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A B S T R A C T   

Surface-enhanced Raman spectroscopy (SERS) has been widely applied as a useful tool to analyze environmental 
pollutants, explosives and biomolecules at low concentrations. In recent years, a new approach to further 
improve sensitivity of SERS measurement is Photo Induced Enhanced Raman scattering (PIERS), where samples 
are excited by appropriate light before or during Raman measurement. In this study, we successfully fabricated 
SERS substrates with good sensitivity based on ZnO/Au nanorods by facile galvanic assisted hydrothermal and 
sputtering techniques. Raman signal can also be further improved conveniently and efficiently by in situ UV- 
excitation compared with traditional SERS measurement. This approach provides a robust, fast technique for 
detection of substances at low concentration.   

1. Introduction 

At present, surface-enhanced Raman spectroscopy (SERS) is a highly 
sensitive technique, which has been widely applied in fields such as: 
medical field [1], environmental monitoring [2], food safety [3], etc. 
The enhancement of Raman signal derives from two main mechanisms: 
electromagnetic enhancement (EM) and chemical enhancement (CM). 
EM derives from localized surface plasmon resonance (LSPR) of precious 
metal nanostructures, and is the main enhancement factor (EF) of about 
105-106 [4,5]. Whereas CM, which often accounts for an EF of less than 
104, resulted from charge transfer process between metal nanoparticles 
and analyte molecules [6]. 

Because size, morphology and density of noble metal nanostructures 
play an important role in LSPR effect, which in turn determines the 
enhancement yield, optimization of materials served as SERS substrates 
has gained much interest from scientists and engineers. Many ideas and 
strategies have been presented in order to obtain the maximum total EF. 

Some examples of these approaches are: fabricating of noble metal 
nanostructures in various form such as particles [4,7–9], hexagonal ar-
rays [10], pyramid [11], urchin [12], etc., combining noble metal and 
semiconductor in nanocomposite to take advantages of the unique 
properties of both materials [5,13], decorating metal nanoparticles on 
arrays of 1D nanostructures of semiconductor materials to increase hot 
spot density for SERS [14–16]. However, optimization of materials can 
only offer a certain EF, and room for advancement of EF by materials 
design is limited. Therefore, seeking additional methods to enhance the 
Raman signal related to the measurement process rather than material 
engineering is necessary because they can help to lower the limit of 
detection in analytical process based on SERS. 

Nanocomposites of ZnO and noble metals are promising materials for 
fabricating SERS substrates [17–19]. In recent studies, Photo Induced 
Surface Enhanced Raman spectroscopy has emerged as a novel, facile 
technique that can enhance SERS intensity efficiently. The studies have 
shown that before or during Raman measurement, if the sample is 
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excited with an appropriate light, the SERS signal will be clearly 
intensified [20–24]. Even though some material designs have been 
developed for PIERS, there are very few studies in the literature that 
have used ZnO/Au nanorods as photo active SERS substrate. Further 
more, most studies focus on pre-treatment of SERS substrates with UV 
radiation. Only few researches mentioned about in situ excitation of the 
sample during Raman measurement. 

In this paper, we report UV-induced surface enhanced Raman scat-
tering from well aligned ZnO/Au nanorods. ZnO/Au nanorods offer a 
great signal enhancement, which is further amplified up to 30.1 fold 
under in-situ UV excitation. 

2. Experiment 

In this experiment, ZnO nanorods were fabricated on print circuit 
boards (PCB) substrate by galvanic effect assisted hydrothermal method. 
The oxide layer was first removed by polishing the PCB substrate with 
fine sand paper then washed with acetone, ethanol and distilled water 
twice by ultrasonic bath. 

A thin layer of aluminum foil is wrapped on the PCB substrate. An 
empty area of 5 × 5 mm was left at the center to form galvanic cell 
structure for the growth of ZnO nanorods. The treated PCB substrates 
were then dipped into a mixture of 30 ml of 75 mM zinc nitrate Zn(NO3)2 
and 30 ml of 75 mM hexamethylenetetramine (HMTA) C6H12N4. The 
reaction temperature was maintained at 90 

◦

C and the nanorods were 
grown in 3 h. The Al layer was then removed and the sample was rinsed 
with distilled water and dried by nitrogen blowing. The synthetic pa-
rameters were obtained from our previous studies [16,25] to obtain well 
aligned ZnO nanorods. ZnO/Au nanorods were then prepared by sput-
tering gold on the as-synthesized ZnO nanorods by a DC sputtering 
system (JEOL JFC – 1200). Sputtering time was varied from 20 s to 40 s 
with sputtering current of 20 mA. 

