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A B S T R A C T   

Groundwater potential maps are important tools for the sustainable management of water resources, especially 
in agricultural producing countries like Vietnam. Here, we describe the development and application of a 
spatially explicit ensemble modeling framework that allows for analyzing spatially explicit data for estimating 
groundwater potential across the Kon Tum Province, Vietnam. Based on this framework, the Naïve Bayes (NB) 
method was integrated with the Bagging (B), AdaBoost (AB), and Rotation Forest (RF) ensemble learning 
techniques to develop three ensemble models, namely BNB, ABNB, and RFNB. A suite of well yield data and 
thirteen explanatory variables (i.e., elevation, aspect, slope, curvature, river density, topographic wetness index, 
sediment transport index, soil type, geology, land use, rainfall, and flow direction and accumulation) were 
incorporated into the modeling processes over the independent training and validation levels of the single NB 
model and its three ensembles. Several performance metrics (i.e., area under the receiver operating characteristic 
curve (AUC), root mean square error (RMSE), accuracy, sensitivity, specificity, negative predictive value, and 
positive predictive value) demonstrated that the three ensemble models successfully surpassed the single NB 
model in groundwater potential mapping. The ensemble RFNB model with AUC = 0.849, accuracy = 83.33%, 
sensitivity = 100%, specificity = 75%, and RMSE = 0.406 exhibited the most accurate performance for mapping 
groundwater potential in the Kon Tum Province, followed by the ABNB (AUC = 0.844), BNB (AUC = 0.815), and 
single NB (AUC = 0.786) models, respectively. Further, the correlation based feature selection method identified 
elevation, slope, land use, rainfall, and STI as the most useful explanatory variables for explaining the distri-
bution of groundwater potential in the Kon Tum Province. The methodology proposed in this case study and the 
produced potential maps enable managers to align water use patterns with the shared benefits and costs of 
different users and to develop strategies for sustainable groundwater exploitation, preservation, and 
management.   
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1. Introduction 

Groundwater stores about 30% of the global freshwater, supplies 
about 40% of the water for global irrigated farmlands, and constitutes 
the main source of drinking water for more than two billion people 
around the world (Jasechko et al., 2017; Siebert et al., 2010). With the 
current ever-increasing freshwater demand, overexploitation has caused 
a widespread decline in groundwater table (Pandey et al., 2020) which 
in turn exacerbated land degradation and desertification worldwide 
(Guo and Shen, 2016; Ma et al., 2020; MacDonald et al., 2021; Rodell 
et al., 2018). Further, the ongoing climate change mirrored in prolonged 
drought occurrences is expected to amplify the already water scarcity in 
many regions around the world. To counteract these threats and to 
develop prudent strategies for sustainable groundwater exploitation, 
preservation, and management, managers and scientists need to ur-
gently tackle the critical problems caused by overexploitation of 
groundwater aquifers. Among different solutions and strategies, 
spatially explicit mapping of groundwater potential is prominent that 
enables managers to align water use patterns with the shared benefits 
and costs of different users. Groundwater potential that indicates the 
probability of groundwater occurrence/presence or the content of 
groundwater reservoir in a region (Khosravi et al., 2018; Rahmati and 
Melesse, 2016) is an essential decision support tool, particularly for 
regions vulnerable to the impacts of climate change and where aquifers 
are already depleted due to excessive groundwater extraction and/or 
inappropriate aquifer recharge (Gaur et al., 2011; He et al., 2021), as 
well as data-scarce regions where hydraulic and pumping data are not 
available. For these regions, groundwater potential mapping using field- 
based yield data that characterize extraction volume and the velocity of 
groundwater at several measurement points is important (Lee et al., 
2020). 

