
����������
�������

Citation: Le, V.H. Extending Fuzzy

Linguistic Logic Programming

with Negation. Mathematics 2022, 10,

3105. https://doi.org/

10.3390/math10173105

Academic Editor: Gia Sirbiladze

Received: 12 July 2022

Accepted: 23 August 2022

Published: 29 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Extending Fuzzy Linguistic Logic Programming with Negation †

Van Hung Le

Faculty of Information Technology, Hanoi University of Mining and Geology, Duc Thang, Bac Tu Liem,
Hanoi 100803, Vietnam; levanhung@humg.edu.vn
† This paper is an extended version of our paper published in the 11th International Conference on

Computational Collective Intelligence, ICCCI 2019, Hendaye, France, 4–6 September 2019.

Abstract: Fuzzy linguistic logic programming (FLLP) is a framework for representation and reasoning
with linguistically expressed human knowledge. In this paper, we extend FLLP by allowing negative
literals to appear in rule bodies, resulting in normal logic programs. We study the stable model
semantics and well-founded semantics of such programs and their relation. The two kinds of
semantics are adapted from those of classical ones based on the Gelfond–Lifschitz transformation
and van Gelder’s alternating fixpoint approach, respectively. To our knowledge, until now, there has
been no work on the well-founded semantics of normal programs in any fuzzy logic programming
(FLP) framework based on Vojtáš’s FLP. Moreover, the relation between the two kinds of semantics
is usually studied using a bilattice setting of the truth domain. However, our truth domains do
not possess a complete knowledge-ordering lattice and, thus, do not have a bilattice structure. The
two kinds of semantics possess properties similar to those of the classical case. Every stable model
contains the well-founded (partial) model, and the well-founded total model coincides with the
unique stable model, but not vice versa. Since the well-founded semantics is closely related to the
stable model semantics, it can help compute stable models more efficiently.

Keywords: fuzzy logic programming; stable model semantics; well-founded semantics; linguistic
truth value; hedge algebra; linguistic hedge

MSC: 68T30

1. Introduction

In the real world, there are situations where information might not be stated in a
quantitative form, but rather in a qualitative one, e.g., by linguistic terms. This may
arise for different reasons [1]. In some cases, due to its nature, the information may be
unquantifiable and thus can be given only in linguistic terms; for instance, when accessing
the “comfort” or “design” of a car, we might be led to use linguistic terms such as “good”,
“medium”, and “bad” [2]. In other cases, precise quantitative information may not be
given since either it is unavailable or the cost of computation is too high, so a linguistic
“approximate value” might be acceptable; for example, when the rotation speed of an
electric motor is accessed, linguistic terms, e.g., “very large”, “large”, and “medium”,
might be utilized instead of numerical values [3]. Furthermore, since humans primarily
use words to describe phenomena and things, to reason, and to make decisions, human
knowledge is usually expressed linguistically and employs fuzzy concepts and hedges.
Hence, it is essential to have a knowledge representation framework that can directly work
with linguistic terms and hedges to give answers to queries. Such a framework can provide
a computational approach to human reasoning and can be a foundation for applications
dealing with linguistic information.

FLLP is introduced in [4] as a logic programming (LP) framework without negation
for representation and reasoning with linguistically expressed human knowledge, where
the truth of vague sentences is stated linguistically and various linguistic hedges can be

Mathematics 2022, 10, 3105. https://doi.org/10.3390/math10173105 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10173105
https://doi.org/10.3390/math10173105
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-8232-2892
https://doi.org/10.3390/math10173105
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10173105?type=check_update&version=1

Mathematics 2022, 10, 3105 2 of 22

used simultaneously to express different levels of emphasis. To our knowledge, FLLP is
the only FLP framework that can directly compute with linguistic terms and hedges in
query answering and allow hedge connectives to appear in rule bodies to modify fuzzy
predicates. Note that linguistic hedges play a very important twofold role in Zadeh’s fuzzy
logic, namely in the modification of fuzzy concepts and in the generation of linguistic
values of linguistic variables [5].

In FLLP, each fact or rule is evaluated by some linguistic truth value, and linguistic
hedges can operate as unary connectives in rule bodies. For example, the evaluation
“(A student is good if he/she is rather smart and studies very hard) is highly true” can be
represented by the rule:

good(X)← ∧(R smart(X), V hard_working(X)).HT

where R, V, H, and T stand for rather, very, highly, and true, respectively.
FLLP has a counterpart for most of the notions and results of classical definite LP [4,6],

e.g., declarative semantics, procedural semantics, and fixpoint semantics. In particular, the
procedural semantics and fixpoint semantics [4] can give answers to queries by directly
computing with linguistic terms. However, the latter is exhaustive and not goal-oriented,
and the former is goal-oriented but may lead to an infinite loop. Therefore, in [7,8], two
tabulation proof procedures for query answering, which are goal-oriented, sound, complete,
and terminated, are provided. Of the procedures, the deterministic is more efficient than
the non-deterministic and computes all and only the most general answers for a query.

It can be observed that permitting the representation and manipulation of negation is
a key feature for real-world applications. In classical LP, Horn programs are extended to
normal logic programs by allowing negative literals to occur in rule bodies for expressing
explicit negative information. For example, in the real world, we usually do “jumping to
conclusions” when the available information is incomplete [9]. For instance, if we know
that Tweety is a bird, we jump to the conclusion that it can fly. This default assumption, i.e.,
that birds can fly, can be represented by the following rule:

f ly(X)← bird(X)

Later, if we have more information, it might turn out that the conclusion is no longer true
and must be withdrawn. For instance, if we afterwards know that Tweety is a penguin, the
conclusion is withdrawn. This use of logic is called belief revision. One method of belief
revision in LP is using abnormality relations and negation. For the case of the penguin
Tweety, we can change the rule to the one below [9]:

f ly(X)← bird(X) ∧ ¬abnormal f ly,bird(X) (1)

and add the following rule to the program:

abnormal f ly,bird(X)← penguin(X) (2)

Thus, the complete, revised program consists of rules (1), (2) and the following facts:

bird(tweety) ←
penguin(tweety) ←

The well-founded semantics [10] and the stable model semantics [11] are probably the most
widely studied kinds of semantics for classical normal logic programs. The motivation
behind the former is to extend the least model semantics of Horn programs to normal logic
programs, i.e., keeping the property of the uniqueness of an intended/canonical model.
Generally, this means moving beyond the setting of two-valued interpretations. In contrast,
the objective behind the latter is to keep intended models two-valued. However, this means
the existence and uniqueness properties of intended models could no longer be ensured.

Mathematics 2022, 10, 3105 3 of 22

More precisely, all normal programs have a well-founded partial model, which can be
interpreted as a three-valued model in Fitting’s sense [12], whereas a normal program can
have multiple/one/no stable (total) models. Moreover, the well-founded model can be seen
as an approximation of all stable models (if they exist) [13]. Every stable model contains
the well-founded (partial) model. Consequently, a well-founded total model coincides with
the unique stable model, but not vice versa.

In the literature of FLP, which is an extension of classical LP with many-valued logic
(MVL)/fuzzy logic in the narrow sense (FLn)/mathematical fuzzy logic (MFL) for handling
vagueness, there are few works addressing the issue of non-monotonic negation. Cornejo
et al. [14] study the stable model semantics of multi-adjoint normal logic programs and its
properties. These results are extensions of those of normal residuated logic programs in
[15]. Loyer and Straccia [16] define the well-founded semantics (therein called the compro-
mise semantics) for normal logic programs in a parametric implication-based framework.
Nevertheless, to our knowledge, there is no work studying both kinds of semantics and
their relation within an FLP framework.

Another approach to defining the semantics of normal logic programs is based on
the notion of bilattice [17,18]. A bilattice is a structure 〈B,�t,�k〉, where �t and �k are
the truth order and knowledge order on B, respectively. The extension of the stable model
semantics and the well-founded semantics of classical normal logic programs to the context
of bilattices is due to Fitting [19,20]. In this approach, Loyer and Straccia [21,22] propose
the approximate well-founded semantics for normal logic programs in an FLP framework
based on the notion of an approximate interpretation, which assigns to an atom A a logical
(interval) value [a; b], meaning that the exact truth value of A is between a and b.

In this paper, we extend FLLP by permitting negative literals to appear in rule bodies,
resulting in normal logic programs. We study both the stable model semantics and the
well-founded semantics of such programs and their relation in terms of fixpoints of several
operators. It is shown that the two kinds of semantics possess properties similar to those
of the classical case. Therefore, the study conducted in this work makes the following
contributions: (1) enriching the theory of FLLP with negation to extend its applicability in
real-world applications; (2) studying the two most widely studied kinds of semantics of
normal programs, namely the stable model semantics and the well-founded semantics (note
that this is the first time the well-founded semantics is proposed for an FLP framework
among those based on Vojtáš’s FLP [23]); and (3) studying the relation between the two
kinds of semantics, which can help compute stable models more efficiently.

The remainder of the paper is organized as follows: Section 2 provides a literature re-
view, while Section 3 gives an overview of FLLP without negation. Section 4 presents FLLP
with negation, the stable model semantics and the well-founded semantics of normal logic
programs, and their relation. Section 5 concludes the paper and gives several directions for
future work.

2. Literature Review
2.1. Managing Vagueness in Logic Programming

In order to handle vagueness, classical LP is often extended with MVL/FLn/MFL.
There have been many frameworks (see, for instance, [24]) proposed in this approach. In the
implication-based (IB) approach [25], a truth value, which can be called the degree of confidence
or the weight, is attached to each rule. The underlying logic is often truth-functional; that is,
the truth value of a compound formula is computed using truth functions of connectives in
the formula. Most of the works deal with logic programs without negation. More precisely,
a rule is of the form:

A← @(B1, . . . , Bn).q (3)

where A, B1, . . . , Bn, n ≥ 0, are atoms, @ is an operator aggregating atoms, and q is the truth
degree of the rule. Given a fuzzy interpretation I of Bis by truth values in a truth domain,
the truth value of A is computed by evaluating the truth value of the rule body using the
truth function @• and then somehow “propagating” it to the rule head.

