HAYYHO-U3NATENDCKUM UEHTP

¢

ISSN 2541-8076
Ne 7-2/2022




ISSN 2541-8076 HAYYHbIA SNEKTPOHHbIN XYPHAN «AKAAEMUYECKAA NYB/IULIUCTUKAR Ne 7-2/2022

NEAATOTMYECKUE HAYKH

Tuyen V.H., Anh D.V.
METHODS TO DESIGN AND USE GEOMETRIC PROBLEMS SOCIATED WITH REALITIES IN
TEACHING GEOMETRY AT HIGH SCHOOL

beneHko E.B., l'ynakuHa T.U., WKkunéea EI.
KOHCNEKT 3AHATUA: «NYTELWECTBUE C TETYLLKOM COBOWM HA OCTPOB «A3BYKA AEHEM »»

benakosa 10.C., Katap»HoBa A.l1O.
METOAMYECKUE OCOBEHHOCTM  M3YYEHMA TMPUMEHEHMA NPOU3BOAHOW K
UCCNEAOBAHUIO ®YHKLIMI B LUKO/TIbHOM KYPCE MATEMATUKM

F'ymaposa T.A.
POJIb KOMAHOWPA B MPOOUNAKTUKE AEBUAHTHOIO NOBEAEHNA BOEHHOCTYXKALLUX

fyH6uHa K.A.
MCNOJIb30BAHUE UTPOBOW METOAMKU AN PA3BUTUA NEKCUYECKMX HABBLIKOB MPU
M3YYEHMWU AHTTMMCKOIO A3bIKA B CTAPLUEN LLKONE

AyakuHa H.B.
AKTYAJIbHbIE MPOBJEMbI MPENOAABAHUA TEOTPA®KN B LLUKONE

AyakuHa H.B.
METOAb! MOBLIWEHNAA MOTUBALUMK U3YYEHUA TEOTPA®UM HA YPOKAX B CPEOHEW
LLUKONE

Karap»kHoBa A.10.
MPEMMYLLECTBA TNMPWN  WCNOJAb30OBAHUWN TMPOBNEMHOIO METOOA HA VYPOKAX
NMHOOPMATUKU
TioTioHHUK O.B., CmblukoBa A.B., N'ynakuHa T.U.
KOHCNEKT 3AHATUA: «O3HAKOMJIEHME C OKPYXKAKOWWMM MUPOM «B TOCTAX VY
OUNMUHAY

BETEPUHAPHbIE HAYKU

Kasakb6aes b., LLlepHa3sapos C.
MHHOBAUMOHHbBIE TEXHONOMMM OCHOBA MHTEHCUDUKALUUN OTPAC/TM CKOTOBOCTBA

®U3BNKO-MATEMATUYECKUE HAYKU

Dinh Cong Dat
CALCULATING PERIODIC OSCILLATION OF A SINGLE-LINK FLEXIBLE MANIPULATOR

146

157

163

167

174

178

182

186

189

195

199




ISSN 2541-8076 HAYYHbIA SNEKTPOHHbIN XYPHAN «AKALEMUYECKAA NYB/ULUCTUKA» Ne 7-2/2022

Dinh Cong Dat
Hanoi University of Mining and Geology

E-mail address: dinhcongdat@humg.edu.vn

CALCULATING PERIODIC OSCILLATION OF A SINGLE-LINK FLEXIBLE MANIPULATOR

ABSTRACT
In the robot manipulators operating at high speeds, the elastic vibration of links is
inevitable. The present paper deals with problem of calculation periodic oscillation of a
single-link flexible manipulator. First, linearize the motion equations of flexible robot
around the basic motion based on a Taylor expansion. Then, calculate the periodic
oscillation. The proposed procedure is demonstrated and verified by the model of a
flexible single-link manipulator.
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1. Introduction

Recently, flexible robots have been used in space technology, nuclear reactors,
medical engineering, and many other fields. Flexibility, small volume, high speed, and
low power consumption are advantages over rigid robots. However, the elastic
displacements created by flexible links are the main cause of questions about position
accuracy, structure stability and vibration. Some scientists have done research to solve
those problems. However, the research results obtained are still relatively small and
need to be studied further.