Some common groundwater measurement methods such as hydro-
geological techniques, field hydraulic conducting surveys, and explor-
atory drilling are not only very time consuming and prohibitive/costly, 
but also are limited to small-scale, sparse data obtained from point 
measurements (Becker, 2006) that have made it difficult to map 
groundwater potential. In recent years, spatially explicit data obtained 
via remote sensing have been suggested and used to overcome the 
limitation of local information. Using remote sensing techniques, point- 
based local-scale data can be extended to large, spatially distributed data 
sets that are appropriate for analysis using different geographic infor-
mation systems (GISs) and data processing methods such as machine 
learning algorithms (Avand et al., 2020; Choubin and Rahmati, 2021; 
Razavi-Termeh et al., 2019; Tolche, 2021). 

Spatial pattern analysis and mapping of groundwater potential based 
on the spatially explicit data is an attractive alternative to difficult 
conventional approaches (Kalhor et al., 2019). In recent years, many 
researchers have investigated and measured groundwater potential in 
different regions around the world. In these studies, remotely sensed 
data and GIS techniques have been used and different methods from 
machine learning have been evaluated (Agarwal et al., 2019; Nguyen 
et al., 2020). Unlike the traditional field-based methods adopted for 
groundwater potential mapping, machine learning methods find pat-
terns of groundwater reservoirs in diverse hydrogeological settings and 
use these patterns to predict where another groundwater can exist 
(Pham et al., 2019a). In recent years, many accurate predictive models 
have been derived from machine learning methods that allowed for 
handling missing data, outliers, and various types of geo-environmental 
variables (DeSimone et al., 2020) and provided accurate estimations of 
groundwater potential for many regions around the world. Artificial 
neural network (ANN), adaptive neuro fuzzy inference system (ANFIS), 
random forest (RF), support vector machine (SVM), support vector 
regression (SVR), boosted regression tree (BRT), classification and 
regression tree (CART), and multivariate adaptive regression spline 
(MARS) are among the popular and proficient machine learning 
methods for groundwater potential mapping (Choubin and Rahmati, 

2021; Fadhillah et al., 2021; Motevalli et al., 2019; Naghibi et al., 2017a; 
Naghibi and Moradi Dashtpagerdi, 2017; Yen et al., 2021; Zhu and 
Abdelkareem, 2021). As a result of these machine learning applications, 
groundwater potential mapping is now faster, easier, cheaper, and more 
accurate than ever before. Concurrently, the development and valida-
tion of new models have become mainstream in this field of science, 
with an increasing number of researchers adopting various optimization 
algorithms and ensemble learning techniques to develop hybrid and 
ensemble predictive models to improve the capability of a base model 
for groundwater potential mapping (Nguyen et al., 2020; Pham et al., 
2019a). A hybrid or an ensemble model indicates a model that combines 
at least two methods to yield more accurate results than a standalone 
method. Examples of the most recent efforts for hybrid and ensemble 
modeling of groundwater potential can be found in recent works pub-
lished in the literature (Al-Fugara et al., 2020; Motevalli et al., 2019; 
Naghibi et al., 2019; Nguyen et al., 2020; Pham et al., 2019a). 

Motivated by a desire to better understand how different methods/ 
models interpret spatially explicit information for proving accurate and 
unbiased predictions of groundwater potential, we modeled ground-
water potential in the Kon Tum Province, Vietnam, using the Naïve 
Bayes machine learning method that relies on the AdaBoost, Bagging, 
and Rotation Forest ensemble learning techniques. Thirteen explanatory 
variables are incorporated into the Naïve Bayes method to characterize 
the geoenvironmental conditions of the study area. Various validation 
metrics are used to investigate how well the models conform to ground 
truth data of groundwater potential and to measure the uncertainty and 
limitations of predictions. By proposing three Naïve Bayes-based 
ensemble models, our study contributes to the suite of research that 
seeks to provide managers with decision support systems for sustainable 
groundwater exploitation, preservation, and management. 

