec
tively. Qiu, Zhou [29] developed three XGBoost-based hybrid models for 
predicting PPV, including WOA (whale optimization 
algorithm)-XGBoost, GWO (gray wolf optimization)-XGBoost, and BO 
(Bayesian optimization)-XGBoost. They then evaluated the performance 
of these models and the results indicated that the WOA-XGBoost model 
yielded the best performance (RMSE = 3.054, R2 = 0.976, VAF = 97.68, 
and MAE = 2.503). Similar approach with another metaheuristic algo
rithm, Jaya algorithm (JA) was also applied to optimize the XGBoost for 
predicting PPV by another research group [30]. Lawal et al. [31] also 
applied the sine cosine algorithm (SCA) to optimize an ANN model for 
the same purpose in five different granite quarries. An ideal result was 
also reported in their study with an R2 of 0.999 for the SCA-ANN model. 
Besides, a variety of other hybrid models were also proposed to predict 
PPV with high reliability, such as MFO (Moth-flame 
optimization)-ANFIS (adaptive fuzzy inference neural network) [32]; 
HHO (harris hawks optimization)-ANN, WOA-ANN [7]; FA-SVM [33]; 
PSO–CRANFIS (chaos recurrent ANFIS) [34]; HHO-ELM (extreme 
learning machine) and GO (grasshopper optimization)-ELM [35]; MVO 
(multi-verse optimization)-ELM [36]; PSO-ELM [37], and SaDE (self-
adaptive differential evolutionary)-ELM [38]. 

Despite the fact that many AI-based soft computing models/para
digms have been proposed to predict PPV induced by mine blasting, yet, 
they have been implemented in single site specific mine but have not 
been tested in other areas/mines. A review of the published works 
showed that AI-based soft computing models/paradigms based on the 
optimization characteristics of metaheuristic algorithms tend to provide 
better performances than those of the traditional AI models (i.e., 
standalone models). This study is, therefore, to propose three different 
novel AI-based models for predicting PPV in open-pit mines based on the 
ELM model and three swarm-based metaheuristic algorithms, including 
sparrow search optimization (SpaSO), salp swarm optimization (SalSO), 
and MFO, named as SpaSO-ELM, SalSO-ELM and MFO-ELM models. It 
must be emphasized that these AI-based hybrid models have not been 
considered and proposed to predict PPV before. Furthermore, to inter
pret the role of three metaheuristic algorithms used in the optimization 
of the ELM model, the standalone ELM model was also developed and 
compared with the SpaSO-ELM, SalSO-ELM and MFO-ELM models. Two 
empirical equations, including a linear equation (i.e., USBM - United 
States Bureau of Mines) and a nonlinear equation were also considered 
to estimate PPV to diagnose the characteristics of the dataset used and 
compared to the AI-based models. The methodology, results, and dis
cussion will be taken up in the next sections. 

2. Methodology 

In this study, the enhanced ELM models are selected to predict PPV 
with the support of the SpaSO, SalSO, and MFO optimization algorithms, 
namely SpaSO-ELM, SalSO-ELM, and MFO-ELM. Thus, the principle of 
the ELM and three optimization algorithms, as well as the framework of 
the hybrid models based on ELM model will be presented in this section. 
Moreover, empirical method is also selected to estimate PPV and 
compared with the hybrid ELM-based models. The model evaluation 
methods are also presented in this section as a part of the methodology. 

2.1. Extreme learning machine (ELM) 

ELM is one of the members in the ANN family, but it comprises only 
one hidden layer. It is an enhancement of the MLP model with the 
learning rate improved [39] and the model can obtain global 
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optimization based on the random weights generated [40]. The princi
ple of the ELM model is described as follows: 

Given a training dataset {X,Y} = (xi, yi) with xi ∈ RV ,yi ∈ RC, i = 1,
..., N; xi is the ithinput data in the V dimensions, xi =

[xi1, xi2, ..., xiV ]
T
∈ RV ; N is the number of inputs; yi is the ithoutput data 

in the V dimensions, corresponding with the xi input, yi =

[yi1, yi2, ..., yiC]
T
∈ RC. Subsequently, random weights (w) and biases (b) 

are generated with w ∈ RV×L and b ∈ RL, L denotes the hidden nodes of 
the ELM model. Next, the original PPV dataset is mapped to the hidden 
layer to get the h(x) function, h(x) ∈ R1×L . The weights matrix of the 
output layer is represented as β ∈ RL×C, and they can be calculated based 
on prediction errors and it can prevent overfitting problem concurrently. 
The objective function of this task can be expressed as: 

min
β∈RL×m

1
2
‖ β ‖

2
F +

α
2
‖ φi ‖

2

s.t. h(xi)β = yi − φi

(1)  

where φi is the regression error of the ith training sample, φi ∈ RC; 
αdenotes the penalty coefficient. 

β can be computed as follows: 

β =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

HT
(

HHT +
IN

C

)− 1

Y if N < L

(

HT H +
IL

C

)− 1

HT Y if N ≥ L

(2)  

with H = [h(x1), h(x2), ..., h(xN)]
T
∈ RN×L; Y = [y1, y2, ..., yN]

T
∈ RN×C, I 

is the identify matrix. 
The overall architecture of the ELM model is demonstrated in Fig. 1. 

