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a b s t r a c t 

In this paper, the authors investigate the stability and stick-slip motion of a friction-induced vibrating system 

placed on a belt moving at constant velocity using two-state model with consideration of dwell-time effect. The 
two-state model can be considered as an extension of the LuGre model because it can capture both Stribeck and 
dwell-time effects in the case of near-zero relative motion velocity between two surfaces. The previously known 
Stribeck effect is that the friction force decreases as the relative velocity increases in the near-zero range, while 
the dwell-time effect exhibits that the friction force increases as two surfaces are kept in contact for a certain time. 
With new effect of dwell-time, properties of stick-slip motion are explored in detail, including the equilibrium 

point position, the stability of the equilibrium point, Hopf bifurcation, characteristics of velocity and the change 
of friction force in different cases of belt velocity. The obtained result indicates that the influence of dwell-time 
on system responses is significant in the near-zero velocity range. Using the Routh-Hurwitz criterion, the authors 
show that there is a positive shift in the direction of increase of belt velocity for the stable zone of the equilibrium 

position compared with the stable zone obtained from the LuGre model. The formulations of the limit cycle and 
phases of motion in stick-slip vibration of the system are demonstrated by numerical simulations. 
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. Introduction 

In engineering systems, the friction exhibits diverse behaviors, es-
ecially when it comes from friction-induced vibrations [1–6] . Stick-
lip phenomena in friction-induced vibrating systems can be observed
n real systems, for example, the sound of bowed instrument, rattling
oints of a robot, chattering machine tools [7–10] , drill string systems
11] , aircraft brake system [12] . In [8] , Oetstreich investigated the bi-
urcation and stability for models of non-smooth friction oscillators with
tick-slip motion using the mapping approach that gives insight into the
eriodic as well as the chaotic behavior of the system. In a research by
ratt and Williams [9] , nonlinear analysis of stick-slip motion of a two-
ass system with dry (Coulomb) friction contact was performed using a

ombined analytical-numerical procedure. In [10] , approximate analyt-
cal expressions utilizing the method of perturbation are derived for the
onditions, amplitudes, and base frequencies of stick-slip and pure-slip
scillations. Another interesting engineering system that exhibits stick-
lip motion is drill string system [11] . Stick-slip oscillations due to the
ontact between the drilling bit and formation is known to excite se-
ere torsional and axial vibrations in the drill string system. Vibrational
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haracteristics of rotating drill string are investigated by a finite ele-
ent dynamic formulation. In a detailed research by Sinou et al. [12] , a
on-linear model for friction-induced vibration analysis of aircraft brake
hirl is presented and developed based on experimental observations.
hose authors have shown that there is a perfect correlation between
he numerical model and experimental tests for frequency of instability
nd deformation shape of the unstable mode. 

In most engineering systems, to explore characteristics of vibrating
ystems that account for the friction effect, two kinds of friction behav-
or are used, namely, the static and dynamic friction [13–15] . Static
riction is friction between two or more solid objects that are not mov-
ng relative to each other. Dynamic friction occurs when two objects
re moving relative to each other and rub together. The static friction
odels are those that can be expressed as functions of relative veloc-

ty between two surfaces in contact. For static models, the Coulomb
16] and viscous friction models [17,18] are two simple models often
sed in theoretical and experimental studies in the field of tribology.
n the Coulomb model, the friction force is constant and opposite to
he direction of motion. In the viscous model, the friction force is pro-
ortional to the velocity. These models only describe the steady-state
ehavior between velocity and friction force. They are suitable for case
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f enough large velocity of system motion. In the range of low veloc-
ty, one may look for an appropriate model to describe real systems in
 more precise manner. Models of dynamic friction are candidates to
apture different effects in a wide range of motion velocity. A dynamic
odel proposed by Dahl [19] describes the spring-like behavior during

tiction. It is noted that the Dahl model is essentially Coulomb friction
ith a lag in the change of friction force when the motion direction is

