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Blast-induced ground vibration (GV) is a hazardous phenomenon in open-pit mines, and it
has unquestionable effects, such as slope instability, deformation of structures, and changing
the flow direction of groundwater. Therefore, many studies in recent years have focused on
the accurate prediction and control of GV in open-pit mines. In this study, three intelligent
hybrid models were examined for predicting GV based on different nature-inspired opti-
mization algorithms and deep neural networks. Accordingly, a deep neural network (DNN)
was developed for predicting GV under the enhancement of deep learning techniques.
Subsequently, aiming at improving the accuracy and reducing the error of the DNN model in
terms of the prediction of blast-induced GVs, three optimization algorithms based on the
behaviors of whale, Harris hawks, and particle swarm in nature (abbreviated as WOA,
HHOA, and PSOA, respectively) were considered and applied, namely HHOA–DNN,
WOA–DNN, and PSOA–DNN, respectively. The results were then compared with those of
the conventional DNN model through various performance indices; 229 blasting events in an
open-pit coal mine in Vietnam were processed for this aim. Finally, it was found that the
proposed intelligent hybrid models outperform the DNN model with deep learning tech-
niques, although it is a state-of-the-art model that has been recommended and claimed by
previous researchers. In particular, HHOA, WOA, and PSOA (with global optimization)
further improved the accuracy of the DNN model by 1–2%. Of those, the HHOA–DNN
model provided the highest performance with a mean-squared-error of 2.361, root mean
squared error of 1.537, mean absolute percentage error of 0.123, variance accounted for of
93.015, and coefficient determination of 0.930 on the testing dataset. The findings also re-
vealed that the explosive charge per blast, monitoring distance, and time delay per each
blasting group are necessary parameters for predicting GV.

KEY WORDS: Mine blasting, Peak particle velocity, Ground vibration, Nature-based optimization
algorithm, Deep neural network, Harris hawks optimization.

INTRODUCTION

In open-pit mines (OPMs), the drilling-blasting
method is used as a highly effective technique for
breaking and removing rock mass. Once drilling
machines create boreholes, explosive materials are
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charged into them and then detonated (Guo et al.,
2019; Nguyen et al., 2020; Zhang et al., 2020a,
2020b). The explosive energy (EE) produced by
blasts is the primary factor for breaking or frag-
menting rock mass. Nevertheless, a large amount of
EE is wasted and not used for this purpose (� 75–
85%). In particular, undesirable environmental is-
sues result from wasted EE, such as ground vibra-
tion (GV), air over-pressure, flyrock, and air
pollution (e.g., dust and gases) (Armaghani et al.,

2015; Kahriman et al., 2006; Mahdiyar et al., 2018;
Murlidhar et al., 2020; Ozer et al., 2008). Thus, GVs
have a profound impact on the environment and the
areas surrounding OPMs (Fig. 1).

Many researchers have stated that GV depends
on the blasting parameters and characteristics of
rock mass (Faramarzi et al., 2014; Kahriman, 2002).
However, rock mass factors are uncertainty param-
eters, and they are classified in the uncontrollable
parameters in mining and blasting (Armaghani

Figure 1. Significant effects induced by GVs of blasting operations in OPMs: a cracking of

structures; b slope failure.
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et al., 2016; Ghasemi et al., 2012; Monjezi et al.,
2011). Thus, blasting parameters are considered
important in controlling the GVs induced by blast-
ing operations in OPMs by tuning them into blast
patterns (Nguyen et al., 2019a). It is noteworthy that
tuning blasting parameters can reduce the adverse
effects of GV, but they can also reduce the benefits
of blasting operations (Afeni, 2009). Therefore,
tuning blasting parameters with the reduction of GV
and the improvement of the rock breaking efficiency
is challenging.

Many researchers have developed, proposed,
and applied state-of-the-art techniques to predict the
intensity of GVs based on influential parameters
(e.g., blasting parameters, characteristics of rock

mass). For instance, Armaghani et al. (2015) applied
two algorithms in terms of artificial intelligence (AI)
to predict the GV intensity in quarry blasting sites,
namely artificial neural network (ANN) and adap-
tive neuro–fuzzy inference system (ANFIS). Finally,
they found that the fuzzy system can predict the GV
intensity in quarry blasting sites with higher accu-
racy compared with the ANN model. Hajihassani
et al. (2015) also proposed the ICA-based ANN
model for predicting the intensity of GVs. In their
study, the imperialist competitive algorithm (ICA)
played a dominant role in improving the ANN
model� accuracy. They found that the ICA signifi-
cantly improved the ANN model�s performance with
a promising result in predicting GV. Faradonbeh

