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Abstract
In this study, nanotube-type halloysites from weathered pegmatites were investigated to absorb  Pb2+ in an aqueous solution. 
Also, a novel hybrid intelligent model based on the multiple layers perceptron (MLP) neural network and the Harris hawks 
optimization (HHO) algorithm (i.e., HHO-MLP neural network) was proposed for estimating the absorption of  Pb2+ from 
an aqueous solution using this novel material. XRD, SEM–EDS, and TEM analysis revealed the existence of overlapping 
tubular halloysites in the studied sample, similar to the results of previous studies. Various conditions of contact time, solution 
pH, the adsorbent weight, and  Pb2+ initial concentration were considered and evaluated using batch adsorption experiments 
with a total of 53 cases. Subsequently, an HHO-MLP neural network was developed and applied to predict  Pb2+ absorption 
efficiency in water by the nanotube-type halloysite from weathered pegmatites. A traditional MLP neural network model 
(without optimized by the HHO algorithm) was also investigated to predict and compare with that of the proposed HHO-MLP 
neural network model. The experimental results indicated that the nanotube-type halloysite from weathered pegmatites is a 
potential material used in processing water and removing heavy metals, i.e.,  Pb2+, with a promising development. Further-
more, the obtained results of the proposed HHO-MLP neural network model showed that this model is a robust intelligent 
model for estimating the efficiency of the  Pb2+ absorption in water using nanotube-type halloysite from weathered pegmatites 
(i.e., MSE = 1.647; RMSE = 1.283; R2 = 0.931). It can be applied to increase the  Pb2+ absorption efficiency to eliminate  Pb2+ 
in an aqueous solution.
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1 Introduction

Over the last few decades, environmental contamination 
by heavy metals is considered the most dangerous effect 
among the numerous environmental pollutants, such as 
copper (Cu), cadmium (Cd), nickel (Ni), chromium (Cr), 
arsenic (As), thulium (TI), mercury (Hg), dysprosium 
(Dy), lead (Pb), to name a few, are increased on a global 
scale due to rapid industrialization [1, 2]. They are con-
sidered the most adverse elements for human health and 
aquatic ecosystems [3–7]. In developing countries, these 
heavy metals are discharged to the environment from vari-
ous industrial activities, such as mining, paints and bat-
teries, smelting, tanning, to name a few. They persist in 
the soil and water environments for a very long time of 
their non-biodegradable nature [8, 9]. Then, they follow 
drinking water and the food chain to go to the human body.

Understanding the adverse effects of heavy metals, 
many researchers studied the absorption or removing 
heavy metals in water, wastewater, and soils. Of these 
environments, water is considered an essential objective 
because variance accounted for only 2.5% of the earth’s 
freshwater [10, 11]. It is an indispensable requirement for 
the human body every day. To adsorb heavy metals from 
water, many biochar systems and materials have been pro-
posed and applied. For instance, graphene oxide and its 
composites were studied and proposed as novel adsorbents 
to remove various heavy metals, i.e.,  Cd2+,  Cu2+, and  Ni2+ 
[12]. Many graphene oxide-based materials were also used 
to remove heavy metals in water [13]. In another study, 
Jiang et al. [14] proposed a novel bio-adsorbent for heavy 
metals’ absorption, namely polyacrylamide oxide hydro-
gel grafted sodium alginate. Accordingly,  Pb2+ and  Cu2+ 
were removed, and more than 60% of absorption capacity 
was confirmed after five cycles. Another type of modified 
graphene oxide was also applied for eliminating  Pb2+ and 
 Cu2+ based on thiosemicarbazide nanocomposite [15]. Zhu 
et al. [16] evaluated and reviewed the feasibility, prepa-
ration, and mechanism of electrospun nanofibrous mem-
branes (ELM) in removing heavy metals by using another 
material. Their review showed that ELM is a potential 
heavy metals-absorbing material in water. In another work, 
thiol-functionalized cellulose nanofiber membranes were 
also proposed by Choi et al. [17] for the absorption of 
 Cu2+,  Cd2+, and  Pb2+ with a promising result. Also, many 
materials are used to adsorb heavy metals in water, and 
they can be referred to in literature [18–24].