hanged. In the Dahl model, however, it does not include the Stribeck
ffect [20] , i.e. the effect in which friction force decreases as relative
elocity increases in a certain velocity regime. An attempt to extend the
ahl model to include the Stribeck effect was made by Bliman [21] . The
rawback of the model by Bliman is that the Stribeck term is present in a
patial representation after a change of the direction of motion, i.e. is not
resent in the steady-state relation between velocity and friction force.
o overcome this drawback, Canudas de Wit et al. [22,23] proposed
nother dynamic friction model that combines the Dahl effect with ar-
itrary steady-state friction characteristics including the Stribeck effect.
his model by Canudas de Wit et al. was known as the LuGre model.
n advantage of the LuGre model is its rich dynamic behavior because

t can give possibilities to model properties of presliding displacement,
riction lag, varying break-away force and stick-slip motion. The LuGre
odel is useful for problems of control related to friction force because it
as passivity properties, and can give asymptotically stable closed-loop
ystems [24,25] . There is a lot of works that utilize the LuGre model as
 tool for modeling and simulating dynamical systems in engineering
1,26–30] . 

Recently, there are several modified and extended versions of the Lu-
re model that are proposed to study different dynamical systems with

riction. Al-Bender et al. [31] have investigated a novel generic model at
sperity level for dry friction force dynamics. This model can be consid-
red as an upgrade of the LuGre model. The authors have shown many
bserved phenomena of friction of dynamic systems such as the preslid-
ng regime, time-independent frictional hysteresis in the displacement,
elocity weakening, slider lift-up effect and frictional lag. Dupont et al.
32,33] proposed an elasto-plastic friction model that is considered as
n enhancement of the LuGre model. In this model, under loading, fric-
ional displacement is first purely elastic and then transitions to plastic.
he model is demonstrated to preserve the favorable properties of ex-

sting models (e.g., dissipativity) and to provide a comparable match to
xperimental data. Based on the LuGre model, Gonthier et al. [34] have
eveloped a friction model with general regularized contact properties
n which the internal state variable is reformulated into two distinct
hases: a phase for the stick regime and another for the sliding regime.
hey introduce a sticking state function as a bridge between the stick-
lip friction regimes. The model also includes temporal lag and dwell-
ime effects. Saha et al. [35] have proposed a new friction model based
n the well-known LuGre friction model that can accurately describe
he nature of friction force in the gross sliding regime. The advantage
f the model by Saha et al. is that it can show both clockwise as well
s counter clockwise hysteretic loops in the pure sliding domain. Us-
ng the state variable approach, in a recent short communication by
rasmik and Schlattmann [36] , the LuGre model is extended to include

he effect of frictional aging. In their model, the constant static friction
orce is replaced by a time-dependent variable representing the vari-
tion of the static friction force between a lower limit and an upper
imit depending on the stationary contact time. Pikunov and Stefanski
37] have improved the LuGre model by adding weighted coefficients to
he governing equation of internal state variable describing the elastic
eflection of bristles for surface asperities. These authors have inves-
igated dynamic properties of a friction-induced mechanical oscillator
ith cubic nonlinearity using their improved version of friction. 