To study the structure of the sample, the XRD measurements were 
carried out on Panalytical Empyrean diffraction system with a wave-
length Kα = 1.54056 Å. Surface morphology was investigated using 
Scanning Electron microscope from JEOL (JSM – IT100). SERS and 
PIERS effects were studied by using Horiba Jobin Yvon’s HR 800 Raman 
spectrometer. A He - Ne laser source with wavelength 632.8 nm was 
used to excite the samples. Methylene blue (MB) was used as Raman 
probe. 50 μl of MB at different concentration was dropped on the sam-
ples. After being dried naturally, the samples were ready for Raman 
measurements. To investigate PIERS effect, the samples were illumi-
nated by an UV LED with a wavelength of 365 nm and power of 1 mW 
during a measurement. The distance from the LED to the sample surface 
is 10 cm. The power density at the sample surface was estimated as 0.2 
mW/cm2. Normal SERS and PIERS spectra were collected at the same 
spot on the sample to identify the contribution of UV excitation to 
Raman enhancement. 

3. Results and discussion 

X-ray diffraction pattern of the prepared ZnO nanorods is shown in 
Fig. 1. The position of diffraction peaks in the diagram matches well 
with those of JSPDS card no. 36 - 1451 of ZnO wurzite hexagonal lattice. 
Apart from the peaks of Cu from the PCB substrate, no other peaks 
related to impurities was observed in the diagram. Clear diffraction 
peaks imply the good crystallinity of the sample. The strong intensity of 
(002) peak resulted from preferential orientation of the obtained 
nanostructures. The estimated lattice constants of the sample: a = 0.32 
nm; c = 0.52 nm, agree with the values reported in literature for ZnO 
materials [16,26]. 

Fig. 2 shows Raman spectrum of ZnO nanorods. The observed peaks 
at 96 cm− 1 and 435 cm− 1 can be assigned to E2

low and E2
high characteristic 

modes of ZnO. The peak at 96 cm− 1 is derived from the oscillations of 
lattice of Zn atoms while the peak at 435 cm− 1 is related to the vibra-
tions of the oxygen atoms. Other broad peaks associated with defects 

such as 275, 539 or 584 cm− 1 can not be observed in the spectrum. The 
Raman data demonstrate the high crystallinity of the prepared ZnO 
nanorods, which is in good agreement with XRD measurement. 

Fig. 3a is SEM image of ZnO nanorods (top view). It can be seen that 
the nanorods are of high density, uniform size and shape with good 
preferential orientation perpendicular to the substrate. The average 
diameter of the nanorods is about 300 nm. SEM image of ZnO/Au 
nanorods (Fig. 3b) clearly show the even distribution of Au nano-
particles on the ZnO nanorods. 

EDS measurement result is presented in Fig. 4. The EDS data shows 
that the obtained ZnO/Au nanorods are free of impurities. Besides signal 
of copper from PCB substrate, only peaks corresponding to Zn, O, and Au 
elements can be observed. 

Fig. 5 shows the Raman spectra of MB measured on ZnO/Au nano-
rods prepared with different sputtering time. Among characteristic 
Raman peaks of MB, the highest peaks were observed at 1388 cm− 1, 
1616 cm− 1. Raman results clearly show that the better enhancement is 
achieved with sputtering time of 30 s. This result agree well with pre-
vious study [16], which showed that sputtering time of higher than 30 s 
may lead to decreased enhancement. This result can be understood as 

Fig. 1. X-ray diffraction pattern of ZnO rods.  

Fig. 2. Raman spectrum of ZnO nanorods.  
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follow: short sputtering time of 20 s leads to low density of gold nano-
particles on the surface of ZnO nanorods, and results in a lower 
enhancement coefficient compared to that of sample prepared with 
sputtering time of 30 s. Sputtering time of 40 s on the other hand pro-
duces large island or even continuous shell on the surface of ZnO 

nanorods and limits the enhancement capacity of the ZnO/Au nanorods. 
After UV excitation, the Raman spectra of MB showed remarkably 

changes. The Raman intensity was much higher under in situ UV irra-
diation. Additional featured peaks were observed clearly under photo 
induced condition. The ZnO/Au sample with optimal sputtering time of 
30 s showed significantly improved PIERS enhancement (Fig. 6). The 
photo-induced EFs of 30.1; 19.7; 20.9 and 6.0 estimated for peaks at 
803, 1509 1119, 1616 cm− 1, respectively, are higher than those re-
ported in other studies (Table 1). 

