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Estimation of Ground Vibration Intensity Induced by Mine
Blasting using a State-of-the-Art Hybrid Autoencoder Neural
Network and Support Vector Regression Model
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In surface mining, blasting is an indispensable method for fragmenting rock masses. Nev-
ertheless, it can inherently induce many side effects like ground vibrations. At high inten-
sities, the ground vibrations generated because of blasting operations can destroy structures
and buildings. Also, in areas with adverse geological conditions, such vibrations can cause
bench and slope failures. Therefore, the accurate prediction of ground vibration intensity
(GVI) has critical implications in mitigating and controlling the adverse effects along with
sustainable development and responsible mining. In this research, a novel intelligent model
was proposed to predict GVI based on the hybridization of autoencoder neural networks
(AutoencoderNN) and support vector machine regression (SVR), and it was named
AutoencoderNN-SVR. Nine input variables were utilized to estimate GVI: borehole
diameter, bench height, borehole length, burden, spacing, hardness coefficient, powder
factor, maximum explosive charged per delay, and monitoring distance. Two hundred
ninety-seven blasting events were collected, analyzed, and evaluated to achieve this aim.
Also, the traditional SVR model without the support of AutoencoderNN, an empirical
equation (i.e., USBM), and a nonlinear model based on gene expression programing were
applied in this research and compared with the proposed AutoencoderNN-SVR model in
terms of GVI prediction. Then, the models’ obtained results were analyzed and computed
through statistical indices, such as root mean squared error (RMSE) and coefficient of
determination (R2). The AutoencoderNN-SVR’s ensemble model was found to have ob-
tained the highest accuracy and lowest error (i.e., RMSE = 1.232 and R2 = 0.887) compared
to the other models and is an insight in predicting GVI in mine blasting with high reliability.
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Highlights

� An autoencoder neural network was investigated to predict GVI in mine blasting;

� An autoencoder neural network was combined with support vector regression to
generate a robust hybrid model (AutoencoderNN-SVR) to predict GVI in mine
blasting;

� The proposed AutoencoderNN-SVR model was compared with the empirical, SVR,
and GEP models;

� The proposed AutoencoderNN-SVR model was introduced as a novel and robust
technique for predicting GVI with high accuracy.

KEY WORDS: Ground vibration, Mine blasting, Autoencoder neural network, AutoencoderNN-SVR,
Deep learning, Open-pit mine.

INTRODUCTION

Max Planck, a famous physicist, once said,
‘‘Mining is not everything, but without mining,
everything is nothing.’’ Indeed, the mining industry is
involved in the production of many raw materials
like metals, nonmetals, cement, construction and
automobile materials, and cosmetics. These materi-
als are mainly extracted by surface or underground
mining. Among these processes, surface mining is a
potential method with high production (Ramani,
2012).

To extract minerals (e.g., quarry, coal, ore)
through surface mining, open-pit mines often use the
drilling-blasting method to remove and fragment
rocks or ores with high capacity. This method is
effective and compatible with the open-pit mines

having high mechanization capacity. However, ad-
verse side effects occur during blasting in open-pit
mines, such as over-pressure, flyrock risk, and
ground vibration (GV) (Agrawal & Mishra, 2019;
Ainalis et al., 2017; Ak et al., 2009; Amiri et al.,
2016; Armaghani et al., 2014). Particularly, GV in
open-pit mines is a significant concern for engineers
and researchers.