Mathematics 2022, 10, 3105 4 of 22

One of the most well-known frameworks in the IB approach is Vojtáš’s FLP [23]. The
truth domain is the unit interval [0,1] with its usual ordering. A fuzzy logic program is a
finite set of fuzzy rules of the form (3) and facts, which are graded atoms of the form (A.a).
In a rule, @ is an aggregation connective whose truth function is an aggregation operator. The
aggregation operators can cover all kinds of fuzzy conjunctions and disjunctions. Rules can
use different implication connectives←i. The truth function of an implication connective is
an implicator which is residual to a conjunctor; i.e., they satisfy the residuation property (9). A
conjunctor has the same properties as a t-norm except that commutativity and associativity
are not assumed [26].

Monotonic logic programming (MLP) and residuated logic programming (RLP) [27]
differ from Vojtáš’s FLP in the following ways: (a) they extend the truth space to either
a complete upper semilattice L = 〈T ,�〉, where the carrier set T is not necessary to be
the unit interval [0,1], for the case of MLP, or a complete residuated lattice, in which there
is a pair of binary operations (←,⊗) forming an adjoint (residual) pair, for the case of
RLP; (b) they follow an algebraic approach to both syntax and semantics of logic programs
[28]. That is, monotonic logic programs (resp., residuated logic programs) are constructed
from the abstract syntax induced by an implication algebra, defined with an R-implication
← on L, (resp., by an residuated algebra, defined with a residual pair (←,⊗)) and a set of
propositional symbols; (c) the aggregation operator @ is only required to be monotonic; (d)
the languages are propositional ones; and (e) there is only one implication connective used
in logic programs.

Multi-adjoint logic programming (MALP) [29] is an extension of RLP in the sense that:
(i) it is possible to use a number of different implication connectives in rules as in Vojtáš’s
FLP; (ii) the algebraic requirements on residuated lattices are weaker (more precisely, the
condition that (T ,⊗,>) is a commutative monoid in a residuated lattice is replaced by a
weaker condition >⊗ q = q⊗> = q, where > is the top element of L, in a multi-adjoint
lattice); and (iii) some sufficient conditions for the continuity of the immediate consequence
operator TP are established. In fact, if all operators @ in rule bodies are continuous in all
arguments, and all adjoint conjunctors ⊗ are continuous in the rule body argument, then
TP is continuous. MALP is extended to a first-order language in [30]. In this setting, MALP
is an extension of Vojtáš’s FLP in terms of the truth space and becomes one of the most
general FLP frameworks.

FLLP extends or modifies Vojtáš’s FLP on the following aspects[4]: (a) utilizing lin-
guistic truth domains instead of the unit interval [0,1]; (b) allowing rule bodies to use
hedge connectives to modify fuzzy predicates; (c) adding an admissible rule to deal with
hedge connectives in procedural semantics; (d) giving detailed proofs of the mgu lemma,
the lifting lemma, and the completeness theorem for the case of general (i.e., non-ground)
queries; (e) allowing rule bodies to use linguistic aggregation operators [6,31]; (f) proving
counterparts of the results of classical definite LP, e.g., the model intersection property and
the characterization of the least Herbrand model of a logic program by the infimum of the
set of all its Herbrand models [6]; (g) proving a Pavelka-style completeness [32] for ground
atoms [6]; (h) providing a sound and complete terminating goal-oriented deterministic
query-answering procedure, which computes all and only the most general answers to a
query [7]; and (i) in this work, extending logic programs with negation. It can be seen that
the purely linguistic property and hedge connective usage are unique features of FLLP
among FLP frameworks. In particular, hedge connectives have no counterpart in the other
FLP frameworks. Therefore, FLLP is not a special case of any FLP framework even though
our LTD is just a chain.

The frameworks in [33–35], among others, can also be classified into the IB approach.

2.2. Normal Logic Programs for Handling Vagueness

In the literature of LP dealing with vagueness, there are few works addressing the
issue of non-monotonic negation.

Mathematics 2022, 10, 3105 5 of 22

Cornejo et al. [14] study the stable model semantics of multi-adjoint normal logic
programs (MANLP) and prove the existence of stable models for MANLPs whose truth
domain is a convex compact set of a Euclidean space and the operators in rule bodies
are continuous. Moreover, they show that the uniqueness of stable models is ensured for
a special kind of MANLPs on the subinterval lattice (C([0, 1]),≤). These results extend
those of normal residuated logic programs (NRLP) [15]. The stable model semantics of
NRLPs is also developed based on the Gelfond–Lifschitz transformation [11]. However,
the well-founded semantics is not discussed in these works.

Loyer and Straccia [16], inspired by van Gelder’s alternating fixpoint approach [36],
define the well-founded semantics (therein called compromise semantics) for normal logic
programs in a parametric IB framework. For classical Datalog programs with negation, the
proposed semantics is identical to the well-founded semantics [10].

Another approach to defining the semantics of normal logic programs is based on the
notion of a bilattice [17,18]. A bilattice is a structure 〈B,�t,�k〉, where B is a non-empty
truth set, �t and �k are the truth order and knowledge order, respectively. If x �k y and
x �t y, then y represents “more information” and “more truth", respectively, than x. Each
bilattice has a negation ¬, which reverses the �t ordering, leaves unchanged the �k, and
verifies ¬¬x = x. The simplest non-trivial bilattice, called FOUR, is due to Belnap, Jr. [37],
who introduced a logic intended to handle incomplete and/or inconsistent information.
FOUR illustrates many basic properties of bilattices. In essence, FOUR expands the
classical truth set { f , t} to { f , t,⊥,>}, where ⊥ and > stand for unknown and inconsistent,
respectively.

The extension of the notions of a stable model and a well-founded model to the context
of bilattices is due to Fitting [19,20]. Fitting proposes a binary immediate consequence
operator ΨP(I, J), which has two input interpretations I and J over a bilattice; the former
and the latter are used to assign meaning to positive literals and negative literals, respec-
tively. It is shown that ΨP is monotone and, if the de Morgan laws hold, continuous in
both arguments under �k; ΨP is monotone and, if the de Morgan laws hold, continuous in
the first argument and anti-monotone in the second argument under �t. After that, fitting
follows the idea of the Gelfond–Lifschitz transformation, i.e., fixing the interpretation for
negative literals and then computing the least model under �t of the resulting positive
program. To this end, Fitting further defines the operator Ψ′P which can be computed by
iterating ΨP(x, J) from the least interpretation under �t. It is shown that Ψ′P is monotone
and, if the de Morgan laws hold, continuous under �k and anti-monotone under �t. Every
fixpoint of Ψ′P is a stable model of P. The set of fixpoints of Ψ′P is a complete lattice under
�k. Thus, Ψ′P has a least fixpoint under �k, which is the well-founded model of P. The
well-founded model can be obtained by iterating Ψ′P from the least interpretation under
�k. In this approach, Loyer and Straccia [21,22], within a framework extending parametric
deductive databases with uncertainty [25] with negation, propose the approximate well-founded
semantics for normal logic programs based on the notion of an approximate interpretation,
assigning to an atom A a logical (interval) value [a; b].

Answer set programming (ASP) [38–40] is a form of declarative programming oriented
towards hard search problems. In addition to rules and facts, ASP programs can have
constraints, which are rules with no atom in the head. ASP transforms the stable model
semantics into a practical computational methodology and is a formalism for modeling
and solving combinatorial optimization problems. Computing stable models is a funda-
mental automated reasoning task of answer-set solvers [41]. Fuzzy answer set programming
(FASP) [42,43] is an expansion of ASP with MVL/FLn/MFL for modeling continuous op-
timization problems. The truth values associated with atoms and rules are also called
their weights. In FASP, which is called core FASP in [44], the weight of each rule is 1. In
aggregated FASP [44,45], rules can have a weight other than 1. Cornejo et al. [46] provides
a bidirectional translation between core FASP programs and MANLP programs preserving
their semantics. This translation allows the expressiveness of MANLP to be combined with
the compactness and simplicity of core FASP. Therefore, the existence of stable models of

Mathematics 2022, 10, 3105 6 of 22

MANLP programs implies that of answer sets of corresponding core FASP programs. Ex-
tended MALP (EMALP) [47] is an extension of MANLP where constraints can be included
in logic programs. A procedure converting EMALP programs to constraint-free EMALP
ones, i.e., MANLP programs, preserving the stable model semantics is also proposed.

In LP and ASP, there is a well-known method to compute the stable model seman-
tics of normal logic programs, called “guess-and-check” [9,48,49]. It consists of two steps:
(1) guessing a candidate for a stable model/answer set of a normal logic program and (2)
checking whether the candidate is actually a stable model/answer set of the program.

To our knowledge, there is no work on the well-founded semantics of normal logic
programs of any FLP framework based on Vojtáš’s FLP, although it is one of the most
widely studied kinds of semantics in the literature. Therefore, in this work, we study
the well-founded semantics of normal logic programs of FLLP, and it may be adapted
for other FLP frameworks. We also adapt the stable model semantics of classical LP to
FLLP based on the usual Gelfond–Lifschitz transformation. We then study the relation
between the two kinds of semantics. In fact, in the literature, this relation is usually studied
using a bilattice setting of the truth domain. However, our truth domains do not possess a
complete-knowledge ordering lattice and, thus, do not have a bilattice structure. Hence, we
cannot utilize that method. Since the well-founded semantics is closely related to the stable
model semantics, the well-founded semantics may help reduce the number of candidates in
Step (1) of the above guess-and-check method. That is, the well-founded semantics might
help compute stable models more efficiently.