In the field of control of engineering systems, various improved
ersions of the LuGre model can be found, for example, in model of
obot control [38–40] , in a research on opto-electronic tracking systems
41,42] , in a hybrid pump-controlled asymmetric (single-rod) cylinder
rive system [43] . From experimental observation, Hideki and Yuta
2 
44] realize that the LuGre model cannot simulate the real friction char-
cteristics of hydraulic actuators. Therefore, the LuGre model is modi-
ed taking the dynamics of lubricant film formation into consideration.
he lubricant film dynamics is approximated by a first-order lag element
nd its time constant is varied among the acceleration, deceleration and
well periods. Based on modified LuGre model by Hideki and Yuta [44] ,
n improved version for modeling dynamic friction of hydraulic cylin-
ers is proposed by Tran et al. [45] . They replace the usual fluid friction
erm, which is proportional to velocity, with a first-order lead dynamics.
his proposed model can give accurate simulation results in the fluid lu-
rication regime including normal compliance, energy dissipation, and
angential friction. In [46] , Deur et al. have suggested several extended
ersions of the LuGre model for studying dynamic friction model of tyre
ystems with the aim of improving the model accuracy and applicabil-
ty in the field of vehicle system dynamics. In [47] , Yongjie et al. have
resented a modified form of the LuGre model for investigation of ve-
icle dynamics. The mathematical expression for the modified model is
chieved through introducing the Bouc-Wen model to reflect hysteresis
ffect of the system dynamics. The work by Sobczyk et al. [48] presents
 novel continuous approximation of the LuGre model, with the aim
f improving its applicability in the control of a class of systems that
nclude fluid-driven servo positioners. The advantage of the proposed
pproximation is that, it preserves the properties of boundedness and
assivity that are inherent to the original LuGre model. 

The difference between the static and dynamic friction models is
hat the dynamic models contain internal state variables that describe
idden quantities, not immediately measurable by macroscopic obser-
ations [49] . The number of internal state variables can be increased
epending on the friction models in specified fields of engineering ap-
lications. To look for and simplify model of real systems, in most cases,
ne internal state variable is selected because the corresponding iden-
ification of system friction parameters is more convenient than that of
ystems with many internal variables (see: [22,31,50–53] ). Recently, a
odel of two state variables by Ruderman and Bertram [54] has been
roposed to describe more precisely behaviors of dynamical systems.
hey introduce a model with a linear combination of two nonlinear
tate variables in which one independent and one dependent friction
tates capture the presliding hysteresis and transient sliding response.
heir model has seven parameters. The system model identification is
erformed under real circumstances of the actuated motion close to the
pplications with electro-mechanical drives. 

An interesting effect is dwell-time in friction phenomena related to
he time of contact of two sliding surfaces. The dwell-time is consid-
red as an internal state variable in dynamic friction models. The dwell-
ime, also called aging time, is interpreted in detail in a research by
aumberger and Berthoud [55,56] for analysis of the state- and rate-
ependent friction law. The dwell-time is an important factor in describ-
ng dynamics of multicontact interfaces (MCIs) between macroscopic
olids with rough surfaces. For non-moving MCIs, the dwell-time is sim-
ly the time which has been present at rest. Also for MCIs sliding at a
onstant velocity, when the motion starts, a given microcontact is grad-
ally sheared until it slides, then disappears as relative motion between
urface asperities reaches a value on the order of a faction of the con-
act diameter [56,57] . The dwell-time effect has a significant influence
n friction force in the case of low velocity of system motion, and it
ust be included in friction model used for problem of friction com-
ensation [58,59] . In [56] , Baumberger and Berhhoud have presented
 physical analysis of dynamic friction at nonlubricated multicontact in-
erfaces between nominally flat bodies, rough on the micrometer scale,
ade of identical polymer glasses. The model of state-dependent friction

s described by a first-order governing equation of the dwell-time vari-
ble. Differing from the LuGre model [22] , the model by Baumberger
nd Berhhoud [56] has friction coefficient in the form of logarithm law
imilar to the Rice-Ruina state- and rate-dependent friction model [60] .
ecently, from the idea on the presence of dwell-time in engineering
ystems with stick-slip motion, Simoni et al. [61] have proposed a two-
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tate friction model that can be considered as a combination of the LuGre
odel [22] and the modified Dieterich-Ruina model [60,62] . Simoni

t al. show that this model of friction can capture many friction phe-
omena such as the presliding, stick-slip behavior, the rate-dependent
nd dwell-time effect. We have found that the model by Simoni et al.
s a new model and may have a potential of applications for a wide
ange of engineering problems because it can cover the advantages of
oth the LuGre and Dieterich-Ruina models. This has motivated us to
tudy the Simoni’s model further by approaching both theoretical and
umerical researches. According to the works of Baumberger et al. and
imoni et al. [56,57,61] , the meaning of the term ”dwell-time ” used in
his study is average time elapsed since the contacts existing at a given
nstant were first formed. 