Many researchers applied state-of-the-art techniques for 
estimating the heavy metals absorption performance of dif-
ferent materials by alternative approaches. Of those, artifi-
cial intelligence (AI) techniques are taken into account as 
potential solutions not only in water treatment, but also in 

many other engineering problems [25–29]. In this regard, 
Singh et al. [30] applied the radial basis function (RBF) 
and multilayer perceptron (MLP) neural networks, support 
vector machine (SVM), and gene expression programming 
(GEP) to predict the adsorptive removal of chlorophenol 
 (CP2+). These models’ outstanding performances were 
interpreted in their study, and MLPN and RBFN mod-
els were evaluated better than those of the other models. 
Fawzy et al. [31] also developed an ANN (artificial neural 
network) model for estimating the  Cd2+ removal efficiency. 
A high fit was demonstrated in their study, with an R2 of 
0.923. Dolatabadi et al. [32] utilized an ANN and adaptive 
neuro-fuzzy inference system (ANFIS) model to predict 
heavy metals’ removal process in aqueous using sawdust. 
Their results revealed that these models are promising sim-
ulation techniques for heavy metal removal processes from 
an aqueous solution. Besides, a critical review of different 
machine learning algorithms, such as ANN, genetic algo-
rithm (GA), and particle swarm optimization (PSO), was 
employed by Fan et al. [33] in terms of removal processes 
modeling of heavy metals. Their conclusion indicated that 
the GA-ANN and PSO-ANN models could be successfully 
applied to model heavy metals’ removal processes with 
satisfactory accuracy. By a similar method, Lu et al. [34] 
built ANN and SVM models to simulate the concentrations 
of heavy metals with a promising result. They claimed that 
the SVM and ANN models could simulate quickly particu-
late heavy metal concentrations. Given the improvement in 
the models’ performance, Rahnama et al. [35] developed 
several RBFN and ANFIS-based models for predicting the 
sodium absorption rate of an aqueous solution, including 
ANFIS-GP (grid partitioning), ANFIS-SC (subtractive 
clustering), and ANFIS-FCM (fuzzy c-means clustering). 
Finally, the RBFN model was demonstrated as a proper 
model for sodium absorption prediction. Interesting work 
was also mentioned in the publication of El Hanandeh 
et al. [36] when they used ANN and multi-input multi-
output (MIMO) models to predict the absorption capac-
ity of heavy metals onto biochar with a promising result 
(i.e., R2 = 0.99). The  As2+ was also removed from water by 
Rodríguez-Romero et al. [37] using pyrolysis and  ZnCl2 
activation. Subsequently, they modeled the absorption 
kinetics and isotherms results by an ANN model. Similar 
studies can be referred to in literature [38–46].

Based on the authors’ best review, it can be seen that 
many materials and artificial intelligence techniques have 
been applied and proposed for heavy metals removal, as 
well as predicting the heavy metals absorption efficiency 
of various materials under different conditions. As an 
innovative approach in the present work, we investigated 
the feasibility of nanotube-type halloysite from weathered 
pegmatites in heavy metals’ absorption. Herein,  Pb2+ in 
an aqueous solution was selected as a case study since its 
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adverse health effects were warned by the World Health 
Organization (WHO) [47, 48], and nanotube-type hal-
loysite weathered pegmatites was considered to remove 
 Pb2+ in an aqueous solution. It is worth mentioning that 
nanotube-type halloysite from weathered pegmatites has 
not been investigated and used to absorb heavy metals. 
Next, a novel intelligent hybrid model was proposed to 
predict nanotube-type halloysite absorption efficiency 
from weathered pegmatites based on the MLP neural net-
work and the Harris hawks optimization (HHO) algorithm, 
called HHO-MLP neural network model. It is worth noting 
that the HHO-MLP neural network model has not been 
developed to predict heavy metals’ absorption in water. 
Finally, the  Pb2+ absorption efficiency of the material 
(i.e., nanotube-type halloysite in weathered pegmatites) 
in an aqueous solution was thoroughly evaluated through 
experimental results, and the performance of the proposed 

HHO-MLP neural network model in predicting the  Pb2+ 
absorption efficiency was comprehensively assessed.