Figure 2. Blast-induced GV in OPMs (Nguyen et al., 2019b).
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et al. (2016) approached another AI technique,
namely gene expression programming (GEP), to
predict the GVs in granite quarry, and their results
showed that GEP is a potential model for GV pre-
diction with acceptable accuracy (over 90%). Based
on the ICA�s advantages, Armaghani et al. (2018)
demonstrated its feasibility in predicting GV in
three quarry mines in Malaysia based on several
empirical equations. Ultimately, ICA coupled with a
quadratic equation was found to be the best solution
in predicting GV. Similar to ICA, the genetic algo-
rithm (GA) and particle swarm optimization algo-
rithm (PSOA) are also robust optimization
algorithms, and they were used by Yang et al. (2019)
in optimizing an ANFIS model for predicting GV.
The results demonstrated that the GA-based ANFIS
model provides more outstanding performance than
that of the PSOA-based ANFIS model, where the
error decreased by 61% and the determination
coefficient increased by 10%. Besides, an improved
version of the PSO algorithm, namely autonomous
group PSOA (abbreviated as AGPSOA), was also
developed and combined with the extreme learning
machine (ELM) to estimate GVs in mine blasting
(Armaghani et al., 2020). The results showed that
the AGPSOA–ELM model is superior to the
PSOA–ELM model with a RMSE of 0.008 and a
determination of coefficient (R2) of 0.92. Also,
based on ANN and itemset mining (IM), Amiri et al.
(2020) thoroughly investigated the efficiency of a
novel AI model in predicting the intensity of GVs,
called the IM–NN model. Accordingly, the IM

algorithm was used to extract the itemsets in a da-
taset and select the most appropriate itemset. Sub-
sequently, an ANN model was trained as an optimal
ANN model based on the chosen itemset. Amiri
et al. (2020) found that the IM–NN model can pre-
dict GV with high accuracy, so it was proposed as a
good method for predicting the GV intensity in
surface mines. Moreover, based on the hybridization
approach of different algorithms, Zhou et al. (2020)
proposed another AI approach for predicting the
intensity of GV, namely FS–RF, based on the fea-
ture selection (FS) and random forest (RF) algo-
rithms. The FS–RF model showed a reasonably
good performance with an accuracy of 90.32% in
practical engineering. Using another FS algorithm,
namely fuzzy Delphi (FD), Huang et al. (2020)
successfully developed several hybrid models for
predicting GV, such as FD–GA–ANN, FD–PSO–
ANN, FD–ICA–ANN, FD–FA (firefly algorithm)–
ANN, and artificial bee colony algorithm (FD–
ABCA)–ANN models. Finally, the FD–FA–ANN
model provided higher performance than that of the
other models in predicting the intensity of GV.
Based on the optimization algorithm inspired by
moth–flame (MFO), Lawal et al. (2021) introduced a
new model (MFO–ANN) for predicting GV, and it
showed promising results (i.e., mean-squared-error
(MSE) = 0.0009, R2 = 0.970, VAF = 97.047). Also,
two other novel hybrid intelligent models, namely
grasshopper optimization algorithm (GOA)–ELM
and Harris hawks optimization (HHOA)–ELM,
were developed by Yu et al. (2021) to estimate the

Figure 3. General structure of a DNN model with one output variable.
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Figure 4. Step-by-step instructions for solving an optimization problem using HHOA.
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intensity of the GVs resulting from mine blasting.
They found that the GOA–ELM model provides
more accurate GV values compared with the
HHOA–ELM model (i.e., RMSE = 2.024,
R2 = 0.941). Similar works can be referred to in
other literature (Arthur et al., 2020; Bayat et al.,
2020; Bisoyi & Pal, 2020; Ding et al., 2020; Fattahi &
Hasanipanah, 2020; Mohammadi et al., 2020; Singh
et al., 2020; Yang et al., 2020; Yu et al., 2020).

Although many AI techniques and efforts were
proposed for predicting the GV intensity in OPM to

reduce the adverse effects of mine blasts, the
enhancement of AI models is still a challenge. Fur-
thermore, the accuracies of the proposed models
cannot reflect the generalized characteristics of dif-
ferent locations/areas. Thus, this study proposed
several novel hybrid AI models based on deep
neural networks (DNNs) and nature-based opti-
mization algorithms (i.e., HHOA, whale optimiza-
tion algorithm—WOA, and PSOA) to predict the
GV intensity induced by mine blasting, namely
HHOA–DNN, WOA–DNN, and PSOA–DNN. It is

Figure 5. Strategies of the WOA for solving optimization problems (Mirjalili & Lewis, 2016). a Exploitation phase. b

Exploration phase.