Bayo et al. [1] and Asada et al. [2] have proposed two different algorithms for
calculating the torques required to move the end effector of flexible manipulators. A
brief description about the development of stabile and vibration analysis of flexible

manipulators has been depicted here.
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The assumed mode method has been used to study the stability and vibration of
flexible manipulators. Chiou and Shahinpoor [3] analyzed the stability limitations for
force-controlled two-link flexible manipulator and compared it with the model
considering rigid body dynamics. Poppelwell and Chang [4] determined the natural
frequencies of single link flexible manipulator when the center of the payload does not
coincide with manipulator end. Coleman [5] analyzed the vibration eigen-frequency of a
flexible slewing beam with a payload attached at one end using wave propagation
method. The results showed that the large frequencies are asymptotically identical to
those for the clamped free beam independent of the payload.

Using the singular perturbation approach, X. Yang et al. [6] investigated the tracking
control of a two-link flexible manipulator by adaptive sliding mode control scheme and
linear quadratic regulator control method. With the proposed control, the closed-loop
stability under unknown disturbances has been proven. Using the numerical method.
Kumar and Pratiher [7] investigated the free vibration of a two-link flexible manipulator.

In this study, the linearization problem of the non-linear equations governing the
motion of flexible manipulators in the vicinity of periodic fundamental motion is

addressed. Then, calculates the periodic oscillation of a single-link flexible manipulator.

2. Dynamics of a single-link flexible manipulator

2.1. Fundamental motion of the flexible manipulator

The fundamental motion of the manipulator is the virtual rigid link motion of the link

OE [2] such as fig 1.
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Fig.1. Single-link rigid manipulator

From the virtual rigid link motion, the position of the point E on the link is given as
xp =1lcosq (t), yy =Ising"(¢) (1)

The mass moment of inertia of the virtual rigid link with respect to point O takes the form

]0 =§pAl?’+mEl2+]1, (2)

where J; is the mass moment of inertia of link 1 (including the motor) with respect to
point O, pis the density of beam and A is the sectional area of beam, mgis the mass of
the payload. Using the momentum theorem, it follows that

G AL +mgl? + )R (L) - - mOEgécosq;‘(t)- m gleosqls (1) + (1) (3)
Assuming the motion rule of the drive has the following form

qi0="5+ %sin(2pt) (4)
By differentiating Eq (4) and then substituting the obtained result into Eq. (3) we have

@)= - 2p3(erl3 + mEl2 +J,)sin(2pt)
3 (5)

+mOEg§cos(§ + %sin(Zpt)) + mEglcos(% + %sin(Zpt))
From Eqg. (4) the position of the point E on the link is given as

XX = I cosg" (1) = lcos(% + %sin(2pt)) ;yF = Ising"(r) = Isin(% + %sin(Zpt)) (6)

2.2 Equations of motion of a single - link flexible manipulator.

Using the floating frame of reference approach [8], in this subsection we set up the
motion equations for a single-link flexible manipulator. Consider a single-link flexible
manipulator OE of length / with a rotor located at the hut and a payload at the free end.
As shown in Fig.2, the end of the link is attached to the O point (including the motor)

revolving around the O axis, at the E of the link carries mass mg. The link is considered
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as homogeneous beam with the area A.

Fig.2. Single-link flexible manipulator

To describe the kinematics, the position of point P on the flexible beam is given as

X, = xcosq, - w(x,r)sing,

(7)

Y, = xsing, + w(x,t)cosq,
Differentiation of Eq. (7) yields

vp = X5 + 5 = W? +x2)(qa)® + W? + 2xW(q (8)
It follows that

vE = (Wi +1%)(Ga)* + W + 2WWg g, (9)
The Euler-Bernoulli beam theory and Ritz-Galerkin method are applied to the flexible
manipulator with assuming that the deformation in the longitudinal direction is negligibly
small. Let the transverse deformation of the beam be written as

w(x,t) = T, X ()0 (), we = T, X (Dqei (0, (10)
where q,;(t) are unknown generalized coordinates of transverse deformation, X;(x) are
a set of mode shapes of transverse deformation of a clamped- free beam and N is the
number of modes used to describe the defection of the flexible link. The mode shapes

are given as [9]
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X,(x)= cos(bx)- cosh(bx)

N cosh/+ cosh bl
sin bil + sinh bil

(— sin(b x) + sinh(bix)) (11)

