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Innovation efforts in developing soft computing models (SCMs) of researchers and scholars
are significant in recent years, especially for problems in the mining industry. So far, many
SCMs have been proposed and applied to practical engineering to predict ground vibration
intensity (BIGV) induced by mine blasting with high accuracy and reliability. These models
significantly contributed to mitigate the adverse effects of blasting operations in mines.
Despite the fact that many SCMs have been introduced with promising results, but ambitious
goals of researchers are still novel SCMs with the accuracy improved. They aim to prevent
the damages caused by blasting operations to the surrounding environment. This study,
therefore, proposed a novel SCM based on a robust meta-heuristic algorithm, namely
Hunger Games Search (HGS) and artificial neural network (ANN), abbreviated as HGS–
ANN model, for predicting BIGV. Three benchmark models based on three other meta-
heuristic algorithms (i.e., particle swarm optimization (PSO), firefly algorithm (FFA), and
grasshopper optimization algorithm (GOA)) and ANN, named as PSO–ANN, FFA–ANN,
and GOA–ANN, were also examined to have a comprehensive evaluation of the HGS–
ANN model. A set of data with 252 blasting operations was collected to evaluate the effects
of BIGV through the mentioned models. The data were then preprocessed and normalized
before splitting into individual parts for training and validating the models. In the training
phase, the HGS algorithm with the optimal parameters was fine-tuned to train the ANN
model to optimize the ANN model’s weights. Based on the statistical criteria, the HGS–
ANN model showed its best performance with an MAE of 1.153, RMSE of 1.761, R2 of
0.922, and MAPE of 0.156, followed by the GOA–ANN, FFA–ANN and PSO–ANN models
with the lower performances (i.e., MAE = 1.186, 1.528, 1.505; RMSE = 1.772, 2.085, 2.153;
R2 = 0.921, 0.899, 0.893; MAPE = 0.231, 0.215, 0.225, respectively). Based on the out-
standing performance, the HGS–ANN model should be applied broadly and across a swath
of open-pit mines to predict BIGV, aiming to optimize blast patterns and reduce the envi-
ronmental effects.

KEY WORDS: Mine blasting, Artificial neural network, Hunger games search, Ground vibration,
Environmental impacts.

INTRODUCTION

Sustainable and responsible in mining is the
explicit goals of researchers in recent years since the
negative impacts on environments of mining prac-
tices, especially surface mining (Bakhtavar et al.,
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2021; Bui and Ho 2020; Patra et al., 2016; Poudyal
et al., 2019; Schueler et al., 2011; Tiwary, 2001; Zeng
et al., 2020). Among the operations in open-pit
mines, blasting is the most sensitive to the environ-
ment (Ainalis et al., 2017; Katsabanis, 2020). It
contributes a large amount of dust and toxic gas to
the air environment. Not only that, but blasting
activities are even more dangerous when generating
harmful waves to the surrounding environment, such
as shock waves and air over-pressure (Faramarzi
et al., 2014). At a gradual distance from the center of
the explosion, the shock wave turned into blast-in-
duced ground vibration (BIGV) (Nguyen et al.,
2020a, b, c). Furthermore, the structures may be
broken, vibration, benches may be instability and
fail at a high intensity of BIGV (Bui et al., 2019).
Therefore, accurate prediction of BIGV has a vital

role in mitigating the damages of structures, build-
ings, and benches/slopes.

For predicting BIGV, many researchers pro-
posed and applied different approaches, and they can
be categorized into two groups: empirical equations
and soft computing models. Whereas empirical
equations are considered the ‘‘white box’’ mathe-
matics, most soft computing models are taken into
account as the ‘‘black box’’ mathematics (Le and
Dang 2020;Nguyen 2020).However, the accuracy and
reliability of the ‘‘black box’’ mathematics were rec-
ommended as better as the ‘‘white box’’ mathematics
in predicting BIGV (Ghoraba et al., 2016; Saadat
et al., 2014). As a matter of fact, many artificial
intelligence (AI) models were proposed with
promising results. The proposed AI models (in the
previous papers) and their results are listed in Table 1.