Figure 6. Position vectors and their next possible locations. a 2D problems. b 3D problems.
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worth mentioning that (i) DNN has not been used to
predict GV in OPM, (ii) HHOA has not been ap-
plied to optimize a DNN model for predicting the
intensity of GV, and (iii) HHOA, PSOA, and WOA
have not been applied to continue improving a deep
neural network for GV prediction. Finally, the re-
sults were compared and evaluated comprehensively
in terms of GV prediction.

MECHANISM OF BLAST-INDUCED
GROUND VIBRATION

In mine blasting, after detonating an amount of
explosives, the entire contact surface between rocks
and explosives is considered to be simultaneously
affected by gas pressure and waves. Near explosives,
under the effect of gas pressure (� 105 kg/cm2), rock
is compressed and crushed, strongly deformed, and
moved in a radius. The movement of the rocky
particles close to explosions is propagated to the
next layer of rock constituents and shock wave is
formed on the rocky environment. In essence, a
shock wave is a form of a compressive stress wave,
and it has a much greater amplitude than that of the
compressive strength of rock. Shock waves can de-
stroy and deform rocks and also generate cracks in
them.

A shock wave generated by blasting moves at
ultrasonic speed and propagates to certain distances
(about 5 to 6 times the explosion radius). Then, it
turns into an elastic wave at a speed less than the

initial one and equal to the speed at which sound
waves propagate in rocky environments. After shock
waves pass through rock particles, they move under
the received wave energy (Duvall & Petkof, 1959).
The wave amplitude value gradually decreases when
away from the explosion center. Therefore, the
destructive and deformed properties of the rock
environment are also changed. Rock is destroyed at
the areas receiving shock waves with amplitudes
greater than the rock�s compressive strength.
Depending on the difference between a shock
wave�s amplitude and a rock�s compressive strength,
the destruction level is different. The closer to the
blast center, the greater the difference between the
amplitude of a shock wave and a rock�s compressive
strength, and the higher the rock destruction level.
According to the degree of destruction, the explo-
sive effects can be classified into zones as follows:

Zone 1: This area is right next to the explosives.
In this area, rock is directly affected by explosive
pressure (about 105 kg/cm2). Therefore, if the rock is
soft, it is compressed to become more durable and
forms a hollow chamber. However, if it is hard, it is
destroyed and crumbled. In other words, this area is
also referred to as the compression zone or crush
zone.

Zone 2: The contiguous area immediately fol-
lows zone 1. This area is affected by a smaller shock
wave amplitude than that of Zone 1. However, it is
still sufficient to destroy rock structures and form
fractures. This area is also known as the fracture
zone.

Figure 7. Bubble-net search mechanisms of WOA. a Shrinking encircling. b Spiral updating position.
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Zone 3: The contiguous area immediately fol-
lows zone 2. In this area, the shock wave�s amplitude
is less than the rock�s compressive strength and is not
enough to destroy or crack rock. At that time, the
shock wave turns into an elastic oscillating wave in
the rocky environment and only causes ground

vibrations. Therefore, it is called blast-induced
ground vibration. This area is also known as the
vibration zone. An illustration of blast-induced GV
is shown in Figure 2. To measure the intensity of
GV, the peak particle velocity (Fig. 2) is used as a
crucial parameter in mine blasting.

Figure 8. Flowchart of the PSOA for optimization problems.
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BACKGROUND KNOWLEDGE
FOR INTELLIGENT SYSTEMS

Deep Neural Network

In data mining and machine learning, ANN is
well known as a robust intelligent technique that has
been successfully applied in industry for decades. In
ANN, there are many types of networks, and they
are designed/developed based on the human ner-
vous system, such as the radial basis function,
modular, recurrent, feedforward, convolutional,
Korhonen self-organizing, and long-short term
memory neural networks (Maleki et al., 2020; Sen-
thil Kumar et al., 2005; Yegnanarayana, 2006; Zou
et al., 2008). Of those, multi-layer perceptron (MLP)
is a type of feedforward neural network and is the
foundation of deep learning for improving the model
performance of ANNs (Brownlee, 2018). MLP uses
the backpropagation algorithm for training predic-
tive models as supervised learning techniques, and it
can effectively solve nonlinear problems. An MLP
network topology with multiple hidden layers and
deep learning techniques is also referred to as a
DNN.

A DNN consists of at least three layers: an in-
put layer, one or multiple hidden layers, and an
output layer (Fig. 3). In the input layer, neurons act
as receivers and provide information to the hidden
layer(s). Next, the neurons in the hidden layer(s) act
as processers and learners. They implement a cal-

culation between neurons and assign the results as
weights between them. Finally, weights are pro-
cessed and transferred to the output layer, and the
outcomes are predicted and displayed.