2.2. Sparrow search optimization (SpaSO) 

SpaSO is a new metaheuristic algorithm that was proposed in 2020 
by Xue and Shen [41] based on the behaviors of sparrows in searching 
the food. In a sparrow swarm, producers and scroungers are considered 
as the main members of the swarm. Whereas the producers have high 
energy levels that can identify the food sources, the scroungers have 
lower levels of energy and they get the food from the producers [42]. In 
SpaSO, the energy levels are evaluated through the fitness values of 
sparrows. When the sparrow detects predators, it makes a warning 
signal to the individuals. Once this signal exceeds the normal threshold, 
the producers will lead the flock to a safer location. 

In SpaSO, every sparrow can become a producer if it can find out 
better food sources. Yet, the ratio between the producers and scroungers 
in the flock are constant. To become a producer, several scroungers try 
to fly to other destinations to obtain higher energy levels. In addition, 
they can compete against the producers to get the best food sources to 
become the producers. When in danger, the sparrows in the outer edge 
will try to find better positions, whereas, the others seek random loca
tions to converge together. The mathematical of the SpaSO can be 
expressed as follows: 

- Step 1: Generating the matrix of sparrows’ positions 

P =

⎡

⎢
⎢
⎣

p1,1 p1,2 ⋯ p1,d
p2,1 p2,2 ⋯ p2,d
⋮ ⋮ ⋮ ⋮
psp,1 psp,2 ⋯ psp,d

⎤

⎥
⎥
⎦ (3)   

Fig. 1. Illustrating the ELM architecture for predicting PPV.  
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where d denotes the dimensions of the dataset, sp is the number of 
sparrows. 

- Step 2: Calculating the fitness values of sparrows 
F(P) =

⎡

⎢
⎢
⎣

f
(
p1,1, p1,2, ..., p1,d

)

f
(
p2,1, p2,2, ..., p2,d

)

⋮
f
(
psp,1, psp,2, ..., psp,d

)

⎤

⎥
⎥
⎦ (4)   

- Step 3: Updating the position of producers 

Fig. 2. The SpaSO framework for searching optimization solutions.  

Fig. 3. The SalSO framework for searching optimization solutions.  
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Pij(t+ 1) =

⎧
⎪⎨

⎪⎩
Pij(t)e

(

− i
r1 tmax

)

Ws < δ

Pij(t) + r2M Ws ≥ δ

(5)   

where Pij(t) stands for the position of the ith sparrow in the jth dimen
sion at the current iteration; r1 is a random value interval [0,1]; r2 is a 
random value in normal distribution; Ws is the warning signal value 
interval [0,1]; δ denotes the threshold interval [0.5, 1]; M is the matrix 
of unity elements with 1xd dimension. 

- Step 4: Updating the position of scroungers 

Pij(t+ 1) =

⎧
⎪⎨

⎪⎩

Pbest(t) + β
⃒
⃒Pij(t) − Pbest(t)

⃒
⃒ υi > υb

Pij(t) + r3

(⃒⃒Pij(t) − Pworst(t)
⃒
⃒

(υi − υw) + ω

)

υi = υb

(6)   

where β denotes the step size parameter; r3 is a random value interval 
[− 1,1]; υi stands for the fitness of the ith sparrow; υb and υw are the best 
and worst fitness values of the ith sparrow, respectively; ω is a coefficient 
to prevent the zero division. The framework of the SpaSO for searching 
the optimization solution is shown in Fig. 2. 

2.3. Salp swarm optimization (SalSO) 

SalSO is a bio-inspired metaheuristic algorithm that was constructed 
based on the predation behaviors of salp [43]. Using salp chain search 
calculation, SalSO can find the optimal sources of foods. Indeed, it is 
depending on the position of the salp chain, as well as the individuals. 
They are classified to two groups: followers and leaders. Whereas 
leaders play a role as the trailblazers leading the salp chain, other in
dividuals follow as followers [44]. For this reason, an initial population 
is necessary, like other metaheuristic algorithms. Also, an objective 
function is required to calculate the fitness of individuals in the chain. In 
the SalSO, a salp is assigned as the leader if it has the best fitness, and the 
remaining individuals are followers. During search food sources, fol
lowers can become the leader in case of the new food source found is 
better the previous one, and the fitness of the current follower is better 
than the current leader. Therefore, the position of leader should be 
updated using the equation below: 

P1
d =

{
FSd + μ1((UBd − LBd)r4 + LBd), r5 ≥ 0
FSd − μ1((UBd − LBd)r4 + LBd), r5 < 0 (7)  

where P1
d is the position of leader in the dth dimension; FSd denotes the 

food source position in the dth dimension; μ1 stands for the balance 
parameter of SalSO that can be calculated using Eq. (8); LBd and 
UBdindicate the lower and upper bounds in the dth dimension; r4 and r5 
are random numbers. 

Fig. 4. The MFO framework for searching optimization solutions.  
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μ1 = 2e
−

(

4t
T

)2

(8)  

where t is the existing iteration, and T stands for the maximum number 
of iterations. 

Similarly, the position of followers are also updated with the equa
tion below: 

Pj
d =

1
2

ατ + ν0τ, j ≥ 2 (9)  

where Pj
d refer to the position of the jth follower in the dth dimension; α 

is the acceleration of the algorithm; τ is the time interval between 
evaluations, and ν0 is the initial velocity of the salp. 