2. Research area 

The Kon Tum Province covers an area of 9676.5 Km2 in the central 
part (13◦55′10“ N to 15◦27’15” N and 107◦20′15“ E 108◦32’30” E) of 
Vietnam (Fig. 1). The province has a population of approximately 
530,000 and is predominantly mountainous with an average elevation 
and slope of 600 m and 46 degrees, respectively. The climate of the 
province is monsoon tropical that is characterized by two separate 
seasons, i.e., rainy and dry. The rainy season typically extends from 
April to November, whereas the dry season extends from December to 
March of the next year. The average annual rainfall is about 2121 mm. 
The province suitability permits the cultivation of a variety of industrial 
crops and medicinal plants such as coffee, passion fruit, and Ngoc Linh 
ginseng. The effects of two rainy and dry seasons on water resources 
make social and economic activities more dependent on groundwater 
extraction. The groundwater source in the Kon Tum province has po-
tential and industrial reserves of a C2 level (Vietnamese classification 
standard): 100 thousand m3/day, especially at a depth of 60–300 m with 
relatively large reserves. 

3. Modeling methodology 

Spatial modeling of groundwater potential in the Kon Tum Province, 
Vietnam, involves the following six main steps (Fig. 2):  

1) Collecting the locations of groundwater reservoirs (wells) through 
multiple field surveys. we randomly divided these locations into two 
groups such that 70% (42 wells) were used for model training and 
building and the remaining locations (18 wells = 30%) were reserved 
for model validation (Al-Fugara et al., 2020; Nguyen et al., 2019; 
Pham and Prakash, 2019).  

2) Collecting spatially explicit data related to a set of geoenvironmental 
variables that are supposed to directly or indirectly influence the 
distribution of groundwater potential within the Kon Tum Province. 
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Fig. 1. Location of the Kon Tum Province (study area).  
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Fig. 2. Modeling strategy for groundwater potential mapping in the Kon Tum Province, Vietnam.  
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3) Selecting the most significant variables influencing groundwater 
potential using the correlation based feature selection (CBFS) 
method.  

4) Spatially explicit modeling of groundwater potential using ensemble 
models. This step that is the core of our methodology combines the 
Naïve Bayes classifier with the AdaBoost, Bagging, and Rotation 
Forest techniques that results in three ensemble models: ABNB, BNB, 
and FRNB.  

5) Validating the training (i.e., goodness-of-fit) and validation (i.e., 
predictive ability) performances of the models using various metrics.  

6) Generating groundwater potential maps using the models’ outputs. 
The sixth and final step of our methodology was conducted via two 
main phases: 1) whole pixels of the study region were fed to the 
validated models to produce the potential indices for the entire study 
region. 2) The generated potential indices were reclassified and 
ground into five classes to visually display the groundwater potential 
maps. 

3.1. Data collection 

3.1.1. Well yields 
Sixty drilled wells data were collected from the national projects 

conducted by the Vietnam Academy for Water Resources (VAWR) and 
were used in this study. Out of these, 30 wells with groundwater yield of 
>0.75 l/s were considered as “groundwater” class, and the remaining 
wells with groundwater yield of <0.75 l/s were considered as “non- 
groundwater” class for the modeling process. The dataset was randomly 
divided into two separate sets such that 70% of samples were used for 
model training and the remaining samples (30%) were considered for 
model evaluation. 

3.1.2. Groundwater explanatory variables 
Selection of the variables that may directly or indirectly influence the 

distribution of groundwater potential is a significant step in ground-
water potential modeling and significantly affects the performance of 
the predictive models and the quality of results. Based on the previous 
works reported in the literature (Choubin and Rahmati, 2021; Díaz- 
Alcaide and Martínez-Santos, 2019; Forootan and Seyedi, 2021; Mallick 
et al., 2021; Ozdemir, 2011; Rahmati and Melesse, 2016; Singh et al., 
2019; Tolche, 2021), multiple field surveys and measurements, and data 
availability, we ended up with thirteen variables for this study: eleva-
tion, aspect, slope, topographic wetness index (TWI), sediment transport 
index (STI), curvature, river density, flow direction, flow accumulation, 
rainfall, land use, soil type, and geology (Table 1 and Fig. 3). 