Table 1. Overview of the AI models proposed in the past decade and their results

AI model Results References

PSO-ANFIS RMSE = 0.48, R2 = 0.984 Shahnazar et al. (2017)

ANN R2 = 0.927 Monjezi et al. (2013)

PSO based power equation R2 = 0.938, VARE = 0.130, RMSE = 0.240, NS = 0.940 Hasanipanah et al. (2017b)

GEP R2 = 0.874, RMSE = 0.963, VAF = 87.107, MAE = 0.851 Faradonbeh et al. (2016)

Fs-RF Accuracy = 90.32% Zhou et al. (2020)

GA R2 = 0.997, MAPE = � 0.088 Verma and Singh (2011)

KNN–ANN R2 = 0.880, RMSE = 0.540, VAF = 87.840 Amiri et al. (2016)

HKM–ANN RMSE = 0.554, R2 = 0.983, VAF = 97.488 Nguyen et al. (2020d)

SVM MAE = 11.13, R2 = 0.955 Khandelwal et al. (2010)

ANN–ICA R2 = 0.976 Hajihassani et al. (2015a)

RVR–GWO R2 = 0.915, MSE = 7.920 Fattahi and Hasanipanah (2021)

ICA quadratic form R2 = 0.940, RMSE = 0.370 Armaghani et al. (2018)

ANN–PSO R2 = 0.850, MSE = 0.038 Hajihassani et al. (2015b)

FFA–ANN RMSE = 0.464, MAE = 0.356, R2 = 0.966, VAF = 96.620 Shang et al. (2019)

HKM–CA RMSE = 0.475, R2 = 0.995, MAE = 0.373 Nguyen et al. (2019)

ABC–ANN RMSE = 0.220, MAPE = 4.260, R2 = 0.920 Taheri et al. (2017)

CART R2 = 0.950, NS = 0.170, RMSE = 0.170 Hasanipanah et al. (2017a)

ANFIS R2 = 0.973, VAF = 97.345, RMSE = 0.987 Armaghani et al. (2015)

FS-ICA R2 = 0.942 M Hasanipanah et al. (2018)

FL VAF = 0.910, RMSE = 5.310, R2 = 0.960 Fisne et al. (2011)

CSO R2 = 0.957, RMSE = 0.200 Fouladgar et al. (2017)

CSO–ANN RMSE = 0.257, R2 = 0.987, VAF = 98.542 Bui et al. (2021)

MARS MSE = 0.0233, RMSE = 0.1526, MAE = 0.1265, R2 = 0.7074 Arthur et al. (2020)

MARS–PSO–MLP RMSE = 1.569, MAE = 1.017, R2 = 0.902 Nguyen et al. (2021)

MFA–SVR RMSE = 0.614, R2 = 0.984 Chen et al. (2019)

PSO–CRANFIS R2 = 0.997 Zhu et al. (2021)

HHO–RF RMSE = 0.34, R2 = 0.94 Yu et al. (2020)

SCA–ANN R2 = 0.999 Lawal et al. (2021)

Algorithms: PSO: Particle swarm optimization; RVR: Relevance vector regression; GWO: Grey wolf optimization; ANFIS: Adaptive

neuro-fuzzy inference system; MFA: Modified firefly algorithm; ANN: Artificial neural network; Fs: Feature selection; GEP: Gene

expression programming; RF: Random forest; GA: Genetic algorithm; KNN: k-nearest neighbors; HKM: Hierarchical k-means clustering;

CSO: Cuckoo search optimization; ICA: Imperialist competitive algorithm; FS: Fuzzy system; FL: Fuzzy logic; MLP: Multiple layers

perceptron neural network; CRANFIS: Chaos recurrent ANFIS; HHO: Harris hawks optimization; SCA: Sine cosine algorithm.