Due to the initial velocity ν0 is set equal to 0, and τ is set equal to 1 in 
this algorithm; therefore, the position of followers can be rewritten as 
follows: 

Pj
d =

1
2
(
Pj

d +Pj− 1
d

)
, j ≥ 2 (10) 

The framework of the SalSO for searching the optimization solution 
is shown in Fig. 3. 

2.4. Moth-flame optimization (MFO) 

MFO is a population-based metaheuristic algorithm which was 
developed by Mirjalili [45] based on the behaviors of moths and flames. 
Accordingly, moths tend to fly towards the moon. However, it is often 
attracted to the flames in reality. The positions of moth and flame refer 
to a candidate solution. Meanwhile, only moths can fly around the 
flames, and therefore, they must update their positions continuously to 
get better solutions. 

In MFO, two populations are used, including moth and flame. The 
positions of moths can be depicted through a matrix, as follows: 

M =

⎡

⎢
⎢
⎣

M1
M2
⋮
Mn

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

m11 m12 ⋯ m1d
m21 m22 ⋯ m2d
⋮ ⋮ ⋮ ⋮
mn1 mn2 ⋯ mnd

⎤

⎥
⎥
⎦ (11)  

where n represents the number of populations (e.g., moths and flames); 
d represents the number of variables used (dimensions). 

Next, the fitness of moths is calculated using the fitness function in 
Eq. (12). 

Fig. 5. Steps of the ELM-based optimization models for predicting PPV.  
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OM =

⎡

⎢
⎢
⎣

OM1
OM2
⋮
OMn

⎤

⎥
⎥
⎦ (12)  

where OMi indicates the fitness value of the ith moth in the dimension, 
Mi = [mi1,mi2, ...,mid] with i ∈ Rn. 

Similarly, the positions of the flames can be described in the matrix 
(13) and their fitness values is computed using Eq. (14). 

F =

⎡

⎢
⎢
⎣

F1
F2
⋮
Fn

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

f11 f12 ⋯ f1d
f21 f22 ⋯ f2d
⋮ ⋮ ⋮ ⋮
fn1 fn2 ⋯ fnd

⎤

⎥
⎥
⎦ (13)  

OF =

⎡

⎢
⎢
⎣

OF1
OF2
⋮
OFn

⎤

⎥
⎥
⎦ (14)  

where OFj denotes the fitness value of the jth flame in the dimension, Fi 
= [fj1, fj2, ..., fjd] with j ∈ Rn. 

Like other metaheuristic algorithms, MFO also creates an initial 
population. However, in the MFO, two populations (i.e., moths and 
flames) are created using Eq. (15). 

mid = LBi + r6(UBi − LBi) (15)  

where LBi and UBiindicate the lower and upper bounds of the ith vari
able in the d dimension; r6 is random number in the range of 0 and 1. 

The position of the ith moth at the t iteration is calculated using the 
following formula: 

Mi(t+ 1) =
{

χi⋅e
εr7 ⋅cos2πr7 + Fi(t), i ≤ fa

χi⋅e
εr7 ⋅cos2πr7 + Ffa (t), i > fa

(16)  

where ε is a constant used to define the spiral motion form; t is the 
current iteration; r7 is random number in the range of γ and 1 with γ = −

1+ t
(
− 1
T
)
; The maximum number of iterations is denoted by T; fa stands 

for the number of adaptive flames and it can be calculated using Eq. 
(18); χi is the distance between the ith moth and the corresponding flame 
calculated using Eq. (17). 

χi =

{
|Fi − Mi|, i ≤ fa⃒
⃒Ffa − Mi

⃒
⃒, i > fa

(17)  

fa = round
(

n −
t(n − 1)

T

)

(18) 

It should be noted that fa is used to identify the number of moths in 
each iteration, aiming to balance the exploration and exploitation 
stages. In the exploration phase, each moth fly around a specific flame 
and updates its position to avoid falling into local optima. In the 
exploitation phase, the fitness values of moths and flames are calculated 
at each iteration and they are then sorted to select the best solution at 
the current iteration. Based on this result, the populations of flame are 
determined for the next iteration. 

The framework of the MFO for searching the optimization solution is 
presented in Fig. 4. 

2.5. Proposing ELM-based optimization models for predicting PPV 

As presented in the principle of ELM, this network consists of only 
one hidden layer, and the weights between the input and hidden layers 
are generated randomly. It should be underlined that the randomly 
generated weights in this period are constant. Meanwhile, the weights 
between the hidden and output layers are calculated by multiplication 
matrix method. Once the truth ground values are given, the multipli
cation matrix method can be used to find out the weights of the network. 
Remarkably, this method can find global optimal exactly. 

However, the found global optimal point is only for the previous 
randomly generated weights. For another random weights, another 
global optimal will be defined. Therefore, the use of metaheuristic al
gorithms (i.e., SpaSO, SalSO, and MFO) will provide a population of 
solution, and each solution contains a random set of weights for the 
input and hidden layers of the ELM model. The weights between the 
hidden and output layers are still calculated using the multiplication 
matrix method, like the standalone ELM model. In other words, the 
SpaSO, SalSO, and MFO algorithms are used to optimize the weights of 
the ELM model to predict PPV, named as SpaSO-ELM, SalSO-ELM, and 
MFO-ELM models. The proposed method is shown in Fig. 5. 