To solve this problem, researchers and engi-
neers have applied many techniques, which are di-
vided into two groups: measurement of ground
vibration intensity (GVI) and mitigation of GVI
using empirical equations and soft computing mod-
els (Nguyen, 2020). In the first method, blasting
seismographs, such as Blastmate III, Micromate
(Instantel–Canada), Mini-Seis, Mini-SuperGraph II,
and V901 Seismograph are used. Some blasting

Table 1. Some equations and soft computing models for predicting GVI

Author(s) Technique Accuracy

Nguyen et al. (2019c) USBM empirical 53%

Nguyen et al. (2019c) Ambraseys empirical 75%

Khandelwal et al. (2010) SVM (Support vector machine) 95%

Fisne et al. (2011) FL (fuzzy logic) 91%

Mohamadnejad et al. (2012) SVM 82%

Monjezi et al. (2013) ANN (Artificial neural network) 93%

Dindarloo (2015) GEP (Gene expression programming) 97%

Ghoraba et al. (2016) ANFIS (Adaptive neuro-fuzzy inference system) 95%

Hasanipanah et al. (2017) CART (Classification and regression tree) 95%

Abbas and Asheghi (2018) GFNN (Generalized feed-forward neural network) 95%

Zhang et al. (2019) PSO-XGBoost (Particle swarm optimization-Extreme gradient boosting machine) 96%

Yu et al. (2020) HHO-RF (Harris hawks optimization–Random forest) 90%

Bui et al. (2021) CSO-ANN (Cuckoo search optimization-ANN) 98.7%
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seismographs can record and transfer data via the
internet or through 3G or 4G cellular communica-
tion (Ragam & Nimaje, 2019). Nevertheless, such
seismographs can only record GVI once a blasting
operation occurs. GVs significantly affect sur-
rounding areas, as they can cause the collapse of
buildings, slope instability, and severely affect
underground water, benches, and crash structures
(Faramarzi et al., 2014; Nateghi et al., 2009; Nguyen
et. al., 2020f). However, so far, engineers cannot
totally control the GVI of blasting operations.

To control this phenomenon, many researchers
have suggested empirical equations and soft com-
puting models for GVI prediction based on the da-
tasets collected by blasting seismographs. Some
empirical equations and soft computing models for
predicting GVI are summarized in Table 1.

Based on the summarization of the empirical
and soft computing techniques in Table 1, the
empirical equations often provide lower accuracy
than that of soft computing models. However, soft
computing models are diverse, and their accuracy is
much better than that of the empirical equations.
Thus, soft computing models are considered as state-
of-the-art algorithms with regard to estimating GVI
and controlling its side effects with high reliability,

efficiency, and accuracy in open-pit mines (Bui et al.,
2019a; Nguyen et al., 2019b, 2019d, 2020e; Nguyen,
2019).

Many intelligent techniques have been pro-
posed to predict the GVs induced by mine blasting,
most of which were developed based on standalone
machine learning algorithms or through the
hybridization of optimization algorithms, as shown
in Table 1. The most recent results showed that
hybrid models tend to provide better performance
compared with standalone models (Amiri et al.,
2020; Chen et al., 2019; Nguyen et al., 2020d; Taheri
et al., 2017). Yet, autoencoder neural networks
(AutoencoderNN) have not yet been applied in
predicting GVI in mine blasting. Furthermore, the
hybridization of AutoencoderNN and SVR (SVM
for regression) has not been considered or devel-
oped for this problem. Therefore, in this study, we
aimed at investigating the AutoencoderNN�s feasi-
bility and combination with the SVR model, named
as AutoencoderNN-SVR model, to estimate GVI in
mine blasting. Conventional models, such as empir-
ical, SVR, and gene expression programing (GEP),
were compared with the proposed AutoencoderNN-
SVR model to emphasize its enhancement and
performance.

Figure 1. Structure of the autoencoder neural network.

Estimation of Ground Vibration Intensity Induced



METHODOLOGY

As stated above, this study aimed at developing
a novel Autoencoder-SVR model for predicting
GVI in mine blasting. To evaluate the quality of the
proposed Autoencoder-SVR model, several bench-
mark models, such as empirical, SVR, and GEP
models, were also considered and developed to
predict GVI. The empirical, SVR, and GEP models
have already been introduced before (Murmu et al.,
2018; Azimi et al., 2019; Agrawal & Mishra, 2020;
Nguyen et al., 2020c; Qiu et al., 2021; Yang et al.,
2020a; Yang et al., 2020b; Bayat et al., 2021; Lawal
et al., 2021; Zhou et al., 2021a, 2021b); therefore, we
only focused on the development and implementa-
tion of the novel Autoencoder-SVR model in this
study.