Performance metrics: RMSE: Root-mean-squared error; VARE: Variance absolute relative error; R2: Determination coefficient; NS: Nash

& Sutcliffe; MAPE: Mean absolute percentage error; MSE: Mean squared error; MAE: Mean absolute error; VAF: Variance accounted for
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From a comprehensive review in Table 1, it is
conspicuous that many state-of-the-art techniques
based on AI have been introduced to predict BIGV
with different results reported. Indeed, various
meta-heuristic algorithms have been applied to en-
hance the accuracy of the classic models, such as
PSO, GWO, GA, ICA, CSO, to name a few. They
worked based on the swarm, evolutionary, and social
behaviors to generate many solutions for predicting
BIGV. Each solution corresponds to a fitness of the
model, and finally, the best solution was selected
based on the best performance of the benchmark
models. Based on the recommendations of previous
researchers, hybrid models based on meta-heuristic
algorithms often providing better performance over
the conventional models. Thus, current models’
trend is often integrated between optimization
algorithms and other powerful machine learning
algorithms. This study introduces a novel and robust
hybrid model for predicting BIGV based on the
Hunger Games Search optimization algorithm
(HGS) and ANN, named as HGS–ANN model. It is
worth noting that the HGS algorithm was just
introduced by Yang et al. (2021) on March 04, 2021.
Yet, it has not been considered and combined with
the ANN or other models for any problems.
Therefore, the HGS–ANN model was proposed the
first time in this study and applied for predicting
BIGV. Note that it can be widely applied to other
problems in real life. Besides, three other hybrid
models, such as PSO–ANN, FFA–ANN, and GOA–
ANN, were also developed and compared to the
proposed HGS–ANN model to emphasize the
robustness of the proposed HGS–ANN model.

METHODOLOGY

As introduced in the above section, this study
considered and developed different ANN models
based on various meta-heuristic algorithms (i.e.,
HGS, PSO, FFA, and GOA). Due to the FFA–
ANN, PSO–ANN, and GOA–ANN models have
been introduced in many published papers (Hasa-
nipanah et al., 2016; Heidari et al., 2019; Le et al.,
2019; Shang et al., 2019; Moayedi et al., 2020; C. Xie
et al., 2021), they have not been mentioned in this
section. This section only focuses on proposing the
framework of the novel HGS–ANN model for pre-
dicting BIGV.

Artificial Neural Network (ANN)

ANN is incredibly famous for its applications in
real life. It was developed based on the biological
neuron�s functionality of the human brain (Basheer
& Hajmeer, 2000; Falahian et al., 2015). There are
many types of ANN, such as feedforward, regulatory
feedback, physical, recurrent, convolutional, radial
basis function, and dynamic neural networks, to
name a few (Aggarwal & Song, 1998; T. Xie et al.,
2011; Suzuki, 2013; Tsantekidis et al., 2017; Al
Kheraif et al., 2019; Yazdinejad et al., 2020). In this
work, the multiple layers perceptron (MLP), which
is a class of feedforward neural networks, was used
to predict BIGV.

Theoretically, the network topology of an MLP
model includes an input layer, one or multiple hid-
den layers, and one output layer (Fig. 1). Accord-
ingly, the information is moved from the input layer
through the hidden layers and finally summaries the
results to the output layer in one direction. In each
layer of an MLP (except the input layer), neurons
(nodes) are the computational units that can help
the MLP model achieves the expected results. In
order to implement the computation, ANN uses a
training algorithm, such as backpropagation, feed-
forward, and Levenberg–Marquardt. It can compute
the connections between nodes through their
weights and biases. Besides, activation functions are
also the critical components of an MLP neural net-
work. They are nonlinear functions (e.g., relu, edlu,
tanh, sigmoid) applied to the outputs of hidden
layers in an MLP, and they are then used as the
inputs for the next layer. In this way, MLP can de-
tect and explain complex relationships of the data-
set. In other words, without activation functions, the
predictive power of the MLP will be limited and
significantly reduced. The combination of activation
functions between hidden layers is to help the model
learn complex nonlinear relationships latent in the
data. Due to the principle of MLP has been intro-
duced in many published papers and books (Basheer
& Hajmeer, 2000; Ertuğrul, 2018); therefore, this
section only briefly introduces the principle of MLP
neural network. Further details of MLP neural net-
works can be found in the following materials (Alanis
et al., 2019; Bre et al., 2018; Hassoun, 1995; Living-
stone, 2008; Suzuki, 2013). In this study, MLP neural
networkwas simply calledANN for predictingBIGV,
and its architecture is illustrated in Figure 1.
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Hunger Games Search (HGS) Optimization
Algorithm

HGS is a new meta-heuristic algorithm intro-
duced and proposed by Yang et al. (2021). It is de-
signed inspired by the cooperative behavior of the
animal and their hunger-driven activities. The
mathematical model of HGS was proposed based on
a simple structure, but the performance is very
competitive. It includes two stages: (1) approach
food; and (2) hunger role.