Elevation considerably affects local conditions of the landscape for 
groundwater distribution. Groundwater reservoirs often follow the 
altitude gradient and tend to accumulate under the low-elevated por-
tions of the landscape (Ozdemir, 2011). Aspect was used as an important 
explanatory variable for generating groundwater potential maps 
because this variable is correlated with evapotranspiration and de-
scribes the direction of water flow that influences groundwater recharge 
and storage (Singh et al., 2019). Slope was selected as another explan-
atory variable because of its association with the hydrology processes 
that determine the runoff direction and infiltration capacity of the 
landscape (Magesh et al., 2012). Curvature is an indication of the 
amount of water that accumulates at the ground surface and its infil-
tration. STI reflects the capacity for sediment transfer and shows the 
amount of erosion and depositions that can affect the infiltration and 
recharge (Conforti et al., 2011; Naghibi and Moradi Dashtpagerdi, 
2017). TWI quantifies the effect of topography on the hydrologic pro-
cess, thereby on infiltration and recharge (Naghibi et al., 2017b). Soil 
types largely determine the amount of water infiltration to the ground 
surface to recharge the groundwater aquifers (Naghibi et al., 2017a; 
Zhang et al., 2019). Geology exerts a significant on surface permeability, 
thereby on the groundwater recharge capacity (Tolche, 2021). Rainfall 
is a very important variable for measuring the variability of ground-
water recharge and storage, and thereby the modeling of the ground-
water potential (Jenifer and Jha, 2017). River density is another 
influential variable for changing the capacity of groundwater recharge 
and storage. The areas with dense drainage networks are typically 
associated with a highly runoff rate, and accordingly less recharge rate 
and groundwater potential (Oikonomidis et al., 2015). Land-use type is 
an important factor considered to depict the groundwater potential. 
Land use (i.e., human activity) affects the potential for groundwater 
occurrence by changing evapotranspiration, runoff (Singh et al., 2019), 
recharge rates, and water demands (Lerner and Harris, 2009). 

3.2. Variable selection 

In machine learning modeling, feature selection allows for identi-
fying and removing irrelevant and redundant factors to build a small set 
of factors that explain the dataset better than the initial set of factors. To 
identify the most influential factors on groundwater potential, we 
employed the correlation based feature selection (CBFS) method 
(Nguyen et al., 2020). This method utilizes Pearson’s correlation 
approach to measure the influence of each independent factor on a 
response variable. Using this method, we calculated the correlation 
between every factor with the yield locations in the study area and 
ranked the factors based on their average merit (AM) for the predictive 
modeling of groundwater potential. We perform the CBFS method in the 
open-source Weka software. 

3.3. Methods used 

3.3.1. Naïve Bayes 
Naïve Bayes (NB) is a probabilistic method inspired by Bayesian 

theory that utilizes numerous simple possibilities to make decisions 
based on the main assumption that all variables conditionally inde-
pendent of one another (Soria et al., 2011). In fact, the efficiency of the 
NB method comes from this assumption that significantly simplifies the 
representation and estimation of conditional probability (Ouyang et al., 
2021; Zhao and Li, 2020). Using the Bayesian classification scheme, NB 
can alleviate the complexity associated with the conditional probability 
estimation by making a conditional independence assumption that re-
duces the number of variables to be estimated. This assumption is made 
stimulation via the demand to assess the involving possibilities of the 
training data. In reality, most compositions of adjective/qualities 
amounts are neither not existent in the training data nor not existent in 
adequate numeral (Chen et al., 2020; Zhang et al., 2020). As a result, a 
straight guess of every related to poly-variable possibility will not be 

Table 1 
Overview of the explanatory variables used in this study.  