Autoencoder Neural Network

Autoencoder neural network, an unsupervised
learning algorithm, is a type of artificial neural net-
work (ANN) that can be used to solve compressed
raw data (Diallo et al., 2021). It is also known as a
deep-learning algorithm for training ANN models to
solve regression and classification problems. Gen-
erally, autoencoders use algorithms, mechanisms,
and structures similar to the ANN model. However,
this network consists of two phases, encoder and
decoder, as sub-models (Fig. 1). Whereas the en-
coder compresses the input variables of a dataset,
the decoder recreates the input variables and makes
the number of output variables equal to the number
of input variables (Fig. 1). The decoder is discarded
after training a network, and only the encoder is
kept to compress examples to the vector output
(Yang, Rad, et al., 2020; Yang, Zhang, et al., 2020).
Further details of autoencoders have been previ-
ously introduced in the literature (Islam et al., 2021;
Laubscher & Rousseau, 2021; Mrabah et al., 2020;
Nakano & Takahashi, 2020; Verboven et al., 2020).

Support Vector Regression (SVR)

SVR is the SVM version introduced by Drucker
et al. (1997), and it is utilized for regression proce-
dures. This algorithm was improved based on the
basic SVM algorithm (for classification problems)
introduced by Cortes and Vapnik (1995). Theoreti-
cally, the primary aim of SVM is to minimize the

structural risk of achieving good generalization
capability. SVM transfers original data into a higher
dimension of feature space (Guo et al., 2019;
Nguyen et al., 2020a) and uses support vectors to
calculate outcomes based on the hyperplane and
margin. Furthermore, kernel trick is used to build
expert knowledge to minimize the complexity of
predictive models and prediction errors
(Raghavendra & Deka, 2014), as shown in Fig-
ure 2a.

To deal with nonlinear regression or complexity
regression problems, SVR maps input spaces into
higher dimensions in some feature spaces using
nonlinear functions. Subsequently, the standard
SVM algorithm is applied to reduce the complexity
of models and minimize prediction errors. This task
is conducted in a hidden layer (hidden nodes), and
the weights between nodes are computed using La-
grange multipliers. Finally, the output is computed
based on the SVR nonlinear function, according to
Eq. 1. The framework of the SVR model is depicted
in Figure 2b.

y ¼ f xð Þ ¼
Xn

k¼1

an:K X;Xnð Þ þ b ð1Þ

Hybridization of Autoencoder Neural Network
and SVR (AutoencoderNN-SVR)

Taking into account the advantages of autoen-
coder neural networks and SVR algorithms, this
study aimed to examine the hybridization capacity
of an AutoencoderNN and an SVR model (Au-
toencoderNN-SVR model) in estimating GVI.
Accordingly, the autoencoder model was initiated as
the first step to encode the input datasets. Next, the
backpropagation procedure was used to train the
AutoencoderNN model and compute the Autoen-
coderNN model weights. The ‘‘adam’’ function was
involved in optimizing the autoencoder model.
During training of the autoencoder model, the mean
squared error (MSE) was used as the autoencoder
model’s loss function. Then, the outputs of the
autoencoder model were used as inputs for the SVR
model development. Kernel trick was applied to the
SVR model as introduced in the principle of the
SVR model. Finally, the SVR model outputs were
used as the predicted GVI values of the Autoen-
coderNN-SVR model. The framework of the pro-
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Figure 2. Mechanism and framework of the SVR model. a Mechanism of the SVR model; b Framework of the SVR model.
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posed AutoencoderNN-SVR model is shown in
Figure 3.