In the first stage, the cooperative communica-
tion and foraging behavior of individuals are de-
scribed as:
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where r1 and r2 are random numbers
0 � r1; r2 � 1ð Þ; randðÞ is also a random number but
it must be satisfied a normal distribution; t is the

current iteration; W1
�!

and W2
�!

stand for the weights

of hunger behavior; Gb
�!

stands for the best position
of the best individual; l is a constant; S is a variation
control, which is determined as:

S ¼ hyp. func fitnessi � fitnessbestj jð Þ ð2Þ

where hyp: func is a hyperbolic function; R
!

is a
number in the range of [� a, a] and it is used to
control the range of activity:

R
!¼ 2� a� b� a ð3Þ

where b is a random number interval [0,1]; a is the
shrink of iterations, thus:

a ¼ 2� 1� t

T

� �

ð4Þ

where T is the maximum number of iterations.
In the second stage, the characteristics of hun-

ger-driven activities are simulated. Accordingly, the
weights of hunger behavior are represented in Eqs. 5
and 6:

Figure 1. General architecture of an ANN for predicting BIGV.
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W1 lð Þ
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where d represents the hunger of each population;
Npop is the number of populations;
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where r3; r4; and r5 denote the random numbers
0 � r3; r4; r5 � 1ð Þ. d can be provided by the fol-
lowing function:

d ið Þ ¼ 0; fitnessi ¼¼ fitnessbest
d ið Þ þ dnew; fitnessi! ¼ fitnessbest

�

ð7Þ

where fitnessi is the fitness of each individual at the
ith iteration; fitnessbest is the best fitness obtained at
the current iteration; dnew is a new hunger, and it is
calculated based on Eqs. 8 and 9:

dtemp ¼ fitnessi � fitnessbest
fitnessworst � fitnessbest

� r6 � 2

� boundupper � boundlower
� �

ð8Þ

dnew ¼ dlargest � 1þ rð Þ; dtemp\dlargest
dtemp; dtemp � dlargest

�

ð9Þ

where boundupper and boundlower stand for the feature

space bounds; r6 is a random number 0 � r6 � 1ð Þ.

The pseudo-code of the HGS algorithm is
shown in Figure 2.

Hybrid HGS–ANN Model

Like other meta-heuristic algorithms, the pri-
mary role of the HGS algorithm in this study is the
optimization of weights of the ANN model for pre-
dicting BIGV. To do this, an initial ANN model was
developed first. Next, the initial weights were
transferred to the optimization procedure of the
HGS algorithm to re-calculate and update the
weights to the ANN model, called the HGS–ANN
model. During optimizing the HGS–ANN model,
the stopping conditions, such as RMSE and the
maximum number of iterations, were used to eval-
uate the fitness of the proposed HGS–ANN model.
If the accuracy of the HGS–ANN model is satisfied
(i.e., with the lowest RMSE), the optimization pro-
cess will stop, and the optimal HGS–ANN model
will be selected for predicting BIGV. Otherwise, the
optimization procedure will continuously be
searching, calculating, and updating the weights of
the ANN model in the subsequent iterations. Once
the optimization procedure was repeated with the
maximum of iterations, the lowest RMSE was se-
lected, and the corresponding model will be assigned
as the best model for predicting BIGV. The frame-

Figure 2. Pseudo-code of the HGS algorithm [modified from Yang et al. (2021)].
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work of the HGS–ANN model for predicting BIGV
is proposed in Figure 3.