Variable Scale Source 

Elevation (m) 30 m USGS DEM 
Slope degree 30 m DEM 
Aspect 30 m DEM 
TWI 30 m DEM 
STI 30 m DEM 
Curvature 30 m DEM 
Flow direction 30 m DEM 
Flow accumulation 30 m DEM 
River density (km/km2) 30 m DEM 
Rainfall (mm) 30 m VMO 
Land use 1:50000 WRPI 
Soil type 30 m WRPI 
Geology 1:300000 WRPI 

DEM: digital elevation model that was obtained from the United States 
Geological Survey (https://earthexplorer.usgs.gov/), VMO: Vietnam Meteoro-
logical Organization, WRPI: Water Resources Planning and Investigation of 
Vietnam. 
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trustworthy. NB confused this trouble by its contingent independence 
assumption. NB can be applied to both binary and multiclass classifi-
cation problems. Despite this presumption of rigid independence/lib-
erty, the NB classifier is perfectly worthy in many real world 
applications due to its simplicity (Chen et al., 2020). To apply NB for 
groundwater potential modeling and mapping, let X = (x1, x2, …xn) be a 
vector of independent explanatory variables. Thus, the potential for 
groundwater presence (P(Cj|x1, …,xn)) is estimated by: 

P
(
Cj⃒X

)
=

P
(
Cj
)
P
(
X⃒Cj

)

P(X)
(1)  

3.3.2. AdaBoost 
The boosting technique is to know several weak classifiers and 

incorporate them in some procedures with the aim of teaching an in-
dividual powerful classifier. AdaBoost, short for Adaptive Boosting, is an 
ensemble learning algorithm to build a “potent” classification as a lon-
gitudinal/linear composition and deal with dual classification (Freund 
and Schapire, 1997). This method can adaptively modify the weakness 
of classifiers during a modeling process. AdaBoost uses the same set of 
training samples to train different weak classifiers and then combines 
the classifiers to develop a strong and reliable single classifier. To do so, 

Fig. 3. Thematic maps of the explanatory variables used for groundwater potential mapping in the Kon Tum Province.  
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AdaBoost changes data distribution that leads to changing the weight of 
each sample in the dataset. The new weight-modified dataset is fed to 
the lower classifier for training. The classifiers resulted from each 
training course are combined together to develop the ultimate classifier. 
The AdaBoost ensemble technique has been acknowledged in various 
applications due to its ability to reduce many biases and errors of the 
modeling process that results in an improved predictive modeling 
(Kovalnogov et al., 2021; Sun et al., 2011; Wu et al., 2020). 

3.3.3. Bagging 
Bagging (Bootstrap aggregating) ensemble technique is a simple 

group learning model that provides basic models for manufacturing and 
association/aggregation (Breiman, 1996). Bagging has been proposed 
with the aim of reducing variance without increasing bias error exces-
sively. Bagging is an effective method for modeling many environmental 
issues (Adhvaryu and Panchal, 2012; Yang et al., 2020). Bagging utilizes 
the bootstrap technique to choose the samples arbitrary with the 
replacement approach to generate numerous sets of samples, which also 
termed bootstrapped subsets. Each one of the subsets trains a base 
classifier individually until their outputs are merged into a single strong 
classifier using the majority voting approach (Medvedeva et al., 2021b). 

3.3.4. Rotation forest 
Compared to the AdaBoost and Bagging ensemble learning tech-

niques, Rotation forest (RF) is a fairly recent technique proposed by 
Rodriguez et al. (2006). The core idea of RF is to use bootstrap sampling 
and principal component analysis (PCA) to generate a classifier. RF 
randomly divides a training dataset M into K subsets and then applies 
PCA with the bootstrap sampling to each subset to generate a rotation 
sparse matrix. Then, a classifier is developed on the features recurrently 
predicted by the matrix. By combining the output of the multiple clas-
sifiers, the ultimate classifier is developed. Previous works prove that RF 
is a favorable choice for ensemble modeling of many environmental 
problems (Naghibi et al., 2019; Pham et al., 2016). 

3.4. Model development and validation 

To develop the models, we used the open-source WEKA software. 
The parameter settings used in model development are summarized in 
Table 2. 

To validate the ensemble models developed, we used positive pre-
dictive value (PPV), negative predictive value (NPV), specificity, sensi-
tivity, accuracy, receiver operating characteristics (ROC) curve, and root 
mean square error (RMSE). To calculate these validation metrics, four 
statistical indices, i.e., true positive (TP), false positive (FP), false 
negative (FN), and true negative (TN), were derived from the confusion 
matrices that are middle results of performing the models within the 
WEKA software. These validation metrics are among the most widely 
used metrics in machine learning modeling (Hou et al., 2020; Koval-
nogov et al., 2020; Medvedeva et al., 2021a; Zuo et al., 2015; Zuo et al., 
2020). In our previous work (Pham et al., 2019a), we have described 

these metrics in the context of groundwater potential modeling and 
provided their mathematical formula. 