Deep learning techniques aim at improving the
efficiency of DNNs, and they can be applied to
predicting GV. In this sense, the performance of a
DNN model can be improved by the configuration
of capacity, gradient precision, loss functions,
learning speed, to name a few (Salman et al., 2015;
Goodfellow et al., 2016; Garcia-Garcia et al., 2018;
Han et al., 2018). In this study, several deep learning
techniques were used to design and develop a DNN
model to achieve good predictive modeling perfor-
mance in GV prediction.

Harris Hawks Optimization Algorithm (HHOA)

HHOA is a nature-inspired optimization algo-
rithm that was developed by Heidari et al. (2019). It
closely mimics the actions of Harris hawks in nature
and is often used to solve complex optimization
problems with high performance (Beskirli & Dağ,
2020; Gölcük & Ozsoydan, 2021; Heidari et al.,
2019). The significant advantage of HHOA is that it
can solve optimization problems without gradient.
To solve optimization problems, HHOA applies a
hunting algorithm with two stages: exploration and
exploitation. In the exploration stage, Harris hawks
perch on random trees or their previous locations to

Figure 9. Proposed framework of the HHOA–DNN, WOA–DNN, and PSOA–DNN models for predicting GV.
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explore the locations of prey using their bright eyes.
Subsequently, they pounce preys using their skills
(called besieges), including soft besiege and hard
besiege. Progressive rapid dives can also be applied
to optimize the hawks� purposes and avoid the es-
cape of prey. The pseudocode of HHOA is shown in
Figure 4. Further details of HHOA can be found in
previous literature (Bairathi & Gopalani, 2018;
Heidari et al., 2019; Moayedi et al., 2019; Munagala
& Jatoth, 2020; Zhang et al., 2020a, 2020b).

Whale Optimization Algorithm

Like HHOA, WOA is also a nature-inspired
optimization algorithm, and it was designed based
on the hunting mechanism of humpback whales
(Mirjalili & Lewis, 2016). They use a unique strategy
to hunt prey called bubble-net (Fig. 5a), where they
encircle and then attack their prey. Subsequently,
they randomly search for prey according to the
locations of individual humpback whales (Fig. 5b).

In contrast to HHOA, WOA implements the
exploitation phase before the exploration phase. In

Figure 10. Study site and locations of blasting events.
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Figure 11. An event report of GVs induced by mine blasting at the study site.
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the encircling prey stage of the exploitation phase,
WOA searches a space with 2D or 3D, as shown in
Figure 6. Afterward, it applies two bubble-net
search mechanisms, such as the shrinking encircling
mechanism and spiral updating position, to attack
prey (Fig. 7). Finally, it searches for prey in the
exploration phase toward a better solution, and it
can perform a global search to achieve this purpose.
Further details of WOA can be found in previous
literature (Chen et al., 2020; Krithiga & Ilavarasan,
2020; Li & He, 2020; Mirjalili & Lewis, 2016; Singh
& Khamparia, 2020; Yan et al., 2021; Zeng et al.,
2021).

Particle Swarm Optimization Algorithm

PSOA is distinguished as a flexible optimization
algorithm, and it was proposed by Kennedy and
Eberhart (1995). Due to its flexibility, PSOA has
been developed and enhanced with many versions to
solve different optimization problems (Cao et al.,
2017; Molaei et al., 2021; Qi, 2021; Qian et al., 2020;
Radha & Gopalakrishnan, 2020; Shankar & Sara-
vanaKumar, 2020; Wang et al., 2021). It is consid-
ered a robust optimization algorithm for global
search, and it is easy to implement. The concept of
PSOA is based on the behavior of particle swarms
and their information exchange mechanism. They
keep exchanging information and updating their
feature space positions to find a better place as a
global optimization. The flowchart of PSOA is
illustrated in Figure 8, and its in-depth details can be
found in previous literature (Bratton & Kennedy,
2007; Clerc, 2010; Du & Swamy, 2016; Kiranyaz
et al., 2014; Lazinica, 2009; Poli et al., 2007). Al-
though the PSOA was developed in 1995, its
advantages and convenience are still appropriate in
many areas, especially in engineering applications.
Therefore, it was selected as an optimizer to im-
prove the DNN�s performance in predicting GV.