2  General geological setting of the Thach 
Khoan area

Thach Khoan area is located in Phu Tho province, about 
85  km northwest of Hanoi’s capital. The metamorphic 
Thach Khoan formation of the Proterozoic age (PR3-Є1tk) 
occupied most of the area, followed by sedimentary rocks 
of the early Devonian Ban Nguon Formation  (D1bn) and 
the Quaternary. Magma blocks related to the Late Paleo-
zoic Tan Phuong granite complex scattered in the area. The 
major components of the igneous rocks are grey-white to 
grey-grey gilt granite, with banded structures. The mineral 
composition is mainly feldspar (45–75%), quartz (25–30%), 
and biotite (5–17%). There are many pegmatite bodies of 

Fig. 1  Geological map of Thach 
Khoan area
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the Tan Phuong complex in the area, with several hundred 
up to thousands of meters in length and tens to hundreds of 
meters wide. These bodies strike N60° to 80°W and have 
a dip of 50°–80° to the southwest (Fig. 1). The pegmatite 
bodies are weathered, and the weathering profile is up to 
45–50 m. Tabular halloysites were identified in this weath-
ered zone [49, 50].

3  Characterization of nanotube‑type 
halloysite in weathered pegmatites

The sample was collected from the Lang Dong mineral pro-
cessing plant in the Thach Khoan area, Phu Tho province, 
Vietnam. The sample was then well-mixed and separated to 
the particle size of < 32 µm by the wet sieving method. The 
separated sample (< 32 µm) was dried at 60 °C and used for 
subsequent analysis. Analytical methods used to determine 
the existence of tubular halloysites included X-ray diffrac-
tion analysis (XRD), scanning electron microscopy (SEM) 
with energy-dispersive X-ray spectroscopy (EDS), and trans-
mission electron microscopy (TEM). The results are shown 
in Fig. 2.

XRD analysis result shows that the kaolin minerals are 
mainly minerals in the sample (Fig. 2A). Figure 2B pre-
sents the sample’s SEM image with kaolin minerals in 
rod-shaped shapes overlapping to a matrix. The EDS result 

for the mineral also indicates the presence of aluminum 
(Al), silicon (Si), and oxygen (O) elements, correspond-
ing to the general chemical formula of the kaolin group 
 (Al2Si2O5(OH)4⋅nH2O) (Fig. 2C). Significantly, the TEM 
analysis suggests that the rod-shaped kaolin minerals are 
halloysite minerals with distinct tubular structures (Fig. 2D). 
Thus, this study’s results indicate that tubular halloysite min-
erals exist in the Thach Khoan sample, consistent with previ-
ous researches [49, 50].

4  Application of nanotube‑type halloysite 
in removing  Pb2+ and the experimental 
datasets

The experiments are conducted by adding a quantity of 
nanotubular halloysite powder to 50 mL of  Pb2+ solution. 
The influence of different physicochemical parameters on 
the absorption process is examined. The initial concentra-
tions of  Pb2+ are prepared in the range of 20–80 mg/L. The 
contact time is varied from 10 to 120 min. The solutions’ 
pH is adjusted in a range of about 3.00–6.8, and the dose of 
nanotubular halloysite powder changed from 0.3 to 0.9 g. 
The mixture is then shaken continuously at 100 rpm using 
a mechanical shaker at room temperature. After filtration 
to remove the solid, the remaining concentration of  Pb2+ 
is determined by using inductively inducing plasma-mass 

Fig. 2  XRD pattern (A), SEM image (B), EDS result (C), and TEM image (D) of the sample (O oxygen, Al aluminum, Si silicon, K kaolin).
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spectrometric method (ICP-MS). Finally, a total of 53 exper-
imental cases were performed, with each case comprising 
five factors of the initial concentration of  Pb2+  (Pbinitial), 
solution pH (pH), the adsorbent weight (AW), contact time 
(CT), and the  Pb2+concentration after absorption  (Pboutput). 
The results of the absorption are shown in Fig. 3, and the 

details and characteristics of the dataset used are illustrated 
in Fig. 4.