4. Results and discussion 

4.1. Variable importance 

Up to now, no universal guideline has been proposed for the selection 
of a proper set of variables that best explains the geo-environmental 
characteristics affecting groundwater potential. Researchers typically 
follow previous works to set a list of potential input variables, then 
decide upon the final set of variables based on the general characteristics 
of their study region and availability of data. With the recent advance in 
remote sensing and data processing techniques, researchers have in-
clined to use as many variables as possible, working on an assumption 
that the more the input variables, the higher model accuracy (Medve-
deva et al., 2020). However, different variables exert different levels of 
impact on groundwater potential and it is very likely that some variables 
are irrelevant to the modeling process, highlighting the need for eval-
uating the variables in terms of their utility and importance for model 
building. The results of the CBFS method that we used for measuring the 
importance of the selected variables revealed that all thirteen variables 
more or less affect groundwater potential across the study area 
(Table 3). Elevation with the average merit (AM) of 0.63 was identified 
as the most influential variable, followed by the slope (AM = 0.358), 
land use (AM = 0.339), and rainfall (AM = 0.315) variables. Since all 
thirteen variables achieved AM ∕= 0, they were used in the modeling 
process. 

An investigation into the previous works shows that the effect of 
different variables on groundwater potential is largely site-specific and 
cannot be exactly extrapolated to other regions. For instance, while 
groundwater potential in the Chilgazi region of Iran is significantly 
associated with TWI and distance from rivers (Tien Bui et al., 2019), 
elevation was the most influential variable on groundwater potential in 
the Ningtiaota region of China (Hou et al., 2018). For the DakNong 
Province of Vietnam, Nguyen et al. (2020) identified elevation and 
rainfall as the most and least important variables, respectively. In 
contrast, Oikonomidis et al. (2015) reported rainfall as the most influ-
ential variable on groundwater potential in Thessaly, Greece. In a 
national-scale groundwater potential mapping for New Zealand, Singh 
et al. (2019) identified lithology as the most useful variable. Different 
variable ranking has also been reported by Ozdemir (2011), Kordestani 
et al. (2019), Tolche (2021), and Mallick et al. (2021) for different re-
gions around the world, indicating the importance of variables for 
groundwater potential assessment depends on the geo-environmental 
and topo-hydrological characteristics of the study area. 

4.2. Model performance 

Using various performance metrics, the single NB model and its 

Table 2 
Optimal parameters of the models.  

Parameter Models 

NB ABNB BNB RFNB 

Batch size 100 100 100 100 
Number of decimal places 2 2 2 2 
Number of iterations – 12 10 8 
Seed – 1 1 1 
Weight of threshold – 100 – – 
Number of execution slots – – 1 1 
Maximum of group – – – 3 
Minimum of group – – – 3 
Removed percentage – – – 50 
Projection filter – – – PCA  

Table 3 
Variable ranks extracted using the CBFS method.  

Rank Variable Average merit (AM) 

1 Elevation 0.63 
2 Slope 0.358 
3 Land use 0.339 
4 Rainfall 0.315 
5 STI 0.218 
6 Curvature 0.169 
7 Flow direction 0.146 
8 River density 0.15 
9 Aspect 0.138 
10 Flow accumulation 0.125 
11 TWI 0.122 
12 Geology 0.096 
13 Soil 0.038  
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derived ensemble models were validated and compared in terms of 
identifying the general pattern of groundwater potential in the training 
phase of the modeling process and predicting future groundwater 
occurrence in the validation phase. Over the training phase, the 
ensemble ABNB model attained the highest PPV (62.07%) and ACC 
(80%) and the lowest RMSE (0.386) (Table 4). These results can be 
further interpreted to mean that this model correctly classified 62.07% 
of groundwater pixels in the potential class and 80% of all training 
pixels. In terms of the NPV, SST, SPF metrics, the BNB model achieved 
the highest possible values indicating that this model correctly classified 
100% of all pixels into the potential class, classified 100% of all pixels in 
the non-potential class, and classified 100% of groundwater pixels in the 
potential class. Overall, the three ensemble models outperformed the 
single NB model over the training phase of groundwater potential 
modeling. 