2.6. Empirical methods 

As introduced earlier, AI models and empirical equations are 

Fig. 6. Location of the selected study area with an aerial view.  
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Fig. 7. Boxplots and statistics of the collected dataset.  
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considered as two common methods to estimate PPV in this study. To 
understand whether the proposed AI models (i.e., SpaSO-ELM, SalSO- 
ELM, and MFO-ELM) are good for predicting PPV, two forms of empir
ical equation were considered, including linear and nonlinear empirical 
equations. Whereas the USBM model, which is the most common 
empirical model, was used as the linear empirical model, the gene 
expression programming method was applied to generate a nonlinear 
model. The principle of these methods is briefly presented as below. 

USBM model (linear regression model) 
As a well-known empirical model for predicting PPV, the USBM 

empirical equation that was proposed by Duvall and Petkof [46], was 
used in this study, and it is described in Eq. (19). 

PPV = k
(

D
̅̅̅̅̅
W

√

)− b

(19)  

where k and b are the two coefficients that represent for the rock 
hardness as well as characteristics of each region. They can be calculated 
using the regression analysis method through the field measurements. 

Nonlinear empirical model (NLE) 
For the NLE model, genetic-based programming was used with 

various chromosomes, and genes were used to determine the relation
ship between the input variables. It used a fitness function (i.e., RMSE) 
to evaluate the fitness of the model with different configurations. During 
building the NLE model, the optimal evolution strategy was used with a 
variety of operators, such as function insertion, mutation, leaf mutation 
biased leaf mutation, fixed-root mutation, conservative mutation, per
mutation, inversion, gene recombination, to name a few. In addition, 
various functions were considered in the NLE between the input vari
ables, such as addition, natural logarithm, subtraction, x to the power of 
2, multiplication, division, cube root, exponential, inverse, to name a 
few. The addition linking function was used to combine the generated 
genes to create the NLE model. Finally, an NLE model was generated 
with the best RMSE (the lowest RMSE) to predict PPV as presented in 
Eq. (24). 

2.7. Performance metrics for models’ evaluation 

In order to evaluate the performance (e.g., accuracy, error, confor
mity) of the proposed AI-based and empirical models including ELM, 
SpaSO-ELM, SalSO-ELM, MFO-ELM, USBM, and NLE, three statistical 
metrics, including MAE, RMSE, and R2 were used, and their descriptions 
are presented in Eqs. (20)–(22). 

Fig. 8. Correlation matrix of the blasting parameters and PPV.  

Table 1 
Statistics of the prepared datasets for predicting PPV.  

Category B (m) S (m) f PF (Kg/ 
m3) 

Q 
(Kg) 

D (m) PPV 
(mm/s) 

Training dataset (80%) 

Min. 2.4 4.2 10 0.4 240 152 2.86 
1st Qu. 5.1 4.9 10 0.4 319 184.8 3.572 
Median 6.2 5.55 12 0.45 373.5 217 4.92 
Mean 5.85 5.572 11.03 0.4526 366.6 217.1 4.96 
3rd Qu. 6.8 6.2 12 0.5 410.2 238.2 6.27 
Max. 7.4 7 12 0.5 464 325 7.22  

Testing dataset (20%) 

Min. 2.9 4.2 10 0.4 259 160 2.86 
1st Qu. 5.475 4.9 10 0.4 316 184.5 3.953 
Median 5.95 5.5 11 0.45 356 220 4.92 
Mean 5.868 5.62 11 0.4534 363 221.9 4.966 
3rd Qu. 6.525 6.4 12 0.5 405.2 250 6.27 
Max. 7.3 7 12 0.5 469 310 7.22  
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Table 2 
Weights and biases of the traditional ELM model obtained for predicting PPV.  

Inputs Hidden neurons 

1 2 3 4 5 6 7 8 9 10 11 12 13 

B 0.695 0.753 0.202 0.755 0.909 0.218 0.209 0.013 0.345 0.551 0.310 0.322 0.723 
S 0.477 0.720 0.797 0.629 0.626 0.820 0.162 0.469 0.049 0.917 0.532 0.265 0.133 
f 0.827 0.555 0.763 0.023 0.146 0.206 0.335 0.739 0.453 0.544 0.992 0.146 0.520 
PF 0.761 0.353 0.703 0.058 0.469 0.177 0.694 0.936 0.234 0.853 0.309 0.039 0.491 
Q 0.300 0.204 0.939 0.547 0.651 0.738 0.825 0.920 0.458 0.705 0.301 0.971 0.461 
D 0.932 0.675 0.208 0.035 0.428 0.504 0.368 0.178 0.416 0.565 0.941 0.801 0.587 
Bias 0.851 0.117 0.261 0.281 0.210 0.169 0.990 0.854 0.583 0.087 0.156 0.440 0.800 
Output              
PPV − 11.222 − 2.063 − 6.081 3.836 8.824 13.474 1.336 1.991 − 13.188 4.528 4.638 − 8.133 20.453  

Fig. 9. Optimization performance of the ELM-based models for predicting PPV.  