From the visualization of the absorption dataset in 
Fig. 4, it can be seen that  Pbinitial, pH, AW, and CT are 
potential input variables for predicting  Pboutput since their 
correlation characteristics are very low. It should be fitted 

Fig. 3  Pb2+ absroption effi-
ciency using nanotube-type 
halloysite

Fig. 4  Details of the characteristics and correlation of the absorption dataset
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with a non-linear regression model, such as MLP neural 
network.

5  Background of MLP neural networks 
and HHO algorithm

5.1  MLP neural networks

MLP neural networks are well known as a famous ANN 
structure, and it is a supervised learning algorithm aiming 
to train the ANN models [51, 52]. Like ANN, percep-
trons are divided into many groups, and each group cor-
responds to a layer. At least three layers are included in an 
MLP neural network (i.e., input, hidden, and output lay-
ers) (Fig. 5). For more complicated MLP neural networks, 
two or more hidden layers are included. Hidden layers are 
taken into account as the dedicated computational engine 
of the MLP neural networks. MLP neural network’s most 
advantages can effectively solve many nonlinear problems 
with promising results [53]. However, MLP neural net-
work has some disadvantages with multiple hidden layers, 
such as a non-convex loss function with a local minimum, 
a requirement of tuning hidden layers, neurons, and itera-
tions. Finally, it is sensitive to feature scaling [54]. It is 
a fact that an MLP neural network consists of one input 
layer, one or more hidden layers, and one output layer. 
The MLP neural networks with multiple hidden layers 

are more complex, increasing the computational cost. In 
addition, complex MLP structures can face the overfitting 
problem. These disadvantages can lead to different valida-
tion accuracies or decrease MLP neural networks [55, 56]. 
In the MLP neural network, weights, biases, and activa-
tion functions are also crucial elements. Weights present 
the relationship between neurons (nodes), whereas biases 
are the threshold of the network. They are combined with 
increasing the performance of the model. Also, activation 
functions are often nonlinear functions used for expanding 
the prediction capable of neural networks. In other words, 
activation functions help the model learn about potentially 
complex nonlinear relationships in the data.

MLP neural networks were considered the foundation 
of deep learning during the past years, and they have been 
widely applied in many areas [57–62]. It has been success-
fully developed as a standalone model or optimized by many 
optimization algorithms to improve modeling accuracy. In 
this study, MLP neural network was selected to estimate and 
evaluate the  Pb2+ absorption efficiency on nanotube-type 
halloysite in weathered pegmatites. The HHO algorithm was 
utilized to optimize the MLP, aiming to get an improvement 
of the MLP model in terms of the  Pb2+ absorption efficiency 
estimation.

Fig. 5  Architecture of two-layer 
MLP neural network
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Fig. 6  Behaviors and strategies of Harris hawks for hunting the prey
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5.2  HHO algorithm

HHO algorithm is a nature-based algorithm for optimization 
problems proposed by Heidari et al. [63]. It is inspired by the 
chasing style and cooperative behaviors of Harris hawks to 
surprise pounce a prey. These behaviors are divided into two 
phases: (1) exploration and (2) exploitation (Fig. 6).

In the first phase (i.e., exploration), Harris hawks perch 
on random positions to explore the prey using bright eyes as 
an outstanding advantage. Subsequently, they attack the prey 
surprise in the exploitation phase and apply several strate-
gies to prevent the prey’s escape, such as soft besiege and 
hard besiege (Fig. 6). Further details and pseudo-code of the 
algorithm can be referred to in literature [52–66].

Inspired by the above behaviors of Harris hawks, Heidari 
et al. [63] developed and proposed the HHO algorithm for 
optimization problems, and it was quickly applied to many 
real-life problems with promising results [65, 67–74]. In 
this study, the HHO algorithm is applied to optimize the 
MLP neural network for estimating and evaluating the  Pb2+ 
absorption efficiency on nanotube-type halloysite in weath-
ered pegmatites, and the framework of this model is pro-
posed in the next section.