Hybridization of Intelligent Models

Based on the background knowledge of DNNs
and other optimization algorithms, this study pro-
posed a DNN model framework based on optimizers
of HHOA, WOA, and PSOA to predict GV, namely
HHOA–DNN, WOA–DNN, and PSOA–DNN
(Fig. 9). Accordingly, deep learning techniques were
first applied to develop the initial MLP model. Then,

the HHOA, WOA, and PSOA optimizers were used
to train the developed DNN model, aiming to im-
prove the DNN model�s accuracy through the net-
work�s weights.

In the first step of the framework, deep learning
techniques were used to design an optimal DNN
model structure. To this end, a number of popula-
tions of the optimizers were used to obtain the
optimal values of weights to achieve the best per-
formance of the DNN model. The optimizers�
searching process was repeated with many iterations
to get the best performance since the optimizers�
chaotic and different performances were obtained in
each iteration. To evaluate the performance of the
hybrid models in the optimization progress, MSE
was used as an objective function. Finally, the opti-
mized hybrid models were determined and applied
to predict GVs.

STUDY SITE AND DATA ACQUISITION

Once the framework of the hybrid models was
determined and proposed, the Deo Nai open-pit
coal mine (Vietnam) was selected as a case study site
to evaluate the proposed framework�s performance.
This mine is one of the biggest open-pit coal mines
in Vietnam, and it is located in northern Vietnam, as
shown in Figure 10. This mine�s surroundings are
other mines, structures, and residential areas with
distances in the range of 100–200 m.

In this mine, the hardness of rock mass is 12,
according to Protodiakonov�s coefficient (Nguyen
et al., 2018). Thus, the blasting method is the most
common and valuable method in this mine to frag-
ment the overburden and original rocks around coal
seams. However, as mentioned above, blasting
operations cause many side effects, especially GVs.
Therefore, aiming at preventing the side effects of
GV, this study focused on the GV intensity induced
by blasting operations and on developing novel hy-
brid models for predicting GV with high accuracy.

As explained by previous researchers, blast-in-
duced GVs are affected by two groups of parame-
ters: blasting parameters (controllable parameters)
and geological parameters (uncontrollable parame-
ters) (Amiri et al., 2016; Hasanipanah et al., 2015,
2017; Himanshu et al., 2018). However, due to the
uncertainty characteristics as well as high cost of
collecting and surveying geological and geophysical
parameters, these parameters are rarely used to
predict blast-induced GV (Kumar et al., 2016; Na-
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teghi, 2011). Instead, blasting parameters are used to
predict blast-induced GVs, and the results differ
based on each region�s geological and geophysical
conditions. Therefore, herein, 229 blasting events
were collected with eight blasting parameters re-
corded: explosive charge per blast (ECPB), number
of groups, time delay (TL), hole length, burden (B),
spacing (S), stemming (ST), powder factor (PF)),
distances (D), and GV intensity. Of those, eight
blasting parameters were recorded from the blasting
patterns, where a GPS receiver measured the dis-
tances, and the GV intensity values were recorded
by a Micromate (Instantel, Canada). It is worth
noting that each GV intensity value corresponds to a
distance and a set of blasting parameters (i.e.,
blasting patterns). Figure 11 illustrates an event re-
port of GVs induced by mine blasting at the study
site. Finally, the mentioned blasting parameters
were used as inputs and outputs for predicting GVs

in this study, and they are summarized in Table 1.
The study site and locations of the blasting events
are illustrated in Figure 10.

Before developing the predictive models, the
correlation coefficients between the variables were
computed and evaluated using a correlation matrix
to show the relationship between the variables and
determine which variables should be removed. Ta-
ble 2 shows the relationship between the variables
used through the correlation coefficients. Based on
the correlation statistics, it can be seen that all the
variables poorly correlate with each other (correla-
tion coefficient is smaller than 0.75) and that they
should be used to predict GV as independent vari-
ables.

RESULTS AND DISCUSSION

To develop the HHOA–DNN, WOA–DNN,
and PSOA–DNN models for predicting GV in this
study, the prediction architecture in Figure 9 was
applied. Accordingly, the dataset was split into two
parts. The first part was a randomly selected training
dataset with 70% of the whole dataset (� 160
blasting events), and the second part comprising the
remaining 30% (� 69 blasting events) was used to
validate the developed models. It is worth men-
tioning that many previous researchers recom-
mended this ratio to ensure the generalization of
predictive models (Liu & Cocea, 2017; Setiawan
et al., 2020; Sulaiman et al., 2011). Subsequently, the
datasets were processed before the development of
the stage of models to avoid over-fitting or under-
fitting problems as well as improve the accuracy of
the GV predictive models. The min–max scaling