To evaluate the predictive ability and generalizability of the pro-
posed models, they were tested with the validation dataset (i.e., unseen 
data) over the validation phase. Based on a variety of performance 
metrics (Table 5), we found that the single NB model was outperformed 
by the three ensemble models. Compared to the ensemble models, the 
single NB model achieved the lowest values of PPV (60%), NPV (90%), 
SST (90%), SPF (70%), and ACC (76.67%) and the highest modeling 
error (RMSE = 0.446). Among the three ensemble models, the RFNB 
model gained the highest value of PPV (66.82%), NPV (100%), SST 
(100%), SPF (75%), and ACC (83.33%) and the lowest modeling error 
(RMSE = 0.406). Previous research has also reported on the asymmetric 
performance rates for different machine learning models when they are 

applied to the different training and validation datasets (Avand et al., 
2020; Elzain et al., 2021; Naghibi et al., 2019; Pham et al., 2016) and 
attributed these differences to the dissimilar computational basis of the 
models. For example, Breiman (1996) reported that Bagging performs 
excellent if an unstable base classifier is utilized. According to Quinlan 
(1996), the overfitting problem is the main reason for AdaBoost’s low 
performance. 

Although we used several performance metrics to measure the 
goodness-of-fit and predictive abilities of the models, AUC is the most 
reliable and trusted metric that was derived from the ROC curve and 
used to evaluate the overall performance of the models proposed for 
mapping groundwater potential in the Kun Tom Province. The AUC 
values obtained from the training phase (Fig. 4a) of the modeling pro-
cess ranked the single NB model as the best model (AUC = 0.889), fol-
lowed by the ABNB (AUC = 0.883), BNB (AUC = 0.849), RFNB (AUC =
0.801) models. In the matter of the predictive ability that was measured 
over the validation phase (Fig. 4b), the AUC values exhibited that the 
RFNB model with AUC = 0.849 provided the most accurate prediction of 
groundwater potential, followed by the ABNB, BNB, and NB models that 
reached the AUCs of 0.844, 0.815, and 0.786, respectively. 

The need to apply ensemble learning techniques to avoid overfitting 
was particularly relevant to our study because the excellent training 
performance of the single NB model decreased to a relatively poor 
validation performance that indicates an overfitted training perfor-
mance (Avand et al., 2020). While the models achieved different ranks 
(i.e., performance) in the training and validation phases, the ROC 
method, which has been used as the main performance metric (Elzain 
et al., 2021), revealed that the ensemble models effectively improved 
the predictive ability of the single NB model. Coupling the NB model 
with the three ensemble learning techniques, the predictive ability of the 
NB model enhanced by up to 7.4%. In line with our modeling outputs, 
previous researches achieved improved model performance using the 
ensemble modeling approach (Huang and Gao, 2017; Melville and 
Mooney, 2005). 

Although recent studies have shown the effectiveness of ensemble 
modeling approaches, these techniques exhibited diverse levels of per-
formance when they were applied to different problems in different 
regions around the world. For instance, Pham et al. (2019b) reported 
that the Reduced Pruning Error Tree (RPET) method combined with the 
Rotation Forest and Bagging performed better than its combination with 
the MultiBoost and Random Subspace (RSS) for landslide prediction, 
whereas Nhu et al. (2020) reported on an improved performance of the 
same model for gully erosion prediction using the RSS ensemble learning 
technique. This is also the case for the works that used ensemble tech-
niques for flood susceptibility prediction (Pham et al., 2020; Pham et al., 
2021; Shahabi et al., 2020). These results allow for the conclusion that 
local variability can significantly alter the performance of different 
predictive models derived from different machine learning and 

Table 4 
Training performance of the models.  