H. Nguyen et al.                                                                                                                                                                                                                                 



Reliability Engineering and System Safety 231 (2023) 109032

11

MAE =
1

nblast

∑nblast

blast=1
|PPVi − P̂PV i| (20)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

nblast

∑nblast

blast=1
(PPVi − P̂PV i)

2

√

(21)  

R2 = 1 −

∑nblast

blast=1
(PPVi − P̂PV i)

2

∑nblast

blast=1
(PPVi − PPVi)

2
(22)  

where nblast is the number of blasting cases used in the dataset; PPVi, 
P̂PVi, and PPVi stand for the measured PPV, predicted PPV, and mean of 
measured PPVs. 

3. Data collection and preparation 

3.1. Data collection 

To diagnose the performance of the ELM, SpaSO-ELM, SalSO-ELM, 
MFO-ELM, USBM, and NLE models, 216 blasting events were collected 
at the Coc Sau open-pit coal mine, located in the Northern Vietnam 
(Fig. 6). In this coal mine, the rock hardness measured and evaluated in 
the range of 10 to 12 (based on Mohs hardness test), and therefore, 
blasting was recommended as the primary method for fragmenting rock. 

According to the geological reports, the geological conditions of this 
area are not too complex. Furthermore, geological conditions are clas
sified into the uncontrollable parameters group [27,47]; therefore, they 

Table 3 
Optimized weights of the best SpaSO-ELM model for predicting PPV.  

Inputs Hidden neurons 

1 2 3 4 5 6 7 8 9 10 11 12 13 

B − 0.577 0.523 − 0.940 − 0.301 − 0.239 − 0.570 0.228 − 0.871 0.759 − 0.544 0.411 0.296 − 0.903 
S − 0.196 0.002 0.745 0.009 − 0.474 − 0.545 0.688 − 0.508 0.302 0.669 − 0.694 − 1.000 − 0.657 
f − 0.047 0.027 − 0.710 − 0.078 0.309 0.423 − 0.100 − 0.035 0.633 − 0.822 − 0.470 0.294 0.726 
PF 0.409 − 0.274 0.465 0.554 − 0.818 0.037 − 0.719 0.600 − 0.297 0.086 0.657 − 0.194 0.006 
Q − 0.512 0.117 − 0.188 0.512 0.204 0.167 − 0.533 − 0.162 0.195 0.408 − 0.233 0.359 − 0.445 
D − 0.211 − 0.509 − 0.466 − 0.378 0.756 − 0.553 − 0.553 0.741 − 0.097 0.281 0.513 − 0.003 − 0.340 
Bias − 0.008 0.612 0.678 0.532 − 0.415 0.603 − 0.098 − 0.812 0.340 0.398 0.365 0.290 0.012 
Output              
PPV − 0.741 2.448 − 0.588 − 1.353 − 0.514 0.907 − 0.934 1.454 0.381 0.631 − 0.235 − 2.233 0.134  

Table 4 
Optimized weights of the best SalSO-ELM model for predicting PPV.  

Inputs Hidden neurons 

1 2 3 4 5 6 7 8 9 10 11 12 13 

B − 0.638 − 0.715 0.224 0.336 − 0.828 − 0.084 0.343 0.808 − 0.235 0.801 0.222 − 0.653 − 0.146 
S − 0.535 0.576 0.055 0.936 − 0.987 − 0.506 0.022 − 0.969 0.425 − 0.604 0.562 0.764 0.198 
f 0.969 − 0.576 0.303 0.958 − 0.818 0.786 − 0.586 0.532 − 0.232 − 0.312 0.013 − 0.137 0.009 
PF 0.223 0.190 0.390 0.611 − 0.894 − 0.481 − 0.738 0.112 0.816 0.104 − 0.821 − 0.025 0.200 
Q − 0.467 − 0.085 0.458 0.967 − 0.814 − 0.252 0.959 0.573 0.802 0.796 − 0.423 − 0.211 0.158 
D 0.457 − 0.938 0.027 − 0.473 − 0.623 0.403 0.172 0.758 − 0.942 0.248 0.066 0.451 1.000 
Bias − 0.170 0.233 0.411 0.504 0.514 − 0.188 0.993 0.724 0.168 − 0.493 0.168 0.056 − 0.657 
Output              
PPV 2.242 − 20.427 32.542 − 0.462 2.463 − 9.349 1.322 − 10.181 − 13.031 13.550 − 13.282 47.105 − 45.672  

Table 5 
Optimized weights of the best MFO-ELM model for predicting PPV.  

Inputs Hidden neurons 

1 2 3 4 5 6 7 8 9 10 11 12 13 

B − 3.977 8.623 0.622 1.729 − 13.652 − 18.376 19.950 38.622 10.150 11.607 18.241 − 1.592 44.872 
S 702.776 − 4.870 7.784 3.427 − 9.813 31.432 − 0.860 409.122 60.666 151.158 − 10.884 80.105 − 0.062 
f 68.699 − 5.890 7.358 − 2.722 − 5.215 − 29.258 − 2.029 17.807 19.264 − 32.699 − 44.945 − 3.132 − 286.476 
PF 62.514 1.060 − 12.875 − 0.268 0.370 1.525 − 4.749 − 6.664 − 6.623 − 144.192 − 2.029 − 18.422 − 13.337 
Q − 15.408 − 19.338 − 81.086 − 7.489 10.297 − 147.220 − 48.016 59.406 − 25.525 − 28.912 27.671 20.682 − 25.548 
D 48.473 13.173 118.830 34.974 − 127.504 580.811 − 50.948 44.906 21.609 63.590 − 3.815 − 3.335 46.509 
Bias − 16.469 16.235 17.216 − 10.527 28.888 − 96.107 10.167 13.802 13.489 39.665 35.019 − 14.588 − 32.754 
Output              
PPV 0.005 − 0.058 0.009 0.068 − 0.014 − 0.005 − 0.022 − 0.012 0.033 − 0.002 0.026 0.010 0.004  

Table 6 
Performance metrics of the AI-based and empirical models.  