Table 1. Summary statistics of the dataset attributes

Category ECPB NG TD HL B

Min 305 2 17 12.4 6.3

1st Qu 2526 2 17 13.5 7.1

Median 3326 3 25 14.2 7.7

Mean 3202 3.319 27.38 14.36 7.616

3rd Qu 3919 4 42 15 8.2

Max 6043 5 42 16.7 8.5

Category S ST PF D PPV

Min 6.2 4.6 0.32 180 2.14

1st Qu 7 5.9 0.39 322.7 8.24

Median 7.6 6.5 0.42 402 12.58

Mean 7.451 6.448 0.4131 433.1 12.61

3rd Qu 7.8 7 0.44 523 16.14

Max 8.2 7.5 0.5 726 28.63

Table 2. Correlation matrix of the dataset used

ECPB NG TD HL B S ST PF D GV

ECPB 1 0.169 � 0.358 0.453 0.052 0.235 � 0.270 0.461 � 0.648 0.623

NG 0.169 1 � 0.064 0.148 0.089 0.151 0.069 � 0.005 � 0.113 0.143

TD � 0.358 � 0.064 1 � 0.109 � 0.001 � 0.118 � 0.078 � 0.416 0.273 � 0.367

HL 0.453 0.148 � 0.109 1 � 0.040 0.133 � 0.167 0.007 � 0.422 0.429

B 0.052 0.089 � 0.001 � 0.040 1 0.697 0.591 0.256 0.251 0.018

S 0.235 0.151 � 0.118 0.133 0.697 1 0.660 0.241 0.091 0.269

ST � 0.270 0.069 � 0.078 � 0.167 0.591 0.660 1 0.058 0.596 � 0.265

PF 0.461 � 0.005 � 0.416 0.007 0.256 0.241 0.058 1 � 0.317 0.441

D � 0.648 � 0.113 0.273 � 0.422 0.251 0.091 0.596 � 0.317 1 � 0.571

GV 0.623 0.143 � 0.367 0.429 0.018 0.269 � 0.265 0.441 � 0.571 1
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Figure 12. Selection of the best DNN model structure using deep learning techniques. a Selection of the

number of hidden layers. b Selection of the number of neurons.

H. Nguyen et al.



method was applied to normalize the dataset to a 0–
1 range using the following equation:

Xsc ¼
X �Xmin

Xmax �Xmin
: ð1Þ

Once the dataset was well processed, the
training dataset was used to develop a DNN model.
However, it is very challenging to select the best

DNN model structure, including the number of
hidden layers and number of neurons/nodes in each
hidden layer. Therefore, deep learning techniques
were applied to select the best DNN model network,
including ‘‘he uniform’’ kernel initializer, ‘‘relu’’
activation, and the stochastic gradient descent opti-
mizer, with a learning rate of 0.1, a momentum of
0.85, a decay of 0.0001, a batch size of 160, and

Figure 13. Selected DNN model for predicting GVs.

Table 3. Parameters of the optimizers for optimization of the MLP model

Parameters Optimization algorithms

HHOA WOA PSOA

Number of populations 50–500 50–500 50–500

Iterations 1000 1000 1000

Minimum of the distance control parameter – 0 –

Maximum of the distance control parameter – 2 –

Nonlinear adjust factor – 0.7 –

Minimum weight of the bird – – 0.4

Maximum weight of the bird – – 0.9

The effects of local and global optimization – – 1.2

Predicting Blast-Induced Ground Vibration in Open-Pit Mines



Figure 14. Performances of the DNN model optimized by different algorithms: a

HHOA optimizer; b PSOA optimizer; c WOA optimizer.
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epochs of 500. The DNN model�s performance with
different structures was evaluated using MSE, as
described in Eq. 2, and the results are shown in
Figure 12.

MSE ¼
Xn

i¼1

GVmeasured �GVpredicted

� �2 ð2Þ

From the performances shown in Figure 12, the
deep learning techniques indicated that the best
DNN model structure that should be used is DNN 9-
14-12-1. In other words, the best DNN model for
predicting GVs has two hidden layers with 14 neu-
rons in the first hidden layer and 12 neurons in the
second hidden layer, as shown in Figure 13. It is
worth noting that the values of the weights are
represented by the thickness of the lines (black and
gray lines) in Figure 13.

Once the DNN model�s best structure was de-
signed, the HHOA, WOA, and PSOA were
embedded into the DNN model to optimize its
weights, aiming at reducing the network error. The
optimizer parameters (i.e., HHOA, WOA, and
PSOA) are set up in Table 3. Later on, these opti-
mizers optimized the DNN model weights, and their
performance is displayed in Figure 14.