3. Preliminaries
3.1. Linguistic Truth Domains

In hedge algebra (HA) theory [50,51], values of the linguistic variable Truth, for in-
stance, Very True and Very Rather False, can be considered as being generated from a
set of atomic terms G = {False, True} using elements from a set of linguistic hedges
H = {Very, Rather, . . . } as unary operators. There exists a natural ordering among those
values, for example, True < Very True, where x ≤ y says that x is less than or equal to
y in terms of truth. Thus, a value set X of Truth is a partially ordered set and can be
characterized by an HA X = (X ,G,H,≤).

Hedges either increase or decrease the meaning of terms, and hence they can be
regarded as order operators; i.e., for all x ∈ X and for all h ∈ H, we have either hx ≥ x
or hx ≤ x. It is denoted by h ≤ k if h modifies terms less than or equal to k; i.e., for all
x ∈ X , either kx ≤ hx ≤ x or x ≤ hx ≤ kx. Since the sets H and X are disjoint, we
may use the same notation ≤ for different order relations on H and X . Let V, R, H, S,
A, M, c+, and c− stand for Very, Rather, Highly, Slightly, Approximately, More or less, True,
and False, respectively. We denote h < k if h ≤ k and h 6= k. We have R < S since, e.g.,
Sc+ < Rc+ < c+ and c− < Rc− < Sc−, and H < V since, e.g., c+ < Hc+ < Vc+ and
Vc− < Hc− < c−.

H can be divided into two disjoint subsets: a set of stressing/intensifying hedges
H+ = {h | hc+ > c+} = {h | hc− < c−} and a set of depressing/weakening hedges
H− = {h | hc+ < c+} = {h | hc− > c−}. For example, the set H = {V, H, A, M, R, S} is
split into H+ = {V, H} and H− = {A, M, R, S} since, e.g., Vc+ > Hc+ > c+, c+ < Ac+

and c+ < Mc+. Hedges in each of the sets H+ and H− can be either comparable, for
example, V and H, or incomparable, for instance, A and M. An HA X = (X ,G,H,≤) is
said to be a linear HA if both setsH+ andH− are linearly ordered. For example, the HA
X = (X ,G, {V, H, R, S},≤) is a linear HA since inH+ = {V, H}, we have V > H, and in
H− = {R, S}, we have S > R. For a linear HA X = (X ,G,H,≤), the truth value set X is
linearly ordered [4]. As shown in [4], in order to adequately define the truth functions of
hedge connectives, we restrict ourselves to linear linguistic truth domains.

A linguistic truth domain (LTD) X generated from a linear HA X = (X ,G,H,≤) is the
linearly ordered set X = X ∪ {0, W, 1}, where 0, W, and 1, respectively, represent Absolutely
False, the middle truth value, and Absolutely True. They are the least, the neutral and the

Mathematics 2022, 10, 3105 7 of 22

greatest elements of X, respectively, and for all x ∈ {0, W, 1} and for all h ∈ H, we have
hx = x [4,7].

In order to adequately define Łukasiewicz operations [32], we only consider finite
truth domains. An l-limit HA, where l is a positive integer, is a linear HA whose all values
have a length of at most l + 1, i.e., at most, l hedges can be applied to the atomic term. An
LTD generated from an l-limit HA is finite [4,7].

Example 1. The LTD X = {v0 = 0, v1 = Vc−, v2 = Hc−, v3 = c−, v4 = Rc−, v5 = Sc−, v6 =
W, v7 = Sc+, v8 = Rc+, v9 = c+, v10 = Hc+, v11 = Vc+, v12 = 1} is generated from the 1-limit
HA X = (X , {c−, c+}, {V, H, R, S},≤), where truth values are listed in ascending order.

3.2. Truth Functions of Hedge Connectives

Let the identity hedge I /∈ H be defined by for all x ∈ X , Ix = x. It can be seen that I
is the least element in both setsH+ ∪ {I} andH− ∪ {I} [4,7].

An extended order relation ≤e on H∪ {I} is defined as follows: for all h, k ∈ H ∪ {I},
h ≤e k if one of the following conditions holds:

(i) h ∈ H−, k ∈ H+;
(ii) h, k ∈ H+ ∪ {I} and h ≤ k;
(iii) h, k ∈ H− ∪ {I} and h ≥ k.
It is denoted by h <e k if h ≤e k and h 6= k.
Let X = (X , {c+, c−},H,≤) be a linear HA. For every hedge h ∈ H ∪ {I}, its truth

function, a mapping from X to X, is denoted by h•. For all h, k ∈ H ∪ {I}, their truth
functions satisfy the following conditions [7,52,53]:

∀x, y ∈ X, if x ≥ y, h•(x) ≥ h•(y) (4)

∀x ∈ X, if h ≤e k, h•(x) ≥ k•(x) (5)

∀x ∈ {0, W, 1}, h•(x) = x (6)

∀x ∈ X, I•(x) = x (7)

h•(hc+) = c+ (8)

Every truth function of a hedge is non-decreasing and preserves 0 and 1. Furthermore,
a truth function of a stressing hedge h ∈ H+ is subdiagonal (i.e., h•(x) ≤ x), and that of a
depressing hedge h ∈ H− is superdiagonal (i.e., h•(x) ≥ x) [52]. According to Condition
(8), if the truth value of “Lucia is young” is very true, that of “Lucia is very young” is true
[54–56]. In [4], it is shown that truth functions of hedges always exist.

Example 2. Consider the 1-limit HA in Example 1 and its LTD. An example of truth functions
of hedges on the LTD is given in Table 1, where the value of a truth function h•, occurring in the
first row, of a value x, occurring in the first column, is in the corresponding cell. For instance,
H•(Vc+) = Hc+ and R•(Vc−) = Hc−. Below, we utilize the LTD, and these truth functions of
hedges for our examples.

Mathematics 2022, 10, 3105 8 of 22

Table 1. Truth functions of hedge connectives.

V• H• R• S•

0 0 0 0 0
Vc− Vc− Vc− Hc− c−

Hc− Vc− Hc− c− Rc−

c− Vc− Hc− Rc− Sc−

Rc− Hc− c− Rc− Sc−

Sc− c− Rc− Sc− Sc−

W W W W W
Sc+ Sc+ Sc+ Rc+ c+

Rc+ Sc+ Rc+ c+ Hc+

c+ Sc+ Rc+ Hc+ Vc+

Hc+ Rc+ c+ Hc+ Vc+

Vc+ c+ Hc+ Vc+ Vc+

1 1 1 1 1

3.3. Operations on Linguistic Truth Domains

In MVL/FLn/MFL [32,57,58], there are three prominent sets of connectives called
Łukasiewicz, Gödel, and product logic ones. Each of the sets has a pair of a continuous
t-norm and its residuum. Since our truth values are linguistic, we cannot use the product
logic connectives.

On an LTD X = {v0, . . . , vn} with v0 ≤ v1 ≤ · · · ≤ vn, Gödel t-norm, its residuum,
and t-conorm can be, respectively, defined as follows [4,7]:

CG(vi, vj) = min(vi, vj),

←•G (vj, vi) =

{
vn if i ≤ j
vj otherwise,

∨•G(vi, vj) = max(vi, vj).

Łukasiewicz t-norm, its residuum, and t-conorm can be, respectively, defined by [4,7]:

CL(vi, vj) =

{
vi+j−n if i + j− n > 0
v0 otherwise,

←•L (vj, vi) =

{
vn if i ≤ j
vn+j−i otherwise,

∨•L(vi, vj) =

{
vi+j if i + j < n
vn otherwise.

The residua are non-decreasing in the first argument, but non-increasing in the second.
The other operations are non-decreasing in all arguments.

Every pair of a t-norm C and its residuum←• satisfy the following properties [32], for
truth values b, r, and h (standing for body, rule and head, respectively):

C(b, r) ≤ h iff r ≤←• (h, b) (9)

(∀b)(∀h) C(b,←• (h, b)) ≤ h (10)

(∀b)(∀r) ←• (C(b, r), b) ≥ r (11)

The negation of a truth value x, denoted by −x, is defined as follows: if x = σc, where
σ is a string of hedges (including the empty one) and c ∈ {c+, c−}, then −x = σc′ where
{c, c′} = {c+, c−}; and −1 = 0, −0 = 1, and −W = W. For instance, −Vc− = Vc+ and
−Vc+ = Vc−. The negation is decreasing and satisfies −− x = x.

In [6], it is shown that the LOWA (Linguistic Ordered Weighted Averaging) operator
[59], one of the most well-known linguistic aggregation operators that can directly compute
with linguistic labels, can be used in body formulas of FLLP. Aggregation operators are very
useful since they let us describe increased fulfillment of user requirements. A conjunction

Mathematics 2022, 10, 3105 9 of 22

is one extreme case in which one desires that all the criteria be satisfied, and a disjunction is
the other extreme in which the satisfaction of any of the criteria is all one needs. The LOWA
operator is developed based on the ordered weighted averaging (OWA) operator [60] and
the convex combination of linguistic labels [61].

Definition 1 (LOWA operator, [59]). Let S = {s1, . . . , sm} be a set of linguistic terms to be
aggregated, the LOWA operator @•(s1, . . . , sm) = Cm{wk, tk, k = 1 . . . m} is defined inductively
as follows.

For m = 2,

C2{{w1, 1− w1}, {t1, t2}} = (w1 � vj)⊕ ((1− w1)� vi) = vk

where t1 = vj, t2 = vi ∈ X, j ≥ i, and k = min{n, i + round(w1.(j− i))}, in which n + 1 is the
cardinality of X and round(.) is the usual round operation.