6  Proposing the flowchart of the HHO‑MLP 
neural network model

In the present work, a material, namely nanotube-type hal-
loysite from weathered pegmatites, was investigated and 
selected to adsorb  Pb2+ in an aqueous solution. Afterward, 
a novel intelligent hybrid model will be developed based on 
MLP neural network and HHO algorithm (i.e., HHO-MLP 
neural network) to evaluate and estimate the  Pb2+ absorp-
tion efficiency of the material used. To this end, an MLP 
neural network will be developed at the first step with the 
initial weights. The HHO algorithm will then optimize this 
network through the optimization of the initial weights. To 
evaluate the obtained solutions of the HHO algorithm in 
optimizing the MLP neural network, mean-squared-error 
(MSE) is used as the fitness function, and the performance 
of the proposed HHO-MLP neural network model then will 
be verified through MSE values. The lowest value of MSE 
corresponds to the best HHO-MLP neural network model to 
estimate the  Pb2+ absorption efficiency. The flowchart of the 
proposed HHO-MLP neural network is illustrated in Fig. 7.

Fig. 7  Flowchart of the HHO-MLP neural network for estimating the  Pb2+ absorption efficiency on nanotube-type halloysite
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7  Development of the novel HHO‑MLP 
neural network model

As described above, the primary objectives of this study 
are the material for  Pb2+ absorption in an aqueous solution 
(i.e., nanotube-type halloysite in weathered pegmatites) and 
the development of the novel intelligent model HHO-MLP 
neural network for estimating the  Pb2+ absorption efficiency 
of the material used. To this end, the proposed flowchart in 
Fig. 6 was applied.

Given the quality improvement of the MLP neural net-
work model, architecture optimization of the MLP neural 
network model is necessary before developing the initial 
MLP neural network model for estimating the  Pb2+ absorp-
tion efficiency on the nanotube-type halloysite in weathered 
pegmatites. The disadvantages of the MLP neural network 
were considered to prevent the reduction of the model’s 
performance, as presented in Sect. 5.1. Also, the MinMax 
scaling method was applied to normalize the dataset in the 
range of 0–1, aiming to avoid overfitting the model. There-
fore, a simple MLP neural network model with one hidden 
layer was selected for this aim. Different nodes varied from 
4, 6, 8, 10, 12, 14, 16, 18, 20 to determine the optimum 
configuration of the MLP neural network. Finally, a sim-
ple MLP neural network with a hidden layer and 12 hidden 
nodes were defined to aim for  Pb2+ absorption efficiency 
estimation (Fig. 8). It is worth mentioning that the back-
propagation algorithm was applied during training the MLP 

neural network model, and the ReLU activation function was 
used to process the data in the hidden layer.

Once the architecture of the MLP neural network was 
well-designed, the proposed flowchart in Fig. 7 was applied 
to develop the HHO-MLP neural network model. Accord-
ingly, the HHO’s parameters were set up first, as follow:

 (i) The number of populations: 10, 20, 30, 40, 50, 60, 
70, 80, 90, 100

 (ii) Iterations: 1000
 (iii) O b j e c t i v e  f u n c t i o n : 

MSE =
1

n
Pb(II)

∑n
Pb(II)

i=1

�

y
Pb(II) − ŷ

Pb(II)

�2

Next, the HHO algorithm was performed to optimize 
the weights of the developed MLP neural network model 
through MSE values (Fig. 9). Finally, the optimal HHO-
MLP neural network model was defined with an MSE of 
1.873.

8  Results and discussion

As the innovations of this work, (1) nanotube-type hal-
loysite in weathered pegmatites was used as the material to 
adsorb  Pb2+ in an aqueous solution; and (2) the novel HHO-
MLP neural network model was developed and proposed to 
estimate the  Pb2+ absorption efficiency on nanotube-type 
halloysite in weathered pegmatites. Therefore, this section 
focused on evaluating the  Pb2+ absorption efficiency of the 

Fig. 8  The designed architecture of the MLP neural network for estimating the  Pb2+ absorption efficiency in this study
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nanotube-type halloysite in weathered pegmatites and the 
proposed performance HHO-MLP neural network model.