Performance Metrics for Model Evaluation

As is known, model evaluation is mandatory
after the predictive models were developed, aiming
to not only understanding the performance of the
models (e.g., over-fitting or under-fitting) but also
have a comprehensive assessment and comparison
of individual models in terms of BIGV prediction.
Herein, four performance metrics were used to
evaluate the predictive models, including MAE,
RMSE, R2, and MAPE. Whereas the MAE and
RMSE metrics show the models’ errors, the MAPE
metric shows the percentage of the error, and R2

metric helps to understand the suitability of the
dataset used for each model. They are calculated
using the following equations:

MAE ¼ 1

nblast

X

nblast

i¼1

yi BIGV � ŷi BIGVj j ð10Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

nblast

X
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i¼1

yi BIGV � ŷi BIGVð Þ2
s

ð11Þ

R2 ¼ 1�

P

nblast

i¼1

yi BIGV � ŷi BIGVð Þ2

P

nblast

i¼1

yi BIGV � �yBIGVð Þ2
ð12Þ

VAF ¼ 1� var yi BIGV � ŷi BIGVð Þ
var yi BIGVð Þ


 �

� 100 ð13Þ

where nblast is the number of blasting events used in
the evaluation; yi BIGV is the measured BIGV value
at ith blasting event; ŷi BIGV stands for the predicted
BIGV value at ith blasting event; �yBIGV denotes the
mean of measured BIGV values.

DATA AND STATISTICAL ANALYSIS

To realize this study, 252 blasting operations
were performed at an open-pit coal mine located in
the Northern Vietnam (Fig. 4). Accordingly, BIGV
values were monitored at the sensitivity locations,
and the corresponding parameters of blasts were
collected. It is a fact that this mine applied the non-
electric millisecond delay blasting method to reduce
BIGV (Guan et al., 2019; Nateghi et al., 2009).
Nevertheless, several recorded results indicated that

Figure 3. Introduction of the HGS–ANN model for predicting BIGV.
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the BIGVs measured are high, and they may dam-
age the surrounding environment, especially the
benches and slopes of the surrounding open-pit
mines, as shown in Figure 4. Thus, monitoring and
predicting BIGV in this mine is necessary to control
and mitigate the adverse effects of BIGV.

Before measuring BIGVs, blast patterns of 252
blasting events were collected first with the blasting
parameters, such as hole length (HL), maximum
explosive charge per delay (W), the number of
blasting groups (NG), time delay for each group
(TL), burden (B), powder factor (PF), spacing (S),
and stemming (T). For each blasting event, the
position(s) of the seismograph was/were determined,

and a GPS receiver was then used to measure the
distance from the blasting face to the position(s) of
the seismograph (abbreviated as D). Finally, the
blasts were detonated, and BIGVs were recoded by
the Micromate devices (seismographs). The statisti-
cal analysis of the dataset collected is shown in Ta-
ble 2. In addition, the visualization of this dataset is
shown in Figure 5.

In Figure 5, the details of the dataset used were
illustrated. Accordingly, the distribution of the
variables is illustrated by the histogram (Fig. 5a), the
statistics and outliers of the dataset are illustrated by
box plots (Fig. 5b), and the correlation between
independent variables (inputs) and dependent vari-

Figure 4. Location and an aerial view of the study area.

Table 2. Statistical analysis of the dataset used

Statistics W NG TL HL B S T PF D BIGV

Min 305 2 17 12.4 6.3 6.2 4.6 0.31 130.9 0.44

1st Qu. 2564 2 17 13.5 7.075 7 5.9 0.39 326.8 8.287

Median 3344 3 25 14.2 7.7 7.6 6.5 0.42 411.8 12.57

Mean 3234 3.36 27.68 14.36 7.615 7.443 6.449 0.412 433.9 12.66

3rd Qu. 3945 4 42 15 8.2 7.8 7 0.44 523 16.15

Max 6043 5 42 16.7 8.5 8.2 7.6 0.5 836.1 28.63

A Novel Hunger Games Search Optimization-Based Artificial Neural Network



Figure 5. Visualizations of the dataset used: (a) histograms; (b) box plots; (c) variable

correlations.
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able (output, i.e., BIGV) is illustrated in Figure 5c.
The correlation results show that all the input vari-
ables in this dataset should be used to evaluate their
effects on BIGV since its correlation is not high
(< 0.75). Therefore, we used the whole dataset with
nine input variables to predict BIGV based on the
introduced models, HGS–ANN, FFA–ANN, GOA–
ANN, and PSO–ANN.