The kinetic energy of the flexible manipulator shown in Fig. 1 is given by

T =T, +Tg + Tog = 3)1(4a)+5mgvi+ [ pAvidx, (12)
where J; is the mass moment of inertia of link 1 (including the motor) with respect to the
point O, mg is the mass of the point E, pA is the mass per unit length of the beam.
By substitution of Egs. (7), (8), (9) and (10) into Eq. (11), we obtain the kinetic energy of
system

T = (%Jl + %mEl2 + érAP)((éL)z + %mE[w;(qgc)2 + &7 + 28l

1 L. 1 . l .ol
~pA J, w?dx + E,[)A(qa)2 Jow?dx + pAqq [, xwdx (13)
The strain energy of the beam OE according to Reddy [9] is given by
1 1 (82w\?
Hdh = EEI fO (W) dx, (14)
where E and | is the modulus of elasticity, area moment of inertia of the beam,

respectively.

By substituting Egs. (7), (10) and (11) into Eqg. (14), we obtain

P = m, gllsing + eN X (g, (t)cosq, 1+ %qua
i=1
N 1 N N
Trgeosq,e Ca,tEle € kad, (15)
where
C; = [\? Xydx; ki; = [,2 X[ X[ dx (16)

The Lagrange equations have the following form

da (oT\ or oI .
E(%) —a_q]— _a_q]‘l' QjIJ_]‘IzI“‘InI (17)
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where g;are the generalized coordinates which include rigid body coordinete q,as well
elastic modal g,;, and Q;-‘ are generalized forces.

By substituting Eqs. (13) and (15) into Eq.(17), we obtain the equations of motion of the

system as

1 .
[J; + mgl® + gPAlg +PAYIL XN My qeiGe; + Mg X101 X021 Xi (DX (Deief] Ga

N N N N N N
+H[2mg ) > XX, (D +204 )" > mijldaderder + [PA ) Di+msl D XDl
i=1 j=1 i=1 j=1 i=1 i=1
N ) m_ _glcosq ) N
=-mgllcosq - ¢ X,()g,sing,] - %‘F mgsing g Cq, + (18)
i=1 i=1

[melX;(D) + pAD;]dq + [meX; (D X1 X; (D + pA XYy myj1Ge; + EIXLY_ kijqe;
—[mgX; (D Z?]=1 Xi (Dgej + pA Z?’=1 M;jqe;145= - m,gX (Dcosq, - mgC,cosq,, | =
1,2,..,N. (19)
where

D; = folz xX;dx; my; = folz X X;dx (20)
If we choose N =1 and use of symbols g.; = q., the differential equations of the single-
link flexible manipulator give the following form
Us +mgl?® +3 AL + (pAmy a3, +mpXE(1)a2)]da + [PAD; + mglX, (D]der +

m,,.glcosq

[27’115)(12 (D) + 2pAmy1]4aGe1Ger + > “- mgsingCgq,,

= -m_gllcosq - X (I)g, sing ]+ 7 (21)

MmeX{ (D) Ger + melX1(DGg + pAD; Gy + pAMy1Goy — MpdiX? (Dqer — PAGGM11qer
+Elk 11qe1= - m ,gX ()cosq, - mgcosq C, (22)

3. Linearization of the motion equations of flexible manipulator about the fundamental
motion

Now consider the problem of linearizing motion equations of the single-link flexible
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manipulator, which consists of a single flexible beam with a link at one end and the hub
as an example. A rigorous model for the dynamics of a flexible slewing beam, with a rotor
located at the hut and a payload at the free end is shown in Fig.2.

The fundamental motion of the manipulator is described by g®(t) and tR(t), where

qR (t) is the generalized coordinate of the manipulator

q° () =g (®) O] =gz () 0]". (23)
and T8 (t) is the torque
@) =[rg 71" =[rq 0 (24)

In Egs. (21) and (22) g&(t) is the elastic generalized coordinate, and T (t) is the elastic
torque of the virtual rigid link.
The differential equations of the single-link flexible manipulator (21) and (22) can be

expressed in the following matrix form

M(q)q +C(q.9)q +g(q) = =(t) (25)
where q, q and q are vectors of generalized position, velocity and acceleration variables,
respectively

q = [qa qe]", T(t) = [1a(®), T (®)]" = [74(£),0]". (26)
Let Ag,and Aq.are the difference between the real motionq(t) and the fundamental
motion g (t), we have