Based on the performances of the DNN model
under the optimization of different algorithms, it can
be observed that the HHOA–DNN model provided
the best performance with a number of populations
of 250 and 829 iterations (i.e., MSE = 1.540). How-
ever, the numbers of populations and iterations of
the WOA–DNN model (i.e., MSE = 1.791) are 350
and 997, and those of the PSOA–DNN model (i.e.,
MSE = 1.859) are 350 and 929.

Based on the performances of the DNN model
under the optimization of different algorithms, it can
be observed that the HHOA–DNN model provided
the best performance with a number of populations
of 250 and 829 iterations (i.e., MSE = 1.540). How-

ever, the numbers of populations and iterations of
the WOA–DNN model (i.e., MSE = 1.791) are 350
and 997, and those of the PSOA–DNN model (i.e.,
MSE = 1.859) are 350 and 929.

Once the GV predictive models were well
developed, their results were computed and evalu-
ated using various performance indices, such as
MSE, RMSE, R2, mean absolute percentage error
(MAPE), and variance accounted for (VAF) using
Eqs. 2–6. Finally, the obtained results were com-
puted on both training and testing phases, as shown
in Table 4. It is worth mentioning that the color
scaling method was also used to highlight and clas-
sify the models based on their performances.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 GVmeasured �GVpredicted

� �2

n

s

ð3Þ

MAPE ¼ 100%

n

Xn

i¼1

GVmeasured �GVpredicted

GVmeasured

����

���� ð4Þ

VAF ¼ 1�
var GVmeasured �GVpredicted

� �

var GVpredicted

� �
 !

� 100

ð5Þ

R2 ¼ 1�
Pn

i¼1 GVmeasured �GVpredicted

� �2
Pn

i¼1 GVmeasured �GVmeanð Þ2
ð6Þ

As computed and shown in Table 4, the pro-
posed hybrid models based on swarm-based opti-
mization algorithms and deep neural networks
provided better performances than those of the
DNN model without optimization even though deep
learning techniques have been applied DNN model.
Of those, the hybrid model HHOA–DNN provided
the best performance with the highest accuracy and
the lowest error on both training and testing phases,
followed by the PSOA–DNN, and WOA–DNN

Table 4. Results of the models for predicting GVs in mine blasting

Model Training Testing

MSE RMSE MAPE VAF R2 MSE RMSE MAPE VAF R2

DNN 1.937 1.397 0.094 92.611 0.926 2.897 1.702 0.152 91.444 0.915

HHOA–DNN 1.540 1.241 0.088 94.126 0.941 2.361 1.537 0.123 93.015 0.930

PSOA–DNN 1.859 1.364 0.102 92.907 0.929 2.513 1.585 0.126 92.696 0.928

WOA–DNN 1.791 1.338 0.089 93.618 0.932 2.695 1.642 0.115 92.160 0.922
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Figure 15. Relationships between the measured and predicted GVs. a Training correlation. b Testing

correlation.
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models. To further assess the predictive models, the
correlation between measured and predicted GV
values was visualized through scatter plots (Fig. 15).
Also, the models� measured and predicted values on
the testing dataset are listed in Table 5 to compare
the accuracy of the models in practice.

Figure 15 shows the distributions of the pre-
dicted values of the hybrid models (HHOA–DNN,
WOA–DNN, PSOA–DNN) on the training dataset,
and it can be seen that the proposed models are
better than the DNN model (without optimization).
The convergence of these models was high as well,
and the outliers outside the 80% confidence level
are very few. Of those, the distribution of the pre-
dicted values on the HHOA–DNN model is slightly

better than the remaining hybrid models. Similar
results were also reported on the testing dataset of
the developed models in this study. The predicted
GVs on the testing dataset agree with those of the
visualizations in Figure 15. The predicted results
provided by the HHOA–DNN model are closer to
the measured values compared with the predicted
results provided by the other models.

SENSITIVITY ANALYSIS

Herein, the HHOA–DNN model was proven to
be the best model for predicting GV with high
accuracy. A sensitivity analysis was performed based