Dataset used

To investigate the AutoencoderNN model’s
feasibility in predicting GVI, in this study, we fo-
cused on an open-pit coal mine in Vietnam, namely
Deo Nai (Fig. 4), across which 297 blasting events
were studied. Further details of the study site, as
well as its geological conditions, can be found in
previous studies (Bui et al., 2019a, 2019b; Nguyen
et al., 2018, 2019a, 2020b).

The dataset consists of 297 blasting events along
with the borehole diameter (Dk), bench height (H),
borehole length (L), burden (W), spacing (b),
hardness coefficient (f), powder factor, maximum
explosive charged per delay (E), monitoring dis-
tance (MD), and GVI. For data collection, the MD
values were measured by a GPS receiver. The
Micromate device recorded GVI values, and the
other parameters were exported from the blasting
patterns. Among the used parameters, the first eight
parameters were used as input variables to predict
GVI. The characteristics of these parameters are
visualized in Figure 5.

RESULTS AND DISCUSSION

To develop the AutoencoderNN-SVR model,
the proposed framework in Figure 3 was applied.
Before applying this framework, a dataset composed
of 297 blasting events was preprocessed. The dataset
was normalized using the MinMax scaling method in
[0, 1]. Then, it was divided into two sections: 70% as
the training samples and 30% as the testing samples.
The testing stage aimed at checking and verifying
the performance of the developed AutoencoderNN-
SVR model based on the training dataset. This stage
was considered as an experimental testing step since
the testing datasets were unseen and not used to
train the AutoencoderNN-SVR model.

Once the dataset was well prepared, the train-
ing sample was involved in the AutoencoderNN-
SVR model development. When defining and com-
piling the AutoencoderNN-SVR model, the
‘‘ReLU’’ function was used as the active function,
the ‘‘adam’’ function was used as the optimizer, and
MSE was used as the loss function. To implement
the AutoencoderNN model, a network topology
with three layers was established, where the input
layer contained 8 neurons, the hidden layer con-
tained 16 neurons, and the output layer contained
8 neurons. The AutoencoderNN model was imple-
mented with 1000 epochs. The performance of the

Figure 3. Framework of the AutoencoderNN-SVR model.
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autoencoder model during training is highlighted in
Figure 6.

The training autoencoder model�s learning
curves showed that the model achieved an excellent
fit and that it well reconstructed the inputs. Alter-
nately, the model was steady throughout the train-
ing, and overfitting did not occur. Therefore, the
reconstructed inputs were used as new inputs for the
SVR model to predict GVI in the next step. Finally,
the hybrid Autoencoder NN-SVR model was de-
fined, and its performance was highlighted, as shown
in Table 2.

To evaluate the performance of the Autoen-
coderNN-SVR model, coefficient of determination
(R2) and root mean squared error (RMSE) were
computed. Also, a traditional SVR model without
the hybridization of the autoencoder neural network
model, an empirical equation (USBM), and a non-
linear model based on the GEP method were com-
pared with the proposed AutoencoderNN-SVR

model to evaluate its efficiency compared with that
of other models. The equations of the USBM and
GEP models are described in Eqs. 2 and 3.

(i) USBM equation:

PPV ¼ 35:249
MDffiffiffiffi
E

p
� ��0:384

ð2Þ

(ii) GEP nonlinear model: Prior to developing
the GEP model, the main GEP settings
were established using the following
parameters:

� Number of chromosomes: 30
� Head size: 10
� Number of genes: 3
� Linking function: Addition
� Fitness function: RMSE
� Strategy: Optimal evolution
� Lower and upper bounds: [� 10,10].

Figure 4. Location of the study site.
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PPV ¼
ffiffiffi
f3

p
� 63:076

f

MD
þ 707:605

þ tanh tanh

W � f �Dk þMDþ 6:747�

1

MD
� 3:617

� �

0

B@

1

CA

0

B@

1

CA

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� f þ Lð Þ � tanh fð Þð Þ3

p

ð3Þ

Once the models were well-developed, their
performance was computed and then demonstrated,
as shown in Table 2.