RESULTS AND DISCUSSION

As introduced earlier, this work aims at
proposing the novel HGS–ANN model for predict-
ing BIGV in mine blasting. Three other hybrid
models, namely PSO–ANN, FFA–ANN, and GOA–
ANN, were also taken into consideration to predict
BIGV and compared with the proposed HGS–ANN
model.

Prior to developing these models, the blasting
dataset was preprocessed using the MinMax scaling
method with the interval [� 1,1] to normalize the
dataset. Subsequently, the dataset was divided into
two partitions that can be managed, developed and
tested separately (70% for training and 30% for
testing). Finally, the proposed HGS–ANN frame-
work was applied, as shown in Figure 3. Similar
approaches were applied for the PSO–ANN, FFA–
ANN, and GOA–ANN models. Before training the
ANN model by the optimization algorithms (i.e.,
HGS, PSO, FFA, and GOA), an initial ANN model
and the algorithms� parameters were established
sufficiency. For the initial ANN model, a network
topology with two hidden layers (e.g., ten neurons in
the first layer, five neurons in the second layer) was
selected to predict BIGV through the trial-and-error
procedure, and the initial weights were computed.
The parameters of the HGS, PSO, FFA, and GOA
were set up as follows:

� Numbers of hungers, swarms, fireflies, and
grasshoppers (populations): 50, 100, 150, 200,
250, 300, 350, 400, 450, 500.

� Maximum number of iterations: 1000.
� PSO�s parameters: c1 ¼ c2 ¼ 1:2; wmin ¼ 0:4;

wmax ¼ 0:9.
� GOA�s parameters: cmin ¼ 0:00004; cmax ¼ 1.
� HGS�s parameters: L ¼ 0:03; LH ¼ 1000.
� FFA�s parameters: c ¼ 1; b ¼ 1; a ¼ 0:2;

adamp ¼ 0:99; d ¼ 0:05; mexponent ¼ 2.

Finally, the meta-heuristic algorithms were ap-
plied to optimize the initial weights of the initial
ANN model. RMSE was used as the predictive
models’ objective function to evaluate the training
error of the swarm-based ANN models during 1000
iterations. The results are shown in Figure 6.

As shown in Figure 6, the best hybrid models
(optimal models) for predicting BIGV were defined
with the following parameters:

Figure 6. Performance of the optimal predictive models under

various population sizes: (a) HGS–ANN; (b) FFA–ANN; (c)

GOA–ANN; (d) PSO–ANN.
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� HGS–ANN model: 400 populations, 684
iterations;

� FFA–ANN model: 450 populations; 727
iterations;

� GOA–ANN model: 300 populations; 992
iterations;

� PSO–ANN model: 300 populations; 969 iter-
ations.

Once the models were optimized, the testing
dataset was imported to calculate their performance

as unseen data in practice. The statistical analysis of
the performances is given in Table 3. As indicated in
the statistical indexes, it is possible to see that all
four models are acceptable for predicting BIGV.
However, the HGS–ANN and GOA–ANN models
provided better performances than the other models
(i.e., FFA–ANN and PSO–ANN). Nevertheless, it is
difficult to evaluate which model is better among the
HGS–ANN and GOA–ANN models. However, the
training phase provides a better performance for the
GOA–ANN model, and the testing phase provides a
better performance for the HGS–ANN model.
Therefore, we used the ranking method to sort the
models based on their performances and rankings, as
given in Table 4.

From the results in Table 4, it is easy to rec-
ognize which model is the best based on the ranking
of the models. Accordingly, the HGS–ANN model
yielded the highest ranking, with a total ranking of
28. Meanwhile, the GOA–ANN model only pro-
vided a total ranking of 26. The other models, i.e.,
FFA–ANN and PSO–ANN, provided the same
ranking with a total ranking of 13. Furthermore,
based on the parameters of the meta-heuristic
algorithms used and the training time of the models
in Figure 6, it can be seen that the HGS is an out-
standing algorithm and the HGS–ANN model is the
most superior model in the training dataset.
Whereas the HGS�s parameters are most of the
number of populations and maximum iterations
(except L and LH are coefficients), the other algo-
rithms required additional parameters during train-
ing. Moreover, considering the training time of the
hybrid models (Fig. 6), the PSO–ANN model pro-
vided the lowest training time with 1944.472 s. Fol-
lowing are the HGS–ANN model (i.e., 2121.498 s),
GOA–ANN model (i.e., 6350.216 s), and FFA–
ANN model (i.e., 7033.281 s). However, the training
error of the HGS–ANN model is the lowest, and the
training time is slightly higher than the PSO–ANN
model. Overall, the HGS–ANN model is the most
superior model in terms of development and mod-
eling. For further assessment of the models, the
relative error (RE), correlation of observed and
predicted values, and a comparison of them are
shown in Figure 7.