Table 5. Results of the DNN-based models on the testing dataset

No. Actual DNN HHOA–

DNN

PSOA–

DNN

WOA–

DNN

No. Actual DNN HHOA–

DNN

PSOA–

DNN

WOA–

DNN

1 11.42 12.41 11.59 11.80 11.88 36 12.25 11.81 11.46 11.10 11.23

2 11.45 12.95 12.77 12.92 11.70 37 15.64 15.48 15.57 15.89 16.19

3 7.11 6.54 6.35 6.25 6.79 38 5.32 6.84 6.04 7.24 7.50

4 4.35 3.54 3.89 4.44 3.92 39 12.85 17.79 17.61 17.84 18.04

5 23.38 23.73 23.37 25.00 23.52 40 9.57 9.59 9.95 10.32 8.18

6 15.60 16.26 16.27 15.51 16.60 41 14.94 14.09 14.30 14.99 14.48

7 13.56 12.53 12.06 12.15 12.54 42 11.40 11.33 12.54 11.78 11.50

8 12.59 15.21 15.34 14.34 15.20 43 5.26 6.86 6.26 7.43 7.80

9 18.05 18.13 17.30 17.18 18.64 44 11.24 11.47 11.81 10.81 11.19

10 5.75 6.98 5.73 7.14 6.31 45 15.08 16.02 16.11 15.86 15.96

11 2.53 2.65 4.41 3.32 2.23 46 22.38 20.60 19.66 20.52 21.34

12 22.20 20.62 20.46 19.93 19.14 47 6.36 7.96 7.69 7.97 6.31

13 3.48 4.96 5.17 3.83 5.70 48 4.25 2.65 3.55 2.57 3.30

14 15.28 17.97 17.78 18.71 18.30 49 14.24 14.64 14.80 15.27 14.92

15 9.50 9.25 8.68 7.98 9.43 50 18.37 18.75 18.42 19.94 19.44

16 8.30 2.07 6.50 5.36 4.35 51 8.14 6.39 5.53 6.40 7.17

17 13.49 11.65 11.39 11.43 10.89 52 16.14 17.66 17.57 17.43 17.66

18 16.88 16.99 16.62 17.76 17.42 53 7.24 6.31 5.35 6.81 6.48

19 7.51 6.71 6.92 6.99 6.89 54 4.52 6.01 5.87 6.91 6.12

20 19.80 19.85 19.97 19.03 19.79 55 14.30 15.47 16.09 14.07 14.59

21 15.63 14.79 15.55 15.67 15.25 56 15.17 15.47 15.48 15.06 14.86

22 16.85 17.78 17.92 17.87 17.88 57 20.16 20.93 20.04 21.72 21.16

23 14.95 15.09 16.34 14.59 14.60 58 15.65 15.80 15.67 16.22 17.27

24 8.85 8.91 9.20 10.07 9.61 59 3.93 3.34 4.13 3.10 3.76

25 12.56 10.20 9.37 10.86 10.30 60 11.43 12.35 11.49 13.15 11.41

26 28.63 22.21 23.88 23.38 23.40 61 10.16 10.03 8.37 9.37 10.62

27 8.70 9.43 8.87 7.81 9.05 62 20.08 16.85 17.24 20.35 17.90

28 19.57 20.79 20.51 19.96 20.97 63 9.24 9.41 7.44 7.47 8.92

29 20.20 21.48 21.63 22.26 23.48 64 3.10 3.92 4.46 3.40 3.80

30 14.13 12.73 13.32 13.31 12.40 65 7.50 7.15 6.39 8.22 7.66

31 15.20 15.38 14.87 14.67 15.36 66 14.67 15.48 15.21 15.39 15.11

32 10.41 11.29 10.38 11.63 11.05 67 2.77 3.03 4.03 3.64 2.78

33 9.44 10.39 10.16 10.05 10.51 68 6.25 9.39 8.74 9.53 9.68

34 2.25 3.37 4.10 2.47 3.40 69 6.78 6.60 6.86 8.22 8.29

35 4.28 5.03 4.75 3.96 4.63 – – – – – –
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on the standard deviation, mean, and density of the
input variables to investigate their influence, as
shown in Figure 16. The results indicated that the
ECPB, TD, and D are the most influential variables
for predicting GV. In other words, these variables
have a great relationship with GV, and they should
be used to predict GV in mine blasting.

CONCLUSION

In this study, optimization algorithms were used
to help find optimal MLP models based on deep
learning techniques, and three enhanced DNN-
based models were proposed to solve the GV pre-
diction problem in mine blasting, namely HHOA–
DNN, WOA–DNN, and PSOA–DNN. The results
indicated that the optimization algorithms provided
better optimization results compared with the DNN
model without optimization in predicting GV. Of

those, the HHOA–DNN model yielded the highest
accuracy compared with the other hybrid models.
Compared with the WOA and PSOA optimizers,
the HHOA optimizer provided the best perfor-
mance, more simple design problems, and fewer
parameters. Also, the sensitivity analysis results
showed that the ECPB, distance, and time delay are
the most important parameters for predicting GV
and that they should be used as primary parameters
in predicting GVs. Moreover, it was shown that the
proposed HHOA–DNN is a potential solution for
predicting GVs with high accuracy in practical
engineering.
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