Based on the experimental results, as shown in Fig. 3, 
it is unquestionable that the nanotube-type halloysite in 
weathered pegmatites is a robust material for the absorp-
tion of  Pb2+. The  Pb2+ concentration was removed signifi-
cantly after absorption by the nanotube-type halloysite in 
weathered pegmatites. Nevertheless, the absorption effi-
ciency of different experiments is not the same, as shown 
in experiments No. 25 to No. 46. Although the initial  Pb2+ 
concentration of these experiments is the same; however, 
the  Pb2+ concentration after absorption is not the same. The 
main reason for these results is the different conditions of 
pH, adsorbent weight, and contact time. In other words, the 
absorption efficiency of  Pb2+ is not similar with different 
input conditions. Therefore, a novel intelligent model with 
high accuracy of the absorption efficiency prediction is a 
good candidate and a perfect solution to adjust the input 
conditions to eliminate  Pb2+ from water by the nanotube-
type halloysite in weathered pegmatites.

Herein, the HHO-MLP neural network model was devel-
oped, and after the nanotube-type halloysite in weathered 

pegmatites was well-evaluated in terms of the absorption of 
 Pb2+ in water, the performance of the proposed HHO-MLP 
neural network in estimating  Pb2+ absorption efficiency on 
nanotube-type halloysite in weathered pegmatites was taken 
into account through three performance metrics, such as 
MSE, RMSE, and R2. The proposed HHO-MLP neural net-
work model was also compared with that of the MLP neural 
network model (without optimization) to demonstrate the 
proposed model’s enhanced performance in estimating  Pb2+ 
absorption efficiency nanotube-type halloysite in weathered 
pegmatites. Table 1 shows the MLP neural network’s per-
formance without and with the optimization of the HHO 
algorithm.

As shown in Table 1, the proposed HHO-MLP neural 
network provided an outstanding performance than those 
of the MLP neural network without optimizing by the HHO 
algorithm. Remarkable, the HHO-MLP’s performances are 
excellent on both the training and testing dataset. Compared 
with that of the basic model (i.e., MLP neural network model 
without optimization), all three performance metrics of the 
proposed HHO-MLP neural network are better on the train-
ing and testing datasets. In other words, the accuracy of the 

Fig. 9  The HHO-MLP neural network optimization model for predicting  Pb2+ absorption efficiency

Table 1  Performance of the 
intelligent models for estimating 
the  Pb2+ absorption efficiency 
on nanotube-type halloysite in 
weathered pegmatites

Predictive model Performances on train Performances on test

MSE RMSE R2 MSE RMSE R2

MLP 1.873 1.368 0.957 3.612 1.901 0.848
HHO-MLP 1.079 1.039 0.975 1.647 1.283 0.931
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MLP neural network was significantly improved by the HHO 
algorithm, and it was increased from 9 to 10%. Figure 10 
also indicated that the proposed HHO-MLP neural network 
model provided higher regression and convergence capa-
bilities and better-explained relationships between variables. 
Notably, the proposed HHO-MLP neural network model’s 

regression and convergence capabilities on the testing data-
set are superior (i.e., R2 = 0.931) to those of the MLP neural 
network model without optimization (i.e., R2 = 0.848).

To further assess the predictive models in estimating 
 Pb2+ absorption efficiency on nanotube-type halloysite in 
weathered pegmatites, a Taylor diagram was established 

Fig. 10  Pb2+ absorption efficiency (measured versus predicted) on the proposed HHO-MLP neural network and MLP neural network (without 
optimization)
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based on the actual values, standard deviation, correlation, 
and different MSE (Fig. 11). This diagram will explain how 
differences between the predictive models and the actual 
model. Indeed, we can see that the HHO-MLP neural net-
work model’s position on the diagram is closer to the actual 
model than those of the MLP neural network model. Also, 
the standard deviation of the proposed HHO-MLP neural 
network model is too dissimilar to the actual model’s stand-
ard deviation value. These findings indicated that the pro-
posed HHO-MLP neural network model is a reliable, intel-
ligent model for estimating  Pb2+ absorption efficiency on 
nanotube-type halloysite in weathered pegmatites, and the 
HHO algorithm significantly improved its reliability.

9  Validation of the models

To validate the proposed model in practice, 12 experiments 
were performed, and their parameters were also used as the 
inputs for the developed intelligent models. The predicted 
results were then compared with the experimental results to 
demonstrate the accuracy of the predictive models, as listed 
in Table 2.