Model Training Testing 

MAE RMSE R2 MAE RMSE R2 

SpaSO-ELM 0.346 0.393 0.926 0.320 0.389 0.914 
SalSO-ELM 0.307 0.361 0.937 0.347 0.418 0.905 
MFO-ELM 0.245 0.304 0.955 0.360 0.431 0.898 
ELM 0.428 0.498 0.880 0.350 0.434 0.898 
USBM 0.892 1.106 0.418 0.967 1.158 0.274 
NLE 0.648 0.801 0.747 0.667 0.795 0.691  
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Fig. 10. Correlation between the predicted PPVs versus measured PPVs.  
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have rarely been used to predict PPV. Review of related works showed 
that most of the previous studies used blasting parameters only for 
predicting PPV, and the accuracies were promising [1,22,24,38]. Hence, 

this study also considered five blasting parameters for predicting PPV, 
including burden (B), spacing (S), rock hardness (f), powder factor (PF), 
and maximum explosive charged per delay (Q). These parameters were 

Fig. 10. (continued). 
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exported from blasting patterns. To measure PPV, the micromate seis
mograph (instantel – Canada) was used, and it was put at sensitive lo
cations, such as bench face/slope, nearby households, or nearby 
open-pit coal mines (e.g., Cao Son and Deo Nai). Before measuring 
PPV, the distance between the measured locations and blast sites was 
determined by a GPS system. Finally, the dataset with 216 observations 
and 7 variables were used to predict PPV. The statistics of the dataset are 
illustrated through the boxplots, as shown in Fig. 7. 

3.2. Data preparation 

Prior to developing the prediction models, the comprehensive un
derstanding of the relationship between the input variables can make/ 
provide new ideas during developing the models. Thus, the correlation 
of the input variables, i.e., B, S, f, PF, Q, D, was analyzed, and strong 
correlations may be considered to eliminate aiming to avoid the insuf
ficient data quality and their contributions to prediction. As illustrated 
in Fig. 8, it is evident that all the variables used in the dataset have weak 
correlations. In other words, they may have nonlinear relationships, 
especially the PPV variable. Therefore, nonlinear predictive models may 
be potential candidates for predicting PPV in this case. However, it is 
still too early to conclude which model is the best for predicting PPV at 
the Coc Sau open-pit coal mine. The answer will be demonstrated in the 
next sections. 

For training the models, 80% of the whole dataset was randomly 
selected, and the remaining 20% was used for testing the accuracy of the 
trained models. The datasets are summarized in Table 1. 

4. Designing, training, and building prediction models 

4.1. ELM model 

For the development of the ELM model, 13 hidden nodes (neurons) 
were selected for the topology network of the ELM, and four different 
activation functions, including relu, elu, sigmoid, and tanh were 
considered using the trial-and-error procedure. In addition, the MinMax 
scale method was employed to normalize the datasets before training the 
model, aiming to reduce the bias of the model. Finally, the best ELM 
model was identified with the sigmoid activation function (i.e., MAE =
0.428, RMSE = 0.498, R2 = 0.880). The weights of the ELM model are 

presented in Table 2. 

4.2. SpaSO-ELM, SalSO-ELM, and MFO-ELM models 

To develop the mentioned hybrid ELM-based optimization models, 
the proposed framework in Fig. 5 was utilized. Accordingly, the ad
vantages of three metaheuristic algorithms (i.e., SpaSO, SalSO, and 
MFO) were applied to optimize the ELM model. The same topology 
network of the ELM was also used during optimization process of the 
SpaSO, SalSO, and MFO algorithms. Also, the MinMax scale method was 
utilized to normalize the dataset before running optimization processes, 
and different activation functions were also considered. 

Herein, the initial populations of the SpaSO, SalSO, and MFO algo
rithms were generated, and each population created a random set of 
weights for the ELM model. To discover the diversity of the populations 
and their effects on the performance of the optimization process, 
different population sizes were applied with 50, 100, 150, 200, 250, 
300, 350, 400, 450, 500 individuals (solutions). 

Besides, the parameters of the metaheuristic algorithms were also set 
up before training the ELM model, as follow: 

The SpaSO’s parameters: 
- Number of epochs: 1000 
- The safety threshold value: [0.6, 0.8] 
- The number of producers: [0.1, 0.2] 
- The number of sparrows who perceive the danger: 0.1 
The SalSO’s parameters: 
- Number of epochs: 1000 
The MFO’s parameters: 
- Number of epochs: 1000 
To evaluate the fitness of solutions, RMSE was used as the objective 

function of the models during the optimization process of the SpaSO, 
SalSO, and MFO algorithms. The lowest RMSE is corresponding to the 
best solution (the best set of weights). The optimization processes of the 
SpaSO-ELM, SalSO-ELM, and MFO-ELM models are presented in Fig. 9. 
Finally, the best SpaSO-ELM, SalSO-ELM, and MFO-ELM models were 
selected with the lowest RMSE values, and their weights are listed in 
Tables 3–5. 