Metric NB ABNB BNB RFNB 

PPV (%) 48.28 62.07 58.12 58.12 
NPV (%) 96.15 96.77 100 96.77 
SST (%) 93.33 94.74 100 93.33 
SPF (%) 66.67 73.17 100 66.67 
ACC (%) 73.33 80 75.41 73.33 
RMSE 0.499 0.386 0.475 0.483  

Table 5 
Validation performance of the models.  

Metric NB ABNB BNB RFNB 

PPV (%) 60 66 66.67 66.82 
NPV (%) 90 93.33 100 100 
SST (%) 90 90.91 100 100 
SPF (%) 70 71.68 73.43 75 
ACC (%) 76.67 80 80 83.33 
RMSE 0.446 0.439 0.417 0.406  

Fig. 4. ROC curve of the models over the training phase (a) and validation phase (b).  
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ensemble learning techniques. This apparently dictates more modeling 
effort in different regions to achieve robust predictive models. 

4.3. Groundwater potential maps 

Four spatially explicit maps of distribution groundwater potential 
across the study area were the end product of the modeling process 
proposed in this study (Fig. 5). In favor of a broad range of applications 
(e.g., land use planning, groundwater management, and water resource 
allocation), the distribution maps were generated to display very low, 
low, moderate, high, and very high potential to groundwater occurrence 
across the Kon Tum Province. Fig. 6 shows a detailed analysis of the 
produced maps. Based on this analysis, the five categories (very low to 
very high) covered 45.22, 7.60, 18.66, 12.54, and 15.98% of the prov-
ince, respectively, on the NB model map. The ABNB model classified 

58.28, 11.86, 5.57, 3.13, and 21.16% of the province into very low to 
very high potential categories, respectively. The BNB model classified 
38.01, 6.81, 29.33, 9.94, and 15.91% of the province into very low to 
very high potential categories, respectively. The RFNB model classified 
20.89, 29.33, 20.59, 15.98, and 21.16% of the province into very low to 
very high potential categories, respectively. In general, the high and 
very high potential categories of all four maps are predominantly 
associated with the low-elevated, gentle slope portions of the province 
that have a low density of drainage networks. 

5. Concluding remarks 

Groundwater aquifers need to be treated as scarce resources, with 
much stronger attention to managing demand. Identification of the re-
gions with high groundwater potential is a significant step in the 

Fig. 5. Groundwater potential maps produced by the NB model and its ensembles. In each map, GPC stands for groundwater potential classes.  
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management of groundwater aquifers. Within the open-source Weka 
software, we developed an ensemble modeling framework that enabled 
us to analyze remotely-sensed data using an integration of the NB model 
with the Bagging, AdaBoost, and Rotation Forest ensemble learning 
technique to produce an accurate estimate of groundwater potential 
across the Kon Tum Province, Vietnam. The potential maps depicted the 
geographic locations and geoenvironmental conditions of those parts of 
the study area potentially suitable to groundwater presence. In addition 
to providing spatially explicit maps of groundwater potential for the Kon 
Tum Province, the main contributions of our study to literature and for 
water resource management include: (1) ranking thirteen geo- 
environmental variables in terms of their significance for groundwater 
potential modeling, (2) demonstrating the efficiency of ensemble 
modeling for estimating groundwater potential, and (3) delineating the 
Kon Tum Province into several classes of groundwater potential in favor 
of a wide range of management purposes. These contributions might be 
beneficial for (1) facilitating the translation of geoenvironmental in-
formation for data-scarce regions, (2) strengthening the pathways be-
tween decision-makers, stakeholders, and researchers, (3) developing 
strategies for compressing the high water-consumption users, (4) 
developing smart monitoring systems, and (5) promoting water-saving 
technologies for different users. Future research can include other 
ensemble learning techniques and Bayes rules for a fairer comparison 
between the capabilities of different methods. 
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