For m > 2,

Cm{wk, tk, k = 1 . . . m} = C2{{w1, 1− w1}, {t1, Cm−1{ηh, th, h = 2 . . . m}}}

where W = [w1, . . . , wm] is a weighting vector associated with S such that (i) wi ∈ [0, 1], and (ii)
∑m

i=1 wi = 1; T = [t1, . . . , tm] is a vector such that ti is the ith largest element in the collection
s1, . . . , sm; ηh = wh/ ∑m

2 wk, h = 2, . . . , m.

It can be seen that the LOWA operator is not well defined for the case m > 2 and
∑m

k=k0
wk = 0, for k0 ≤ m− 1.

A natural question arising is how to acquire the associated weighting vector. An
interesting method to compute the weights of the OWA operator using linguistic quantifiers
is proposed by Yager [60]. More concretely, if Q is a relative or proportional quantifier such
as “Most”, Q can be represented by a fuzzy subset of [0, 1] such that for each r ∈ [0, 1], Q(r)
states the degree to which r portion of objects satisfies the concept denoted by Q. Then, the
weights can be computed by:

wi = Q(i/n)−Q((i− 1)/n), i = 1, . . . , n

The membership function of such a quantifier Q can be:

Q(r) =

0 if 0 ≤ r < a
r−a
b−a if a ≤ r ≤ b
1 if 1 ≥ r > b

where 0 ≤ a ≤ b ≤ 1.
Due to the non-decreasing nature of Q, it follows that wi ≥ 0. Moreover, since

Q(1) = 1 and Q(0) = 0, we have ∑n
i=1 wi = 1. The use of those quantifiers to compute

the weighting vector of the LOWA operator essentially implies that the more criteria are
satisfied, the better the solution is.

The LOWA operator has the following properties [59]: (i) it is commutative, i.e.,
@•(s1, . . . , sm) = @•(π(s1), . . . , π(sm)), where π is a permutation over the set of arguments;
(ii) it is non-decreasing in all arguments, i.e., given S = [s1, . . . , sm] and T = [t1, . . . , tm]
being two vectors such that for all i, si ≥ ti, we have @•(S) ≥ @•(T); and (iii) it is an or–and
operator, i.e., min(si) ≤ @•(s1, . . . , sm) ≤ max(si).

Since in all the proofs of the results in [4], we only require that truth functions of
connectives in body formulas (other than negation) be non-decreasing in all arguments,
allowing body formulas to be built using a LOWA operator does not affect any results.

Mathematics 2022, 10, 3105 10 of 22

Example 3. If the quantifier “Most” with a=0.3 and b=0.8 is used to generate weighting vectors for
the LOWA operator, the weighting vector of dimension 3 is [w1 = 1/15, w2 = 2/3, w3 = 4/15].
We have the following:

@•(Rc+, Sc+, Hc+) = @•(v8, v7, v10) = v8 = Rc+

3.4. Fuzzy Linguistic Logic Programming without Negation

The language is a many-sorted (or typed) predicate language without function symbols.
Clauses are without negation. With no function symbols, Herbrand universes of all sorts of
variables of a finite logic program are finite, and so is its Herbrand base. Together with a
finite LTD, this allows us to obtain the least Herbrand model of logic programs by finitely
iterating the immediate consequence operator from the least Herbrand interpretation [4].
Also, the least Herbrand model of a logic program can be obtained using finitely terminating
tabulation proof procedures [7]. The underlying language of a program is assumed to be
defined by constants and predicate symbols occurring in it (if no constants exist, some
constant a is added to form ground terms).

Connectives are composed of the following: ∧G,∨G,←G (Gödel conjunction, disjunc-
tion, and implication); ∧L,∨L,←L (Łukasiewicz conjunction, disjunction, and implication);
@i (aggregations whose truth functions are the LOWA operator with a specific weighting
vector, and thus, we can have many distinct aggregation operators with different weighting
vectors); and hedges as unary connectives. The truth function of a connective c is denoted
by c•.

A term is either a constant or a variable. An atom is of the form p(t1, ..., tn), where p is
an n-ary predicate symbol, and t1, ..., tn are terms. A fact is a graded atom (A.a), where the
atom A and the truth value a (different from 0) are the logical part and the truth value of
the fact, respectively. A body formula is defined inductively as follows: (i) an atom is a body
formula; (ii) if c is a connective with arity n other than the implications, and Bi, i = 1, n, are
body formulas, so is c(B1, B2, . . . , Bn). A rule is a graded implication (A← B.r), where the
atom A is called a rule head, the body formula B is called a rule body, r is the truth value
(different from 0), and (A← B) is called the logical part of the rule. In every graded formula
(ϕ.t), the truth value t is understood as a lower bound to the exact truth value of ϕ.

A fuzzy linguistic logic program (also called a positive program) is a finite set of rules and
facts, and there are no two rules (facts) with the same logical part but different truth values.
Hence, a program P can be represented as a partial mapping:

P : Formulas→ X \ {0},

where the domain of P, denoted dom(P), is finite and consists only of logical parts of facts
and rules. For any rule or fact (ϕ.t) ∈ P, P(ϕ) = t. A fuzzy linguistic Herbrand interpretation
(interpretation, for short) f of P is a mapping from the Herbrand base BP to X, assigning to
every ground atom a truth value.

The ordering ≤ in X is expanded to interpretations as follows: for all interpretations
f1 and f2 of a program P, f1 v f2 if for all A ∈ BP, f1(A) ≤ f2(A). The meet (infimum,
greatest lower bound) and join (supremum, least upper bound) operators of interpretations
are denoted by ⊗ and ⊕, respectively; for all interpretations f1, f2 and atoms A, we have:
(i) (f1 ⊗ f2)(A) = f1(A)⊗ f2(A), and (ii) (f1 ⊕ f2)(A) = f1(A)⊕ f2(A) [6].

An interpretation f is extended to all ground formulas, denoted by f , as follows: (i)
f (A) = f (A), if A is a ground atom; (ii) f (c(B1, B2, . . . , Bn)) = c•(f (B1), f (B2), . . . , f (Bn)),
where Bi, i = 1, n, are ground formulas, and c is a connective with arity n. For non-
ground formulas, since all variables in formulas are assumed to be universally quantified,
f (ϕ) = f (∀ϕ) = ⊗{ f (ϕϑ) | ϕϑ is a ground instance of ϕ}, where ∀ϕ denotes the universal
closure of ϕ, which is obtained from ϕ by adding a universal quantifier for every variable
with a free occurrence in ϕ.

Mathematics 2022, 10, 3105 11 of 22

Let P be a program. An interpretation f is a Herbrand model (model, for short) of a
rule/fact (ϕ.t) ∈ P if f (ϕ) ≥ P(ϕ) = t; and f is a model of P if f is a model of all formulas
(ϕ.t) ∈ P.

Theorem 1 ([6]). Let P be a positive program.
(i) Let FP be the set of all interpretations of P. Then FP is non-empty, and 〈FP,⊗,⊕〉 is a

complete lattice.
(ii) Let F be a non-empty set of models of P. Then ⊗F is a model of P.
(iii) MP = ⊗{ f | f is a model of P} is the least model of P.

Definition 2 (Immediate consequence operator). Let P be a positive program. The operator TP,
mapping from interpretations to interpretations, is defined as follows: for an interpretation f and a
ground atom A ∈ BP,

TP(f)(A) = max{⊕{Ci(f (B), r) | (A ←i B.r) is a ground instance of a rule in P},
⊕{a | (A.a) is a ground instance of a fact in P}}.

Since the Herbrand base BP is finite, for each A ∈ BP, there are a finite number of
ground instances of logical parts of facts and rule heads that match A. Hence, both ⊕
operators in the definition of TP are, in fact, maxima.

Theorem 2 ([4]). Let P be a positive program. Then TP is non-decreasing and continuous.

A model of a positive program P is a pre-fixpoint of TP [62] and vice versa.

Theorem 3 ([4]). An interpretation f is a model of a positive program P iff TP(f) v f .

The bottom-up iteration of TP is defined as:

Tk
P(⊥) =

⊥ if k = 0
TP(Tk−1

P (⊥)) if k is a successor ordinal
⊕{Tn

P(⊥) | n < k} if k is a limit ordinal,

where ⊥ denotes the least interpretation mapping each ground atom to 0. The bottom-up
iteration of TP is denoted by T∞

P (⊥). The top-down iteration of TP is defined similarly and
denoted by T∞

P (>), where > is the greatest interpretation mapping each ground atom to 1.
The least model MP is exactly the least fixpoint of TP, denoted l f p(TP), and can be

obtained by finitely bottom-up iterating TP as follows.

Theorem 4 ([4]). Let P be a positive program. Then there exists a finite number α such that n ≥ α
implies Tn

P(⊥) = l f p(TP) = MP = T∞
P (⊥).

Analogously, the top-down iteration of TP, T∞
P (>), can also be finitely obtained.

Example 4. Assume the following piece of knowledge:
(a) (A car is good if it is rather reliable and consumes very little fuel) is very true;
(b) (A car is good if it is expensive) is rather true;
(c) (A car is safe if it is reliable) is very true;
(d) (A car is reliable if it is safe) is highly true;
(e) (A Toyota Corolla is safe) is rather true;
(f) (A Toyota Corolla is reliable) is true;
(g) (A Toyota Corolla consumes little fuel) is very true;
(h) (A Toyota Corolla is expensive) is slightly true.

Mathematics 2022, 10, 3105 12 of 22

The knowledge piece can be represented by the program below:

(gd(X)←G ∧G(R rl(X), V lf (X)).Vc+) (r1)

(gd(X)←L ep(X).Rc+) (r2)

(sf (X)←G rl(X).Vc+) (r3)

(rl(X)←G sf (X).Hc+) (r4)

(sf (cor).Rc+) (f 1)

(rl(cor).c+) (f 2)

(lf (cor).Vc+) (f 3)

(ep(cor).Sc+) (f 4)

where gd, rl, lf, ep, sf, and cor stand for good, reliable, little fuel, expensive, safe, and Toyota
Corolla, respectively. Note that the program is recursive.