Fig. 11. Comparison of the actual models and developed models.  
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4.3. Empirical models 

For the empirical models, the principles in Eq. (19) and gene-based 
programming method were applied and calculated. The empirical 
equations used for estimating PPV in this study are described in Eqs. 
(23)–(24). 

(i) USBM model (linear empirical model): 

PPV = 244.198
(

D
̅̅̅̅̅
W

√

)− 0.859

(23)  

(ii) Nonlinear empirical model:  

Note that, the multivariate regression analysis method was applied to 
determine the coefficients in Eq. (23) based on the historical dataset, and 

Fig. 12. Locations validation blasts and seismographs for measuring PPV.  

Table 7 
Summarize of the blasting events for validation and measured PPVs.  

Seismograph Blasting event B S f PF Q D PPV 

Seismograph #1 Blast #1 7 5.5 12 0.5 412 615 2.375 
Blast #2 6 5.5 10 0.45 401 690 2.105 
Blast #3 5.6 6.4 12 0.5 366 705 6.425 

Seismograph #2 Blast #1 7 5.5 12 0.5 412 598 2.406 
Blast #2 6 5.5 10 0.45 401 458 2.388 
Blast #3 5.6 6.4 12 0.5 366 478 7.012 

Seismograph #3 Blast #1 7 5.5 12 0.5 412 437 2.86 
Blast #2 6 5.5 10 0.45 401 342 2.761 
Blast #3 5.6 6.4 12 0.5 366 415 7.109  
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the gene expression programming method was applied to develop Eq. 
(24). 

5. Results and discussion 

Once the optimization process-based ELM models as well as the 
standalone ELM and empirical models were developed, the prediction 
results by these models were considered and evaluated. Indeed, three 
performance metrics (MAE, RMSE and R2) were computed for not only 
the training samples but also testing using Eqs. (20)–(22), as shown in 
Table 6. 

Based on the obtained performance metrics, the USBM model 
showed the worst performance with the highest errors (MAE = 0.892, 
RMSE = 1.106) on the training samples. The results also indicated that 
the USBM model seems not to appropriate to predict PPV in this case 
with an R2 of 0.418 for the training dataset. On the testing dataset, the 
accuracy and determination coefficient are even worse than the per
formance on the training dataset. In contrast, the NLE model provided 
significantly superior performance compared to the USBM model. From 
the empirical approach point of view, the results of the NLE model are 
acceptable. Remarkably, R2 of the NLE model improved up to 0.747 on 
the training dataset, and 0.691 on the testing dataset. This result shows 
that the blasting dataset seems more suitable with the NLE model. In 
other words, we have evidence to believe that nonlinear models are 
better than linear models for predicting PPV in this study. This statement 
is in agreement with the previous evaluation in the data preparation 
section. 

Considering the results obtained by the standalone ELM and opti
mized ELM models, to be sure, the AI-based models are much better than 
those of the empirical models in predicting PPV. The performance of the 
standalone ELM model was improved approximately by 14–20% 
compared to the performance obtained by the NLE model. It differs in 
learning theory from that of the NLE model (nonlinear equation). 
However, the primary objective of this study is to propose SpaSO-ELM, 
SalSO-ELM, and MFO-ELM models for predicting PPV. Now, we can see 
the results obtained by the hybrid ELM models and discover how the 
performance improved with three optimization algorithms. Firstly, by 
looking at the MFO-ELM model, evidently, the results varied somewhat 
in the performance and accuracy. The MFO algorithm optimized the 
ELM model to improve its accuracy, and the results can be observed on 
the training dataset in Table 6. On the testing dataset, there was some 
variation in accuracy of the ELM and MFO-ELM model. Secondly, 
considering the performance of the SalSO-ELM model in predicting PPV, 
it is clear that its performance is superior to those of the MFO-ELM and 
the other models. Compared to the standalone ELM model, the accuracy 
of the SalSO-ELM model was significantly improved on both training 
and testing datasets. Finally, beyond all shadow of doubt, the SpaSO- 
ELM model is the best model for predicting PPV in this study with the 
highest performance and accuracy. In effect, the errors of the SpaSO- 
ELM are lowest on both training and testing samples, and the R2 

values are highest as well. In a comparison with the ELM model, the 
accuracy of the SpaSO-ELM model was increased ~ 2%, and it is ~ 22% 
compared to the nonlinear empirical model (i.e., NLE). The accuracies of 
the developed models can be further interpreted in Fig. 10. 

As can be seen in Fig. 10, the USBM model provided the worst 

convergence. In contrast, the AI-based models provided better conver
gences, especially the SpaSO-ELM model. Whereas several data points 
were detected outside of the 80% confidence level of the empirical 
models, the ELM-based models provided most of the data points inside of 
this range, especially the hybrid models. These results indicated that the 
metaheuristic algorithm-based ELM models yielded better predictability 
than those of the standalone ELM and empirical models in predicting 
PPV. To indicate which model is the best and the most closely the actual 
model, the boxplot below shows the statistics of the actual and devel
oped models based on the median, quartiles, whiskers, fences and out
liers (Fig. 11). Fig. 11 is a powerful graphical representation of the 
outcome predictions that give an overview and numerical summary of 
the outcome predictions on the testing dataset. The results revealed that 
the SpaSO-ELM model tends to be strongly similar to the actual model 
(measured model). Meanwhile, the other hybrid models provided 
slightly lower similarities, and the empirical models are far from the 
actual model. These findings are in agreement with the results and 
discussions in Table 6. 