The objective of our study is to develop the two-state friction model
o the problem of stick-slip motion of a system placed on a belt moving
t constant speed. Our attention is focused on the range of low velocity
f motion to capture the dwell-time effect. This is important problem in
ngineering because it relates to issues of precise control at near-zero
elocity range and the stick-slip phenomenon is often observed in the
ase of motion between two surfaces with low velocity. Characteristics
f system motion are explored in detail. 

. Model of friction with two internal state variables 

.1. LuGre model 

The LuGre model is an extended version of the Dahl model that can
apture the Stribeck effect at low-velocity. In fact, contact surfaces are
ery irregular at the microscopic scale and make contact at a number
f asperities. From the assumption of surface elastic contact, the surface
sperities are modeled as elastic bristles. When applying a tangential
orce, bristles will deflect like springs and give rise to the friction force.
anudas de Wit et al. [22] proposed a friction model based on the av-
rage deflection behavior of bristles. The average deflection of bristles
s denoted as 𝑧 , namely, internal state variable, and is modeled by the
ollowing equation: 

̇  = 𝑣 − 

𝜎0 |𝑣 |
𝑔 ( 𝑣 ) 

𝑧, (1)

here 𝑣 is the relative velocity between two surfaces; 𝜎0 is stiffness co-
fficient. The Stribeck function of relative velocity 𝑔 = 𝑔( 𝑣 ) , is given by

 ( 𝑣 ) = 𝑐 0 + 𝑐 𝑠 exp { − 𝛼|𝑣 |} , (2)

here 𝑐 0 is the Coulomb friction force, 𝑐 𝑠 is the difference between static
nd Coulomb friction forces, 𝛼 is a constant. It is seen that the function
( 𝑣 ) approaches 𝑐 0 as the relative velocity 𝑣 tends to infinity, i.e. the
uGre model is reduced to the Dahl model. In contrast, when relative
elocity 𝑣 tends to zero, the function 𝑔( 𝑣 ) reaches to a static friction
orce. The Stribeck effect is present this near-zero velocity range. The
riction expression in the LuGre model is constituted from three com-
onents: elastic term 𝜎0 𝑧 , damping characteristic term of internal state
ariable, 𝜎1 ̇𝑧 , and viscous force term, 𝑓 ( 𝑣 ) = 𝑐 1 𝑣 

 𝑓𝑟 = 𝜎0 𝑧 + 𝜎1 ̇𝑧 + 𝑐 1 𝑣, (3)

here constants 𝜎1 , 𝑐 1 are internal damping and viscous damping coef-
cients. The first two are related to the internal variable 𝑧 whereas the
hird coefficient exhibits the relative motion between two surfaces. It is
oted that the functions 𝑓 and 𝑔 can be chosen to match a set of steady-
tate friction measurement data. In most previous studies, the function
( 𝑣 ) is chosen as a linear function of relative velocity 𝑣 whereas function
takes a specified shape depending on the exponent term exp 

{
− 𝛼|𝑣 |𝑠 }

ith 𝑠 being a real number, for example, Simoni et al. [61] selected
 = 1 , Canudas de Wit et al. [22] suggested 𝑠 = 2 for the LuGre model.
he addition of the state variable 𝑧 makes the LuGre model overcome
he major limit of Dahl model, that is, the possibility to present the static
riction state in the presliding regime. 
3 
In the steady-state regime of bristle motion, i.e. �̇� = 0 , the average
eflection 𝑧 is given by 

 𝑠𝑠 = 𝑔 ( 𝑣 ) sgn ( 𝑣 ) ∕ 𝜎0 . (4)

Therefore, the friction force at the steady-state regime is 

 𝑓𝑟 = 𝑔 ( 𝑣 ) sgn ( 𝑣 ) + 𝑐 1 𝑣. (5)

This model is reduced to the Coulomb model in the case 𝑔( 𝑣 ) = 𝑐 0 
nd 𝑓 ( 𝑣 ) = 0 . 