The bottom-up iteration of TP is as follows:

TP(⊥) = {(gd(cor), 0), (sf (cor), Rc+), (rl(cor), c+), (lf (cor), Vc+), (ep(cor), Sc+)}
T2

P(⊥) = {(gd(cor), c+), (sf (cor), c+), (rl(cor), c+), (lf (cor), Vc+), (ep(cor), Sc+)}
T3

P(⊥) = {(gd(cor), c+), (sf (cor), c+), (rl(cor), c+), (lf (cor), Vc+), (ep(cor), Sc+)}

Since T2
P(⊥) coincides with T3

P(⊥), it is also the least model of P.

4. Normal Fuzzy Linguistic Logic Programs and Their Semantics

FLLP is extended by permitting negative literals to appear in rule bodies, resulting
in normal fuzzy linguistic logic programs (also called normal programs). An extended positive
program is a positive program where elements of the truth domain can occur in the places
of atoms in rule bodies, and the value of such an element in all interpretations is itself.

The notions of an interpretation, a model, and the immediate consequence operator
TP of an extended positive/normal program P are defined the same as those of a positive
program.

4.1. The Stable Model Semantics of Normal Programs

Results in this subsection are presented in our preliminary paper [63]. We refer the
reader to that paper for detailed proofs of the theorems in this subsection.

The stable model semantics of normal programs is generalized from that of classical
normal logic programs based on the usual Gelfond–Lifschitz transformation [11]. Let P be
a normal program, and P∗ denote the program consisting of all ground instances of rules
and facts in P. Given an interpretation J of P, the reduct PJ of P w.r.t. J is the extended
positive program obtained by substituting in P∗ all negative literals with their values w.r.t.
J, computed as J(¬A) = −J(A) for all ground atoms A.

Definition 3 (Stable model). Let P be a normal program and I an interpretation of P. Then I is a
stable model of P if I = I′, where I′ is the least model of the reduct PI .

The stable model semantics of a normal program is a whole family of its stable models.

Theorem 5 ([63]). A stable model of a normal program is its model.

A normal program may have more than one stable model.

Example 5. Given the LTD in Example 1, consider a program P composed of the rules below:

(good(X) ←G ¬bad(X).Vc+)

(bad(X) ←G ¬good(X).Vc+)

Mathematics 2022, 10, 3105 13 of 22

We determine its stable models. Given an interpretation I = {(good(a), x), (bad(a), y)} of P,
in which the constant a is added to form ground terms, the reduct PI is composed of the rules below:

(good(a) ←G −y.Vc+)

(bad(a) ←G −x.Vc+)

The least model of PI is MPI = {(good(a), CG(−y, Vc+)), (bad(a), CG(−x, Vc+))}. Hence,
I is a stable model of P if x = CG(−y, Vc+) = min(−y, Vc+) and y = CG(−x, Vc+) =
min(−x, Vc+). It can easily be seen that all Vc− ≤ x = −y ≤ Vc+ (so Vc− ≤ y = −x ≤ Vc+)
satisfy the equations. Thus, there are 11 stable models {(good(a), x), (bad(a),−x)} where v1 =
Vc− ≤ x ≤ Vc+ = v11. These stable models are minimal models, and the program does not have a
least stable model.

Theorem 6 ([63]). A stable model of a normal program is its minimal model.

Theorem 3 also holds for normal programs.

Theorem 7 ([63]). An interpretation f is a model of a normal program P iff TP(f) v f .

Example 6. Consider a normal program P composed of the rule:

(good(X)←G ¬bad(X).1)

Given an interpretation I = {(good(a), x), (bad(a), y)} with x and y being truth values, TP(I) =
{(good(a),−y), (bad(a), 0)}. Obviously, TP(I) is not non-decreasing.

Since for a normal program P, TP may not be non-decreasing, TP does not necessarily
have a least fixpoint.

Theorem 8 ([63]). A stable model of a normal program P is a minimal fixpoint of TP.

For a normal program P, TP may have many minimal fixpoints, and a minimal fixpoint
of TP might not be a stable model of P.

Example 7. Consider a normal program P composed of the rules below:

(good(X) ←G good(X).1)

(bad(X) ←G ¬good(X).1)

First, we determine its stable models. Given an interpretation I = {(good(a), x), (bad(a), y)}
of P, the reduct PI is the following:

(good(a) ←G good(a).1)

(bad(a) ←G −x.1)

The least model of PI is MPI = {(good(a), 0), (bad(a),−x)}. Hence, I is a stable model of P
if I = MPI , i.e., I = {(good(a), 0), (bad(a), 1)}.

Second, we determine fixpoints of TP. Given an interpretation

I = {(good(a), x), (bad(a), y)},

we have TP(I) = {(good(a), x), (bad(a),−x)}. Thus, I is a fixpoint of TP if for any truth value
x, I = {(good(a), x), (bad(a),−x)}. It can be observed that all these fixpoints are minimal, but
only {(good(a), 0), (bad(a), 1)} is a stable model.

Mathematics 2022, 10, 3105 14 of 22

Moreover, for a normal program P, the bottom–up iteration of TP might not reach any
of its stable models.

Example 8. Consider the program P in Example 5:

(good(X) ←G ¬bad(X).Vc+)

(bad(X) ←G ¬good(X).Vc+)

It has 11 stable models I = {(good(a), x), (bad(a),−x)}, where v1 = Vc− ≤ x ≤ Vc+ =
v11, but the bottom-up iteration of TP does not converge to a fixpoint as follows.

TP(⊥) = {(good(a), Vc+), (bad(a), Vc+)}
T2

P(⊥) = {(good(a), Vc−), (bad(a), Vc−)}
T3

P(⊥) = {(good(a), Vc+), (bad(a), Vc+)}
. . .

Therefore, the operator TP might not help compute any stable model.

4.2. The Well-Founded Semantics of Normal Programs

In this subsection, we define the well-founded semantics of a normal program based
on the ideas in [16,36].

To ease the presentation below, we first define a binary immediate consequence op-
erator TP(I, J) for a normal program P as an extension of the unary one, in which the
interpretations I and J are utilized to assign truth values to positive literals and negative
literals, respectively. Since the original TP(.) and the binary TP(., .) are different in arity, by
providing all the arguments, we can use the same notation TP for both of them without
confusion.

Definition 4 (Binary immediate consequence operator). Let P be a normal program and FP
the set of all interpretations of P. The operator TP(., .) mapping from FP ×FP to FP is defined
as follows: for every pair of interpretations (I, J) and each ground atom A ∈ BP, TP(I, J)(A) =
TPJ (I)(A).

Note that if both a positive literal A and the negative one ¬A simultaneously occur in
the program, I and J independently assign truth values to them.

Theorem 9. The binary TP is
(i) non-decreasing in the first argument and
(ii) non-increasing in the second.

Proof. (i) If we fix an interpretation J for negative literals in P, then by definition, the
reduct PJ is an extended positive program. By Theorem 2, TPJ (I) is non-decreasing, and so
is TP(I, J).

(ii) Given an interpretation I for positive literals and two interpretations J1 and J2 for
negative literals in P such that J1 v J2, we will prove that TP(I, J2) v TP(I, J1).

Let (A ← B[B1, . . . , Bm,¬Bm+1, . . . ,¬Bn].r) be any rule in P. For each of its ground
instances (Aϑ← B[B1ϑ, . . . , Bmϑ,¬Bm+1ϑ, . . . ,¬Bnϑ].r) in P∗, the counterpart rules in PJ1

and PJ2 are, respectively:

(Aϑ← B[B1ϑ, . . . , Bmϑ,−J1(Bm+1ϑ), . . . ,−J1(Bnϑ)].r)

and
(Aϑ← B[B1ϑ, . . . , Bmϑ,−J2(Bm+1ϑ), . . . ,−J2(Bnϑ)].r).

Mathematics 2022, 10, 3105 15 of 22

Since J1 v J2, for all m + 1 ≤ i ≤ n, −J1(Biϑ) ≥ −J2(Biϑ). Hence, we have:

C(I(B[B1ϑ, . . . , Bmϑ,−J1(Bm+1ϑ), . . . ,−J1(Bnϑ)]), r)

= C(B(I(B1ϑ), . . . , Bmϑ,−J1(Bm+1ϑ), . . . ,−J1(Bnϑ)), r)

≥ C(B(I(B1ϑ), . . . , Bmϑ,−J2(Bm+1ϑ), . . . ,−J2(Bnϑ)), r)

= C(I(B[B1ϑ, . . . , Bmϑ,−J2(Bm+1ϑ), . . . ,−J2(Bnϑ)]), r)

By taking suprema for all the rules, we have:

⊕{C(I(B[B1ϑ, . . . , Bmϑ,−J1(Bm+1ϑ), . . . ,−J1(Bnϑ)]), r)}
≥ ⊕{C(I(B[B1ϑ, . . . , Bmϑ,−J2(Bm+1ϑ), . . . ,−J2(Bnϑ)]), r)}

Moreover, since the fact parts of PJ1 and PJ2 are the same, by definition, we have

TP(I, J1)(A)

= TPJ1 (I)(A)

≥ TPJ2 (I)(A)

= TP(I, J2)(A).

Since the rule in P is arbitrary, TP(I, J2) v TP(I, J1).

Definition 5. Let P be a normal program. The operator SP mapping from FP to FP is defined as
SP(J) = T∞

PJ (⊥) = l f p(TPJ), i.e., SP(J) computes the least model of PJ .