The additional enhancement of Raman signal under UV excitation is 
normally attributed to the generation of oxygen vacancies in semi-
conductor oxides [21–23]. In order to obtain formation of significant 
density of defects, the samples are usually pre-irradiated in quite a long 
time from several tens of minutes to hours before Raman measurement. 
In our study, PIERS effect was observed under in situ condition, where 
the sample was shone with UV light in several tens of seconds during 
Raman measurement. Hence, we believe that generation of electrons 
and holes in ZnO nanorods under UV irradiation and charge separation 
due to hetero-junction potential between ZnO and Au are mainly 
responsible for such efficient amplification of SERS signal in our case. 
However, defect induced mechanism can not be excluded completely. 
Additional measurement was performed to confirm this hypothesis. 
SERS spectra of 10− 6 M MB were first collected on ZnO/Au nanorods 
without UV irradiation and with UV irradiation. After that, the spectrum 
was recollected while UV light was removed. As can be seen in Fig. 7, the 
relaxation process of Raman signal was observed. After shutting down 
UV light, Raman signal of MB drops to value before measurement with 

Fig. 3. SEM image of (a) ZnO nanorods and (b) ZnO/Au nanorods prepared with sputtering time of 30 s(b).  

Fig. 4. EDS spectrum of ZnO/Au nanorods.  

Fig. 5. Surface enhanced Raman spectra of MB measured on ZnO/Au nanorods 
prepared with different sputtering time. 

Fig. 6. Raman spectra of MB 10− 6 M measure on ZnO/Au nanorods with and 
without UV irradiation. 
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UV irradiation. This result further supports for enhancement mechanism 
due to charge transfer in our case. 

First, electron- hole pairs are generated in ZnO nanorods under 
excitation of UV light of energy greater than the bandgap. As the Fermi 
level of Au is below the Fermi level of ZnO, the Schottky barrier between 
ZnO and Au facilitates the transfer of electrons from ZnO to Au (Fig. 8). 
The hot electrons are transferred from the surface plasmon resonance 
level to MB molecules. At the same time, the accumulation of electron in 
gold nanostructures can also tune the plasmon resonance properties, 
which in turn can further enhance the Raman signal. The synergetic 
enhancement by electromagnetic and chemical mechanism gives rise to 
such high PIERS EFs as observed. 

Enhancement of limit of detection is critical to evaluate SERS sub-
strate performance. Fig. 9 shows Raman spectra of MB of different 

concentrations from: 10− 6 M down to 10− 10 M measured on ZnO/Au 
nanorods without UV irradiation and Raman spectrum of 10− 10 M MB 
with UV irradiation. It can be seen that as the concentration of analyte 
decreases, the Raman intensity decreases accordingly. The results 
showed that the lowest concentration of MB that is still detectable on 
ZnO/Au nanorods is 10− 9 M. The Raman signal of 10− 10 M MB can not 
be resolved from background noise. However, under UV irradiation, 
characteristic peaks of MB at concentration of 10− 10 M can be observed 
clearly. The results show that UV excitation helps to reduce the limit of 
detection of MB on ZnO/Au SERS substrate. 

4. Conclusion 

ZnO nanorods of high density, good orientation, uniform size and 
shape were successfully fabricated by hydrothermal method assisted 
with galvanic effect. The prepared ZnO/Au nanorods are SERS sub-
strates to enhance Raman scattering with good enhancement and high 
sensitivity. Upon UV irradiation, the ZnO/Au nanorods exhibit high 
photo-induced Raman enhancement with 30.1-fold higher intensity 
compared with normal SERS measurement under the same condition. 
The combination of plasmonic nanoparticles with photo-activated 
semiconductor based substrates offers improved sensitivity beyond the 
normal SERS effect under photo excitation. The obtained results suggest 
a simple, effective, potential method to improve the sensitivity and 
reduce the detection limit of substances on the basis of enhanced Raman 
measurement. The advantages of ZnO/Au nanorods based SERS sub-
strates including low cost; simple preparation, high sensitivity are 
promising in many fields such as environment monitoring, food safety, 
medical field, etc. 
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PIERS enhancement factors reported in literature.  

SERS Materials Authors PIERS EF 
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TiO2/Ag nanorod Tiantian Man et al. 

[23] 
1.5 

Si/Au Sawsan et al. [28] 2.5 
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Au NPs on diphenylalanine peptide 
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Sawsan et al. [28] 4.5 

ZnO/Au nanorods This work 30.1  

Fig. 7. Relaxation process of Raman signal after UV irradiation.  

Fig. 8. Charge generation and separation in ZnO/Au nanorods under UV 
irradiation. 

Fig. 9. Raman spectra of MB of different concentrations from: 10− 6 M down to 
10− 10 M measured on ZnO/Au nanorods without UV irradiation and Raman 
spectrum of 10− 10 M MB with UV irradiation. 
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