Based on the experimental and predicted results in 
Table 2, the predicted values by the proposed HHO-MLP 
neural network model are very close to the experimental 
results. In contrast, the MLP neural network without optimi-
zation provided the predicted values with higher differences. 
Taking a look at Table 2 shows that all the 12 predicted 
values of the proposed HHO-MLP neural network model 
are better and more accurate than those of the predicted 
values given by the MLP neural network model. A regres-
sion graph in Fig. 12 interpreted the statistical relationship 
between actual and predicted individual models’ values on 
the validation dataset. Accordingly, it explains how far the 
predicted values and actual values. The results in Fig. 12 
showed that the predicted values by the MLP neural network 
are more different than the predicted values of the proposed 
HHO-MLP neural network model. Furthermore, evaluation 
on the three datasets: training, testing, and validation, the 
performance of the proposed HHO-MLP neural network 
model is highly stable, and the MLP neural network model 
provided a slightly lower stable between the training phase 
and testing, validating stages.

Fig. 11  Models’ evaluation through the Taylor diagram

Table 2  Validation experiments 
and predicted values by the 
developed models

Initial con-
centration

pH Volume Reaction time Conc. after 
absorption

Predicted by 
HHO-MLP

Predicted by MLP

80 5.13 0.8 50 18.278 16.617 21.613
80 5.39 0.7 25 20.534 18.739 25.954
50 5.50 0.5 55 6.757 9.181 8.493
45 5.46 0.7 40 4.252 6.029 7.792
30 5.06 0.5 80 9.992 9.473 8.800
40 4.31 0.6 95 7.062 8.525 7.424
80 6.13 0.6 100 6.702 8.992 3.442
40 4.83 0.3 35 20.029 19.305 17.526
35 5.15 0.6 45 5.961 7.459 6.933
60 6.00 0.4 80 7.69 8.929 9.551
35 6.02 0.3 95 7.327 6.752 12.216
55 5.08 0.5 95 6.106 7.840 8.556
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10  Conclusion and remarks

Nanotube-type halloysite in weathered pegmatites is a 
material applied to absorb  PB2+ in an aqueous solution 
with high efficiency. The experimental results showed that 
nanotube-type halloysite in weathered pegmatites could 
remove most  Pb2+ in water. However, absorption perfor-
mance is highly dependent on the pH, the volume of mate-
rial, and reaction time. Therefore, this study developed and 
proposed a novel intelligent hybrid model, i.e., HHO-MLP 
neural network, for estimating  Pb2+ absorption efficiency 
on nanotube-type halloysite in weathered pegmatites. The 
obtained results showed that the proposed HHO-MLP 
neural network model could estimate  Pb2+ absorption 
efficiency in the water with high accuracy based on the 
influential parameters. Thereby, the influential parameters 
can be adjusted to remove  Pb2+ from the aqueous solution 
completely using the proposed HHO-MLP neural network 
model.

The combination of nanotube-type halloysite in weath-
ered pegmatites and the proposed HHO-MLP neural net-
work to absorb  PB2+ in water can be taken into account 
as a robust and perfect system for water treatment plants. 
Whereas the nanotube-type halloysite in weathered peg-
matites with robust  Pb2+ absorption capacity, the proposed 
HHO-MLP neural network can accurately predict the con-
centration of  PB2+ after absorption by the nanotube-type 
halloysite in weathered pegmatites.

Although the obtained results were positive and the 
proposed HHO-MLP model can estimate  Pb2+ absorption 

efficiency in an aqueous solution using nanotube-type hal-
loysite from weathered pegmatites with a promising result; 
however, there are many other heavy metals that need to be 
eliminated from an aqueous solution. Therefore, this study 
should be extended in the future to study the other heavy 
metals’ absorption in an aqueous solution and the feasibil-
ity of nanotube-type halloysite from weathered pegmatites 
in the absorption of those heavy metals. In addition, a 
more extensive database is appropriate to understand fur-
ther the characteristics of the absorbent used and heavy 
metals in an aqueous solution.
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