By definition, a stable model of P is a fixpoint of SP. In addition to using the bottom–up
iteration of TPJ , SP(J) can be computed using tabulation proof procedures in [7], which are
finitely terminating.

Theorem 10. Let P be a normal program. The SP operator is non-increasing.

Proof. Recall that SP(J) = T∞
PJ (⊥). Given two interpretations J1 and J2 for negative literals

in P such that J1 v J2, we will prove by induction on k ≥ 0 that Tk
PJ2

(⊥) v Tk
PJ1

(⊥).
The base case k = 0 trivially holds. Suppose Tk

PJ2
(⊥) v Tk

PJ1
(⊥); we will show that

Tk+1
PJ2

(⊥) v Tk+1
PJ1

(⊥). We have the following:

Tk+1
PJ2

(⊥)

= TPJ2 (T
k
PJ2 (⊥))

v TPJ2 (T
k
PJ1

(⊥)), by Theorem 2

= TP(Tk
PJ1

(⊥), J2), by Definition 4

v TP(Tk
PJ1

(⊥), J1), by Theorem 9

= TPJ1 (T
k
PJ1

(⊥)), by Definition 4

= Tk+1
PJ1

(⊥)

The following immediately follows.

Proposition 1. SP ◦ SP (SP composed with SP) is non-decreasing.

Clearly, Item (i) of Theorem 1 also holds for normal programs, as stated in the following
proposition.

Mathematics 2022, 10, 3105 16 of 22

Proposition 2. Let P be a normal program and FP the set of all interpretations of P. Then FP is
non-empty and 〈FP,v〉 is a complete lattice.

The following results can be derived from the Knaster–Tarski theorem [64].

Proposition 3 ([19,65]). Let f be a non-increasing function on a complete lattice with the ordering
≤. Then f has a unique pair of extreme oscillation points, a and b. More precisely, we have the
following:

(i) a and b are the least fixpoint and the greatest fixpoint of f ◦ f , respectively, and a ≤ b;
(ii) f (a) = b and f (b) = a;
(iii) If f (x) = y and f (y) = x then both x and y are between a and b in the lattice ordering.

The following proposition follows immediately from Proposition 3.

Proposition 4. Let P be a normal program. Then we have:
(i) (SP ◦ SP)

∞(⊥), denoted by S⊥P , is the least fixpoint of (SP ◦ SP); (SP ◦ SP)
∞(>), denoted

by S>P , is the greatest fixpoint of (SP ◦ SP). Thus, S⊥P v S>P .
(ii) S⊥P and S>P are two extreme oscillation points of SP, i.e., SP(S⊥P) = S>P and SP(S>P) = S⊥P ,

and for all interpretations I, J such that I = SP(J) and J = SP(I), we have S⊥P v I, J v S>P .
(iii) If an interpretation I is a stable model of P, i.e., I = SP(I), then S⊥P v I v S>P . In

particular, if S⊥P = S>P , S⊥P is the only stable model of P.

Therefore, S⊥P and S>P can be seen as a lower-bound approximation and an upper-
bound approximation of stable models of P, respectively.

Since given any interpretation J, SP(J) can be computed finitely, both S⊥P and S>P can
be computed finitely as well.

Example 9. Given the program P in Example 5, composed of the rules below:

(good(X) ←G ¬bad(X).Vc+)

(bad(X) ←G ¬good(X).Vc+),

and the interpretation ⊥ = {(good(a), 0), (bad(a), 0)}, the reduct P⊥ is as follows:

(good(a) ←G 1.Vc+)

(bad(a) ←G 1.Vc+)

The least model of P⊥ is SP(⊥) = {(good(a), Vc+), (bad(a), Vc+)}. Then the reduct
PSP(⊥) is the following:

(good(a) ←G Vc−.Vc+)

(bad(a) ←G Vc−.Vc+)

The least model of PSP(⊥) is

(SP ◦ SP)(⊥) = SP(SP(⊥)) = {(good(a), Vc−), (bad(a), Vc−)}.

Then (SP ◦ SP)
2(⊥) = {(good(a), Vc−), (bad(a), Vc−)}.

Hence, S⊥P = (SP ◦ SP)
∞(⊥) = {(good(a), Vc−), (bad(a), Vc−)}, denoted by µ.

Similarly, S>P = (SP ◦ SP)
∞(>) = {(good(a), Vc+), (bad(a), Vc+)}, denoted by ν.

It can be observed that SP(µ) = ν and SP(ν) = µ.
As shown in Example 5, P has 11 stable models I = {(good(a), x), (bad(a),−x)}, where

v1 = Vc− ≤ x ≤ Vc+ = v11. Obviously, all the stable models lie between µ and ν.

Mathematics 2022, 10, 3105 17 of 22

In order to define the well-founded semantics, we first define the notion of a partial
interpretation.

Definition 6 (Partial interpretation). Let P be a normal program. A partial interpretation I of
P is a partial mapping from BP to the truth domain.

Note that an interpretation is a partial interpretation. The ground atoms that are
assigned a truth value by a partial interpretation I are said to be I-defined, and the other
atoms in BP are I-undefined. If an atom is I-defined, so is its negative literal. Also, if an atom
is I-undefined, so is its negative literal. A formula (rule or fact) in P is said to be I-defined if
all the literals appearing in it are I-defined. Otherwise, the formula is I-undefined.

Definition 7 (Partial model). Let P be a normal program and I a partial interpretation of P. We
say that I is a partial model of a formula (φ.t) ∈ P∗ if any of the following holds:

(i) φ is I-defined and I(φ) ≥ t;
(ii) φ is I-undefined.
Moreover, it is said that I is a partial model of P as well as P∗ if I is a partial model of all

formulas in P∗.

Note that a model is a partial model.
The notion of reduct program can be extended for the case of partial interpretations

as follows. Given a partial interpretation J of a normal program P, the partial reduct PJ
p of

P w.r.t. J is the extended program obtained by substituting in P∗ all J-defined negative
literals with their values w.r.t. J, and the other literals remain.

Given the partial reduct program PJ
p of a normal program P w.r.t. a partial inter-

pretation J, we denote by PJ
I , where I is another partial interpretation of P, the program

consisting of all the I-defined rules and facts in PJ
p.

Proposition 5. Let P be a normal program and I a partial interpretation of P. Then I is a partial
model of P if I is a model of PI

I .

Proof. First, it can be seen that I is a (total) interpretation of PI
I , and thus, PI

I is an extended
positive program. Then, the result follows from the fact that all I-defined formulas (φ.t) ∈
P∗ have a corresponding formula (φ′.t) ∈ PI

I , where φ′ is obtained from φ by replacing all
negative literals with their values under I, and vice versa, and obviously, I(φ) = I(φ′).

As in the alternating fixpoint approach [16,36], S⊥P and S>P in Proposition 4 are an under-
estimation and an over-estimation of the semantics of P, respectively. If we consider a
(partial) interpretation as a set in which each element consists of a ground atom and its
truth value, the well-founded semantics of normal programs can be defined as follows.

Definition 8 (Well-founded semantics). Let P be a normal program. The set S⊥P ∩ S>P is denoted
by WP. Then WP is called the well-founded (partial) model of P.

Clearly, all normal programs have a unique well-founded model. Since S⊥P and S>P
can be computed finitely, the well-founded model WP can also be computed finitely.

Theorem 11. Let P be a normal program. The well-founded model WP is a partial model of P.

Proof. We will show that WP is a model of the extended positive program PWP
WP

. Then by
Proposition 5, we obtain the result.

By Definition 5, SP(S⊥P) computes the least model of PS⊥P . On the other hand, by Item
(ii) of Proposition 4, we have SP(S⊥P) = S>P . Therefore, S>P is the least model of PS⊥P .

Mathematics 2022, 10, 3105 18 of 22

It can be seen that since WP is a part of the (total) interpretation S⊥P , the program PWP
WP

is a part of the program PS⊥P , which is obtained from PS⊥P by removing all WP-undefined
rules and facts. Since S>P is the least model of PS⊥P , S>P is also a model of PWP

WP
. Since WP is

the projection of S>P on the Herbrand base of PWP
WP

, WP is a model of PWP
WP

.

4.3. The Relation between the Stable Semantics and the Well-Founded Semantics

We denote the domain of WP by dom(WP), which is the Herbrand base of PWP
WP

.

Theorem 12. Every stable model of a normal program P contains its well-founded model WP.

Proof. Let I be a stable model of P. By Item (iii) of Proposition 4, we have S⊥P v I v S>P .
Thus, for every ground atom A ∈ dom(WP), we have S⊥P (A) ≤ I(A) ≤ S>P (A). On the other
hand, for all A ∈ dom(WP), we have WP(A) = S⊥P (A) = S>P (A), so I(A) = WP(A).

Corollary 1. If the well-founded model of a normal program is total, then it is its unique stable
model.

Proof. Given a normal program P, since WP is a total model, we have S⊥P = S>P . By
Proposition 4, WP is the only stable model of P.

Example 10. Given the LTD in Example 1, consider the normal program P composed of the rules
and fact below:

(good(X) ←G good(X).W)

(bad(X) ←G ¬good(X).W)

(good(a).W)

First, we determine stable models of P. Given an interpretation I = {(good(a), x), (bad(a), y)},
the reduct PI is the following:

(good(a) ←G good(a).W)

(bad(a) ←G −x.W)

(good(a).W)

The least model of PI is MPI = {(good(a), W), (bad(a), min(−x, W))}. Hence, I is a stable
model of P if I = MPI , i.e., I = {(good(a), W), (bad(a), W)} (note that −W = W).