4o (t) = qa(8) + Aqq(0) = q4(0) +y1(8) (27)

qe(8) = q¢ (t) + Aq. (1) = y,(£) (28)
Where y; and y, are called the additional motion or the perturbed motion. Similarly,
we have

T(t) = [1,(1), T (O)]" = [74(£),0]" (29)
By substituting Eqgs. (25), (26) into Eqg. (25) and using Taylor series expansion around
fundamental motion, then neglecting nonlinear terms, we obtain the system of linear
differential equations with time-varying coefficients for the single-link flexible

manipulator as follows [10]

M, )y + C,(D)y + K, ()y = h, (1) . (30)
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The matrices M, (t), C,(t), K, (t) and vector h;(t) of the linear differential equations

(30) have the following forms

1
M (0) = []1 Fme s ot pA E meth(D (31)
[0 0
aw=|, , 32)
k k
K. (t :[ 11 12] 33
A .
where
k, = - Ising" (tm g - w,
k, =k, =-mgX ()sing"(t)- mgsing"()C, (34)
by = - m &OTX(D) - rA©)Tm,, + EIk;.
and
: %
h, ()= %mEgXl(l)cosqf(t)- mgcosq" (1)C, - m IX &) - ”ADI@U)E (35)

where fundamental motion g&(t) is given by Eq. (4) and constants C;, Dy, X, my1, ki1

are determined by Eqgs. (11), (16) and (20). It should be noted that the matrices

M, (t),C.(t), K. (t) and vector h; (t) are time-periodic with least period T.

The calculating parameters of the considered manipulator are listed in Tab. 1.

Table 1. Parameters of the manipulator

Parameters of the model Variable and Unit | Value

Length of link [ (m) 0.9

Sectional area of beam A (m?) 4 x 1074
Density of beam p (kg/ m3) 2700

Inertial moment of sectional area of beam I (m?*) =bh3/12 1.33334 x 1078
Modulus E (N/ m?) 7.11 x 101°
Mass moment of inertia of link 1 (including J. (kg.mz) £ 86 % 10-5
the motor)

Mass of payload m; (kg) 0.1
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It follows from the parameters in Tab. 1 that
C; = —0.7046317896, D, = —0.4607100845,
my, = 0.8998501520, kj; = 16.95515100, X; = —2 (36)

4. Calculating the periodic oscillation of a single — link flexible manipulator.

4.1. Periodic oscillation
we go to find the periodic solution for the equations.

MP Oy + €Oy + KOy = P () (37)
Using the periodic solution algorithm of the system of linear differential equations [11]
we find the periodic oscillation of the system of equations (37) in the form:

y =i »l (38)
When the system is stable then

TRy (39)

Using PD control method with k, =120 and kq =80 we get

-3
4 1
L5 X10 3 10

1 2

v, [rad]
¥, (m]

o 05 |——"] 15 2 o 0.5 Y| 15 2

Time [s] Time [s]
Fig. 3. Periodic solution

From Figure 3, we see that the periodic elastic oscillation is small.

4.2. Approximate motion of a single — link flexible manipulator.
After determining the elastic oscillation of the robot as in section 4.1, then we have the
driving link coordinates such as:
qa(t) = qq (t) + y:()
qe(t) = y2(t) (40)
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Fig. 4. Motion of end point
Now, the elastic displacement at the end point such as:
w(l,t) = X1 (Dy,(t) (41)
Then, the motion of end point E to given as
x, = lcosq (1)~ w(,t)sing (1) (42)
v, = Ising (t) + w(l,t)cosq,(t) (43)
Cucalating by Matlab we obtain the motion of end point as shown in Figure 4, we can

see that the motion deviation of end point when flexibe and rigid is very small.

5. Conclusions

In the present paper, the linearization problem of the equation of motion of flexible
manipulators in the vicinity of a fundamental motion is addressed. Determine the
approximate periodic oscillation for flexible manipulaters which are described by linear
differential equations with time-periodic coefficients

Through numerical simulation, the efficiency and usefulness of the proposed

algorithm were demonstrated as well as the problem and further issues.
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