6. Experimental risk assessment 

To demonstrate the performance of the proposed models, three other 
blasting events at the Coc Sau open-pit coal mine were selected to 
validate the accuracy of the models in practical engineering after the 
PPV predictive models proposed. For each blasting event, three seis
mographs were used to measure PPV at different locations, as shown in 
Fig. 12. The blasting parameters used and measured PPVs by the 

Table 8 
Comparison of PPV predictions on the validation dataset in practical 
engineering.  

Measured 
PPV 

Predicted PPVs 

SpaSO- 
ELM 

SalSO- 
ELM 

MFO- 
ELM 

ELM NLE USBM 

2.375 2.475 0.660 2.160 2.461 5.285 1.424 
2.105 2.331 3.375 2.281 2.588 5.231 1.225 
6.425 6.864 5.615 9.100 8.248 5.927 1.941 
2.406 2.543 0.886 2.131 2.527 5.283 1.467 
2.388 2.587 2.820 3.196 3.311 5.211 1.838 
7.012 6.840 7.349 8.888 7.069 5.909 2.815 
2.86 3.077 3.359 3.110 3.116 5.266 2.068 
2.761 2.641 2.189 2.899 2.671 5.195 2.515 
7.109 6.846 8.287 9.561 7.281 5.902 3.197  

Table 9 
Performance metrics of the AI-based and empirical models in practical 
engineering.  

Model Training 

MAE RMSE R2 

SpaSO-ELM 0.208 0.229 0.990 
SalSO-ELM 0.926 1.043 0.844 
MFO-ELM 0.985 1.397 0.984 
ELM 0.446 0.710 0.941 
USBM 1.883 2.507 0.565 
NLE 2.154 2.336 0.970  

PPV = S +

⎛

⎝

√
√
√
√3

(
1

12977.86 − PF

)2
⎞

⎠

2

+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
B −

̅̅̅
f3

√

− 2.054D
3

√

+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

12.807 + Q + tanh(Q) + tanh
(
Q2)3

√

− 1.156
(

PF
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)
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(24)   

H. Nguyen et al.                                                                                                                                                                                                                                 



Reliability Engineering and System Safety 231 (2023) 109032

17

seismographs are summarized in Table 7. Finally, the validation dataset 
was import to the developed models, and the predicted PPVs by the 
proposed models are shown in Table 8. 

As indicated in the validation results, we can see that the predicted 
PPVs by the hybrid ELM models are very favorable, especially those 
obtained by the SpaSO-ELM model. The results showed that the SpaSO- 
ELM model also yielded the most dominant accuracy in experimental 
validation. In contrast, the empirical models are in poor stale for pre
dicting PPV in practical engineering. Whereas the USBM model pre
dicted too low PPVs compared to the actual PPVs, the NLE model 
predicted PPVs with the mean of PPV is around 5.2 to 5.9 mm/s in 
practical engineering. These evaluations are interpreted more clear in 
Table 9 through the performance metrics of the models in practical 
engineering. 

Indeed, the performance indicators of the models were tested in 
practical engineering through nine blasts showed which model is the 
best in practice, i.e., the SpaSO-ELM model, with an RMSE of 0.229, R2 

of 0.990 and MAE of 0.208 only. Meanwhile, the other models provided 
the accuracies in the range of 0.565 to 0.984 for R2 and RMSE in the 
range of 0.710 to 2.507. Remarkably, the performance of the ELM seems 
to be better than the optimized models SalSO-ELM and MFO-ELM 
models. This showed that not all AI models optimized by meta
heuristic algorithms provide higher accuracy than traditional model 
(without optimization). And in this case, the SpaSO seems to be better 
than the other metaheuristic algorithms in optimization of the ELM 
model for predicting PPV in open-pit mines. 

7. Conclusions 

Blasting and its adverse effects are considerable concerns in open-pit 
mining, especially PPV. Controlling PPV in open-pit mines, especially 
near residential areas, is challenging. This study, therefore, proposes 
three AI-based models (i.e., SpaSO-ELM, SalSO-ELM, and MFO-ELM) for 
predicting PPV induced by bench blasting, and they were applied at the 
Coc Sau coal mine with high accuracy and reliability. Of those, the 
SpaSO-ELM model provided the best performance and its accuracy was 
superior 20 — 22% compared to the empirical models. The optimization 
role of the used metaheuristic algorithms was also interpreted in this 
study with the improvements of the standalone ELM model, especially 
the SpaSO algorithm. Conspicuously enough, the three proposed ELM- 
based hybrid models were thus far novel AI models in predicting PPV. 
The applications in practical engineering for predicting PPV were also 
conducted and validated with high accuracy obtained. They should be 
used towards controlling PPV and its adverse effects in open-pit mines. It 
is to be noted that the SpaSO-ELM model is proposed as the best choice 
for this task in practical engineering. In addition, the consideration of 
the optimization of blasting parameters based on the proposed SpaSO- 
ELM model is a further research recommendation to minimize PPV in 
mine blasting. 
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