Given ⊥ = {(good(a), 0), (bad(a), 0)}, P⊥ is:

(good(a) ←G good(a).W)

(bad(a) ←G 1.W)

(good(a).W)

It is easy to see that for n ≥ 1, Sn
P(⊥) = {(good(a), W), (bad(a), W)} . That is,

S⊥P = {(good(a), W), (bad(a), W)}.

Similarly, given > = {(good(a), 1), (bad(a), 1)}, P> is the following:

(good(a) ←G good(a).W)

(bad(a) ←G 0.W)

(good(a).W)

and SP(>) = {(good(a), W), (bad(a), 0)}.

Mathematics 2022, 10, 3105 19 of 22

For n ≥ 2, Sn
P(>) = {(good(a), W), (bad(a), W)}. That is,

S>P = {(good(a), W), (bad(a), W)}.

Therefore, S⊥P = S>P and WP = {(good(a), W), (bad(a), W)} is the only stable model of P.

However, the converse is not true.

Example 11. Consider a program P having only the rule:

(good(a)←G ¬good(a).1)

Given an interpretation I = {(good(a), x)}, the reduct PI is

(good(a)←G −x.1),

which has the least model MPI = {(good(a),−x)}. Thus, I is a stable model if I = MPI , i.e.,
x = −x = W. Therefore, the program has a unique stable model {(good(a), W)}. On the
other hand, it is not difficult to see that S⊥P = {(good(a), 0)} and S>P = {(good(a), 1)}, so the
well-founded model is WP = ∅, and it does not coincide with the unique stable model.

In LP and ASP, there is a well-known method to compute stable models/answer sets
of normal programs, called “guess-and-check” [9,48,49]. It consists of two steps: (1) guessing
a candidate for a stable model/answer set of a normal logic program, and (2) checking
whether the candidate is, in fact, a stable model/answer set of the program. Given a normal
program P, since S⊥P and S>P are, respectively, a lower bound and an upper bound of stable
models of P, they can be used to reduce the number of candidates for Step (1). Note that
for FLLP, both S⊥P and S>P can be computed finitely.

Example 12. Given the LTD in Example 1, consider a program P composed of the rules below:

(good(X) ←G ¬bad(X).Sc+)

(bad(X) ←G ¬good(X).Sc+)

Similar to the computation in Example 9, we have S⊥P = {(good(a), Sc−), (bad(a), Sc−)} and
S>P = {(good(a), Sc+), (bad(a), Sc+)}. Thus, in order to compute stable models of the program,
we only need to check six candidates {(good(a), x), (bad(a), y)}, where v5 = Sc− ≤ x, y ≤
Sc+ = v7, instead of checking all 26 possible candidates {(good(a), x), (bad(a), y)}, where v0 =
0 ≤ x, y ≤ v12 = 1. In fact, the program has three stable models {(good(a), x), (bad(a),−x)},
where v5 = Sc− ≤ x ≤ Sc+ = v7.

5. Conclusions and Future Work

In this paper, we extend FLLP by allowing negative literals to appear in rule bodies,
resulting in normal logic programs. We study both the stable model semantics and the
well-founded semantics of such programs and their relation in terms of fixpoints of several
operators. More concretely, we first adapt the stable model semantics of classical LP to FLLP
based on the usual Gelfond–Lifschitz transformation. In fact, according to the literature,
this seems to be the only way to study the stable model semantics of normal logic programs.
Since our hedge connectives have no counterpart in any FLP framework, our FLLP [4] is
not a special case of any of the FLP frameworks based on the well-known Vojtáš’s FLP,
especially MALP, which appears to be the most expressive one among those. Therefore, our
stable model semantics is not a special case of that of any of the frameworks. Furthermore,
we are the first ones studying the well-founded semantics in an FLP framework among
those based on Vojtáš’s FLP. The well-founded semantics is characterized by two operators
S⊥P and S>P , which can be computed finitely. It can be seen that our well-founded semantics
can be adapted for other FLP frameworks. We then study the relation between the two

Mathematics 2022, 10, 3105 20 of 22

kinds of semantics. In fact, in the literature, this relation is usually studied using a bilattice
setting of the truth domain. However, our truth domains do not possess a complete
knowledge-ordering lattice and, thus, do not have a bilattice structure. Interestingly, in
FLLP, the two kinds of semantics possess properties similar to those of the classical case.
More precisely, every stable model contains the well-founded (partial) model, and the well-
founded total model coincides with the unique stable model, but not vice versa. Moreover,
in LP and ASP, there is a well-known method to compute stable models/answer sets of
normal logic programs, called “guess-and-check” [9,48,49]. It is composed of two steps: (1)
guessing a candidate for a stable model/answer set of a normal logic program, and (2)
checking whether the candidate is, in fact, a stable model/answer set of the program. Since
for a normal program P, S⊥P and S>P are, respectively, a lower bound and an upper bound
of stable models, they can be used to reduce the number of candidates for Step (1). That is,
the well-founded semantics can make the computation of stable models more efficiently.

For future work, we will study other well-known kinds of semantics of normal logic
programs such as perfect model semantics, stationary semantics [9], and their relations with the
two kinds of semantics studied in this work as well as with each other.

Funding: This research is funded by the Vietnam Ministry of Education and Training under grant
number CT.2019.01.02.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Chen, S.J.J.; Hwang, C.L. Fuzzy Multiple Attribute Decision Making: Methods and Applications; Springer Inc.: Secaucus, NJ, USA,

1992.
2. Levrat, L.; Voisin, A.; Bombardier, S.; Bremont, J. Subjective evaluation of car seat comfort with fuzzy set techniques. Int. J. Intell.

Syst. 1997, 12, 891–913.
3. Cao, Z.; Kandel, A. Applicability of some fuzzy implication operators. Fuzzy Sets Syst. 1989, 31, 151–186.
4. Le, V.H.; Liu, F.; Tran, D.K. Fuzzy linguistic logic programming and its applications. Theory Pract. Log. Program. 2009, 9, 309–341.
5. Zadeh, L.A. Fuzzy Logic. Computer 1988, 21, 83–93.
6. Le, V.H.; Tran, D.K. Further Results on Fuzzy Linguistic Logic Programming. J. Comput. Sci. Cybern. 2014, 30, 139–147.
7. Le, V.H.; Liu, F. Tabulation proof procedures for fuzzy linguistic logic programming. Int. J. Approx. Reason. 2015, 63, 62–88.
8. Le, V.H. Efficient Query Answering for Fuzzy Linguistic Logic Programming. In Proceedings of the 9th International Conference

on Computing & Communication Technologies, Research, Innovation, and Vision for the Future, RIVF 2012, Ho Chi Minh city,
Vietnam, February 27–March 1, 2012; pp. 113–116.

9. Apt, K.R.; Bol, R.N. Logic programming and negation: A survey. J. Log. Program. 1994, 19-20, 9–71.
10. van Gelder, A.; Ross, K.A.; Schlipf, J.S. The well-founded semantics for general logic programs. J. ACM 1991, 38, 619–649.
11. Gelfond, M.; Lifschitz, V. The stable model semantics for logic programming. In Proceedings of the 5th International Conference

on Logic Programming, Seattle, WA, USA, 15–19 August 1988; pp. 1070–1080.
12. Schlipf, J.S. The Expressive Powers of the Logic Programming Semantics. J. Comput. Syst. Sci. 1995, 51, 64–86.
13. Truszczynski, M. An introduction to the stable and well-founded semantics of logic programs. In Declarative Logic Programming:

Theory, Systems, and Applications; Kifer, M.; Liu, Y.A., Eds.; ACM/Morgan & Claypool: San Rafael, CA, USA, 2018.
14. Cornejo, M.E.; Lobo, D.; Medina, J. Syntax and semantics of multi-adjoint normal logic programming. Fuzzy Sets Syst. 2018,

345, 41–62.
15. Madrid, N.; Ojeda-Aciego, M. On the existence and unicity of stable models in normal residuated logic programs. Int. J. Comput.

Math. 2012, 89, 310–324.
16. Loyer, Y.; Straccia, U. The Well-Founded Semantics in Normal Logic Programs with Uncertainty. In Proceedings of the 6th

International Symposium on Functional and Logic Programming, Aizu, Japan, 15–17 September 2002; Springer: London, UK,
2002; pp. 152–166.

17. Ginsberg, M.L. Multi-valued logics: a uniform approach to reasoning in Artificial Intelligence. Comput. Intell. 1988, 4, 265–316.
18. Fitting, M. Bilattices and the semantics of logic programming. J. Log. Program. 1991, 11, 91–116.
19. Fitting, M. Fixpoint semantics for logic programming: A survey. Theor. Comput. Sci. 2002, 278, 25–51.
20. Fitting, M. The Family of Stable Models. J. Log. Program. 1993, 17, 197–225.

Mathematics 2022, 10, 3105 21 of 22

21. Loyer, Y.; Straccia, U. Approximate Well-Founded Semantics, Query Answering and Generalized Normal Logic Programs over
Lattices. Ann. Math. Artif. Intell. 2009, 55, 389–417.

22. Loyer, Y.; Straccia, U. The Approximate Well-Founded Semantics for Logic Programs with Uncertainty. In Proceedings of the
28th International Symposium on Mathematical Foundations of Computer Science, Prague, Czech Republic, 24–28 August 2020;
Rovan, B., Vojtáš, P., Eds.; Lecture Notes in Computer Science; Springer: New York, USA, 2003, Volume 2747, pp. 541–550.

23. Vojtáš, P. Fuzzy logic programming. Fuzzy Sets Syst. 2001, 124, 361–370.
24. Straccia, U. Managing Uncertainty and Vagueness in Description Logics, Logic Programs and Description Logic Programs. In

Proceedings of the 4th International Summer School on Reasoning Web, Venice, Italy, 7–11 September 2008; Lecture Notes in
Computer Science, Springer: New York, NY, USA, Volume 5224, pp. 54–103.