In light of the values in Table 2, the USBM
empirical model clearly achieved the most deficient
performance with the highest RMSE and lowest R2

in both the training and testing phases. This is be-
cause only the E and MD variables are used for the
linear equation and USBM model. Thus, the USBM
empirical model with a linear function is not suit-
able for predicting GVI. Whereas, the GEP model

Figure 5. The blasting datasets used in this work.

Figure 6. Performance of the autoencoder model in the

reconstruction of the inputs.

Table 2. RMSE and R2 of the applied models

Model Training Testing

RMSE R2 RMSE R2

SVR 1.048 0.922 1.262 0.879

Auto encoder NN–SVR 1.037 0.925 1.232 0.887

USBM 2.021 0.706 1.843 0.749

GEP 1.745 0.782 1.732 0.787
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with a nonlinear complexity function provided bet-
ter performance than the USBM linear regression
model. Thus, GVI prediction matches nonlinear
models. Therefore, the SVR and AutoencoderNN-
SVR models are potential solutions for dealing with
this case.

From the comparison of the SVR model with
the USBM and GEP models, the SVM performance
is observed to be higher than that of the USBM and
GEP models. The SVR model�s error was signifi-
cantly reduced, and the R2 value indicates that this
model pretty much fits the used dataset in this study.

Owing to the nonlinearity of the used dataset, the
proposed AutoencoderNN-SVR model seems to be
the best fit model in this study due to the role of the
AutoencoderNN model in encoding the inputs.
Thus, the autoencoder model can be assumed to
have provided a robust solution in encoding the in-
puts to increase the accuracy of the SVR model in
predicting GVI. The details of the measured and
predicted GVI values in practice are shown in Fig-
ure 7.

We could observe the convergence capacity of
the models as well as how far the predicted values

Figure 7. Regression capacity and accuracy of the developed models.
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matched practical engineering data. The perfor-
mance of the proposed AutoencoderNN-SVR
model was only slightly higher than that of the SVR
model; however, this is still significant in the field of
geotechnical engineering. Due to the uncertain
properties of geological and geographical condi-
tions, improving predictive models in this field are
challenging (Hao et al., 2018). Figure 8 shows the
improvement of the models in predicting GVI based
on different techniques, i.e., linear, nonlinear,
encoding, and decoding.

CONCLUSION

The GVs induced by mine blasting in open-pit
mines are a major concern for researchers. Although
there have been significant efforts made by re-
searchers to predict, control, and mitigate GVI, it is
still a challenging topic in the mining industry,
especially in open-pit mines. Several previously
proposed robust models might be inefficient in var-
ious open-pit mines/locations due to the uncertainty
in geological and geophysical conditions. Therefore,
more insights into various soft computing models

would contribute to the current state of knowledge
in this particular subject. In this study, a novel soft
computing model was proposed, namely Autoen-
coder NN-SVR, for predicting GVI in mine blasting
with better accuracy than that of the currently used
models. For the first time, the autoencoder neural
network was used in this field and was combined
with the SVR model to predict GVI in mine blasting
with high reliability. The comparison results showed
that the autoencoder neural network played an
essential role in improving the SVR model’s accu-
racy in predicting GVI. Remarkably, the empirical
method (i.e., USBM) provided poor performance,
and it should be further improved in future studies.
The nonlinear GEP model provided better perfor-
mance than the USBM model, but its structure is
complex, and the GEP�s performance was lower
than that of the proposed Autoencoder NN-SVR
model. In conclusion, the Autoencoder NN-SVR
model is a robust soft computing model and should
be used to predict, control, and mitigate GVI in
practical engineering.

Figure 8. Differences between among GVIs predicted by the individual models.
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