From Figure 7, it can be seen that the accuracy
of the predictions obtained by individual models is
high, and the convergence on the regression lines is
very good. Nevertheless, taking a closer look at

Figure 6. continued.
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Figure 7, it is taken into consideration that the
accuracy and convergence on the HGS–ANN model
are superior to the other models. In particular,
considering the models’ RE graphics, we can see a
peak point on the graphics at sample #32. Taking a
closer look at this peak point in the developed
models, it is no doubt that the RE in the HGS–ANN
model is the lowest (� � 550%), whereas it is �
1300% for the GOA–ANN model, � � 800% for
the PSO–ANN model, and � � 7100% for the
FFA–ANN model. Hence, it can claim that the
HGS–ANN model provided an excellent perfor-
mance in this study for predicting BIGV. In other
words, the HGS algorithm is more robust than the
other algorithms (i.e., GOA, PSO, FFA) when
combined with the ANN model for BIGV estima-
tion in this work.

SENSITIVITY ANALYSIS

In order to determine the robustness of the
proposed HGS–ANN model, a sensitivity analysis
was adopted to examine the extent to which the
results are affected by changes in values of the input
variables. In other words, this step aims to identify

the important variables on which the results depend
most. The sensitivity criteria (Dimopoulos et al.,
1995) were calculated and evaluated, as shown in
Figure 8. As illustrated in this figure, B, W, NG, S,
D, and PF are the variables that have high effects on
the BIGV. In contrast, the HL and T variables have
low influences on BIGV, especially the T variable.

CONCLUSION

Blasting is an indispensable method in open-pit
mines; however, its negative impacts on the envi-
ronment are inevitable, especially BIGV. This study
proposed a novel AI model with the accuracy im-
proved for predicting BIGV, namely the HGS–ANN
model. The optimization role of the HGS algorithm
was thoroughly interpreted in this study when
combined with the ANN model for predicting
BIGV, and it is a robust optimization algorithm for
engineering problems. The HGS–ANN model was
proved as a robust soft computing model for pre-
dicting BIGV with the outstanding obtained results
compared to the benchmark hybrid models (i.e.,
GOA–ANN, FFA–ANN, and PSO–ANN). As a
recommendation, this model should be used in

Table 3. Statistical criteria of the hybrid models developed

Model Training Testing

MAE RMSE R2 MAPE MAE RMSE R2 MAPE

HGS–ANN 1.031 1.386 0.929 0.106 1.153 1.761 0.922 0.156

GOA–ANN 0.976 1.294 0.938 0.105 1.186 1.772 0.921 0.231

FFA–ANN 1.331 1.737 0.892 0.142 1.528 2.085 0.899 0.215

PSO–ANN 1.258 1.639 0.913 0.145 1.505 2.153 0.893 0.225

Table 4. Ranking of the hybrid models developed based on statistical criteria

Model Ranking for training Ranking for testing Total rank

MAE RMSE R2 MAPE MAE RMSE R2 MAPE

HGS–ANN 3 3 3 3 4 4 4 4 28

GOA–ANN 4 4 4 4 3 3 3 1 26

FFA–ANN 1 1 1 2 1 2 2 3 13

PSO–ANN 2 2 2 1 2 1 1 2 13

Bold values indicate the best model
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Figure 7. Evaluation of the BIGV prediction models based on the relative error, performance prediction, and linear

relationship: (a) HGS–ANN; (b) FFA–ANN; (c) GOA–ANN; (d) PSO–ANN.
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Figure 7. continued.
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practical engineering to control and mitigate the
adverse effects of BIGV in mine blasting.
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