25. Lakshmanan, L.V.S.; Shiri, N. A Parametric Approach to Deductive Databases with Uncertainty. IEEE Trans. Knowl. Data Eng.
2001, 13, 554–570.

26. Krajči, S.; Lencses, R.; Vojtáš, P. A comparison of fuzzy and annotated logic programming. Fuzzy Sets Syst. 2004, 144, 173–192.
27. Damásio, C.V.; Pereira, L.M. Antitonic Logic Programs. In Proceedings of 6th International Conference on Logic Programming

and Nonmonotonic Reasoning, LPNMR 2001, Vienna, Austria, September 17-19, 2001; Lecture Notes in Computer Science,
Volume 2173, pp. 379–392.

28. Gallier, J.H. Logic for Computer Science: Foundations of Automatic Theorem Proving; Harper & Row Publishers, Inc.: New York, NY,
USA, 1985.

29. Medina, J.; Ojeda-Aciego, M.; Vojtás, P. Multi-adjoint Logic Programming with Continuous Semantics. In Proceedings of the 6th
International Conference on Logic Programming and Nonmonotonic Reasoning, LPNMR 2001, Vienna, Austria, 17–19 September
2001; Eiter, T., Faber, W., Truszczynski, M., Eds.; Lecture Notes in Computer Science; Springer: New York, USA, 2001; Volume
2173, pp. 351–364.

30. Medina, J.; Ojeda-Aciego, M.; Vojtáš, P. Similarity-based unification: a multi-adjoint approach. Fuzzy Sets Syst. 2004, 146, 43–62.
31. Le, V.H.; Nguyen, C.H.; Liu, F. Semantics and Aggregation of Linguistic Information Based on Hedge Algebras. In Proceedings

of the 3rd International Conference on Knowledge, Information and Creativity Support Systems, KICSS 2008, Hanoi, Vietnam,
22-23 December 2028, pp. 128–135.

32. Hájek, P. Metamathematics of Fuzzy Logic; Kluwer: Dordrecht, The Netherlands, 1998.
33. Straccia, U.; Madrid, N. A Top-k Query Answering Procedure for Fuzzy Logic Programming. Fuzzy Sets Syst. 2012, 205, 1–29.
34. Pan, J.Z.; Stoilos, G.; Stamou, G.B.; Tzouvaras, V.; Horrocks, I. f-SWRL: A Fuzzy Extension of SWRL. J. Data Semant. 2006, 6,

28–46.
35. van Emden, M.H. Quantitative Deduction and Its Fixpoint Theory. J. Log. Program. 1986, 3, 37–53.
36. van Gelder, A. The Alternating Fixpoint of Logic Programs with Negation. J. Comput. Syst. Sci. 1993, 47, 185–221.
37. Belnap, N.D., Jr. A Useful Four-Valued Logic. In Modern Uses of Multiple-Valued Logic; Dunn, J.M., Epstein, G., Eds.; D. Reidel

Publishing Co.: Dordrecht, The Netherland, 1977; pp. 5–37.
38. Marek, V.W.; Truszczynski, M. Stable Models and an Alternative Logic Programming Paradigm. In The Logic Programming

Paradigm—A 25-Year Perspective; Apt, K.R., Marek, V.W., Truszczynski, M., Warren, D.S., Eds.; Artif. Intell.; Springer: New York,
NY, USA, 1999; pp. 375–398.

39. Niemelä, I. Logic Programs with Stable Model Semantics as a Constraint Programming Paradigm. Ann. Math. Artif. Intell. 1999,
25, 241–273.

40. Brewka, G.; Eiter, T.; Truszczynski, M. Answer set programming at a glance. Commun. ACM 2011, 54, 92–103.
41. Gebser, M.; Kaminski, R.; Kaufmann, B.; Schaub, T. Answer Set Solving in Practice; Synthesis Lectures on Artificial Intelligence and

Machine Learning; Morgan & Claypool Publishers: San Rafael, CA, USA 2012.
42. Blondeel, M.; Schockaert, S.; Vermeir, D.; Cock, M.D. Fuzzy Answer Set Programming: An Introduction. In Soft Computing: State

of the Art Theory and Novel Applications; Yager, R.R., Abbasov, A.M., Reformat, M.Z., Shahbazova, S.N., Eds.; Studies in Fuzziness
and Soft Computing; Springer: New York, NY, USA, 2013; Volume 291, pp. 209–222.

43. Nieuwenborgh, D.V.; Cock, M.D.; Vermeir, D. An introduction to fuzzy answer set programming. Ann. Math. Artif. Intell. 2007,
50, 363–388.

44. Janssen, J.; Vermeir, D.; Schockaert, S.; Cock, M.D. Reducing fuzzy answer set programming to model finding in fuzzy logics.
TPLP 2012, 12, 811–842.

45. Janssen, J.; Schockaert, S.; Vermeir, D.; Cock, M.D. Aggregated Fuzzy Answer Set Programming. Ann. Math. Artif. Intell. 2011,
63, 103–147.

46. Cornejo, M.E.; Lobo, D.; Medina, J. Relating Multi-Adjoint Normal Logic Programs to Core Fuzzy Answer Set Programs from a
Semantical Approach. Mathematics 2020, 8, 881.

47. Cornejo, M.E.; Lobo, D.; Medina, J. Extended multi-adjoint logic programming. Fuzzy Sets Syst. 2020, 388, 124–145.
48. Eiter, T.; Polleres, A. Towards automated integration of guess and check programs in answer set programming: A meta-interpreter

and applications. THeory Pract. Log. Program. 2006, 6, 23–60.
49. Vienna University of Technology. DLVHEX System. Available online: http://www.kr.tuwien.ac.at/research/systems/dlvhex/

(accessed on 18 August 2022).
50. Nguyen, C.H.; Wechler, W. Hedge algebras: An algebraic approach to structure of sets of linguistic truth values. Fuzzy Sets Syst.

1990, 35, 281–293.

http://www.kr.tuwien.ac.at/research/systems/dlvhex/

Mathematics 2022, 10, 3105 22 of 22

51. Nguyen, C.H.; Wechler, W. Extended hedge algebras and their application to fuzzy logic. Fuzzy Sets Syst. 1992, 52, 259–281.
52. Le, V.H.; Tran, D.K. Extending fuzzy logics with many hedges. Fuzzy Sets Syst. 2018, 345, 126–138.
53. Le, V.H.; Liu, F.; Tran, D.K. Mathematical Fuzzy Logic with Many Dual Hedges. In Proceedings of the 5th Symposium on

Information and Communication Technology, SoICT 2014, Hanoi, Vietnam, December 4-5, 2014; pp. 7–13.
54. Zadeh, L.A. A Theory of Approximate Reasoning. In Machine Intelligence; Hayes, J.E., Michie, D., Mikulich, L.I., Eds.; Halsted

Press: Ultimo, Australia, 1979; Volume 9, pp. 149–194.
55. Bellman, R.E.; Zadeh, L.A. Local and fuzzy logics. In Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers by Lotfi A. Zadeh;

World Scientific Publishing Co., Inc.: River Edge, NJ, USA, 1996; pp. 283–335.
56. Nguyen, C.H.; Tran, D.K.; Huynh, V.N.; Nguyen, H.C. Hedge algebras, linguistic-value logic and their application to fuzzy

reasoning. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 1999, 7, 347–361.
57. Novák, V.; Perfilieva, I.; Mockor, J. Mathematical Principles of Fuzzy Logic; Kluwer: Dordrecht, The Netherland, 2000.
58. Cintula, P.; Hájek, P.; Noguera, C. (Eds.). Handbook of Mathematical Fuzzy Logic; Studies in Logic, Mathematical Logic and

Foundations; College Publications: London, UK 2011.
59. Herrera, F.; Verdegay, J.L. Linguistic assessments in group decision. In Proceedings of the 1st European Congress on Fuzzy and

Intelligent Technologies, Aachen, Germany, 7–10 September 1993; pp. 941–948.
60. Yager, R. On Ordered Weighted Averaging Aggregation Operators in Multicriteria Decisionmaking. IEEE Trans. on Syst. Man

Cyber. 1988, 18, 183–190.
61. Delgado, M.; Verdegay, J.; Vila, M. On aggregation operations of linguistic labels. Int. J. Intell. Syst. 1993, 8, 351–370.
62. Davey, B.A.; Priestley, H.A. Introduction to Lattices and Order; Cambridge University Press: Cambridge, UK, 2002.
63. Le, V.H. The Stable Model Semantics of Normal Fuzzy Linguistic Logic Programs. In Proceedings of the 11th International

Conference on Computational Collective Intelligence, ICCCI 2019, Hendaye, France, 4–6 September 2019; Part I; Nguyen, N.T.,
Chbeir, R., Exposito, E., Aniorté, P., Trawinski, B., Eds.; Lecture Notes in Computer Science; Springer: New York, NY, USA, 2019;
Volume 11683, pp. 53–65.

64. Tarski, A. A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math. 1955, 5, 285–309.
65. Fitting, M. Bilattices Are Nice Things. In Self-Reference; Bolander, T., Hendricks, V., Pedersen, S.A., Eds.; CSLI Publications:

Stanford, CA, USA, 2006; pp. 53–77.

	Introduction
	Literature Review
	Managing Vagueness in Logic Programming
	Normal Logic Programs for Handling Vagueness

	Preliminaries
	Linguistic Truth Domains
	Truth Functions of Hedge Connectives
	Operations on Linguistic Truth Domains
	Fuzzy Linguistic Logic Programming without Negation

	Normal Fuzzy Linguistic Logic Programs and Their Semantics
	The Stable Model Semantics of Normal Programs
	The Well-Founded Semantics of Normal Programs
	The Relation between the Stable Semantics and the Well-Founded Semantics

	Conclusions and Future Work
	References