.2. Dwell-time as a new internal state variable 

The main disadvantage of the LuGre model is that it does not in-
lude the dwell-time effect, that is, it can not model the variation of
riction force when two surfaces are kept in contact, at rest, for a cer-
ain time. We denote the dwell-time as a new internal state variable, 𝜙.
t can be considered as the aging time [55,56] , that is the mount of time
uring which the two surfaces are kept in contact with zero-relative ve-
ocity. Simoni et al. [61] have proposed a model established based on
 combination of two models, namely, the LuGre [22] and Dieterich-
uina models [60,62] . The Dieterich-Ruina model is a dynamic friction
ne developed in the field of geophysics that can capture how friction
etween two rock layers increases with dwell-time. In this model, the
riction force depends both on the instantaneous sliding velocity �̇� and
n the aging time variable 𝜙. Similarly, an approach for the model of
wo internal state variables by Simoni et al. [61] is that the friction force
s added by a component related to the aging time while components of
uGre model are retained: 

 𝑓𝑟 = 𝜎0 𝑧 
[
1 + 𝑎 

(
1 − exp 

{
− 𝜙∕ 𝜙0 

})]
+ 𝜎1 ̇𝑧 + 𝑓 ( 𝑣 ) , (6)

here 𝜙0 is a positive parameter, 𝑎 is positive dimensionless parameter
55,62] . In Eq. 6 , two internal state variables 𝑧 and 𝜙 are present. The
rst variable related to the deflection of bristles plays the role of captur-

ng friction effect of pre-sliding motion whereas the second one models
he effect of dwell-time between two surfaces in contact. The internal
tate 𝑧 governed by Eq. 1 is the same as in the LuGre model. The ag-
ng time 𝜙 is determined from the first-order differential equation with
oefficient depending on the velocity variable 𝑣 

̇ = 1 − 

|𝑣 |
𝐷 0 
𝜙. (7)

In [55,56] , the variable 𝜙 can be interpreted as the age of the multi-
ontact interfaces (MCI), i.e. as time average elapsed since the contacts
xisting at a given instant were first formed. It is noted that at the steady-
tate regime of motion with a certain velocity 𝑉 , contacts are destroyed
nd replaced by a non-correlated set of fresh ones after sliding a length
 0 so that 𝜙 = 𝐷 0 ∕ 𝑉 . At non-stationary motion, the variable 𝜙 is a func-

ion of time that keeps to track the previous slip history on the finite slid-
ng length 𝐷 0 . When the velocity is equal to zero, Eq. (7) behaves as a
nit integrator, that is, in this case, 𝜙 = 𝑡 with initial condition 𝜙(0) = 0 .
his simple case reveals that the dwell-time increases with time as rel-
tive velocity between two surfaces tends to zero. This leads to the fact
hat friction force between two surfaces in contact is varying in time and
epends on the internal state variable 𝜙. 

The Simoni’s area term 𝑠 𝑡 = 𝑎 
(
1 − exp 

{
− 𝜙∕ 𝜙0 

})
can be interpreted

s a true contact area (recall 𝑎 is a dimensionless quantity) between two
urfaces in contact [61] . Its value is increasing with the growth of the
well-time 𝜙. As 𝜙 tends to its maximum value, the true contact area
pproaches to a limit value 𝑠 𝐿 . In case of very large value of 𝜙, the
ontact area approaches to value 𝑎 i.e. the friction force generated from
he dwell-time effect is bounded by 𝜎0 𝑧 max 𝑎 where 𝑧 max is the maximum
eflection of bristles. 

Because the dwell-time variable 𝜙 is coupled with the relative veloc-
ty 𝑣 , the presence of 𝜙 in the model will affect the quasi-zero velocity
erm 𝑔( 𝑣 ) in the LuGre model. 
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Fig. 1. Model of mass block traveling on a belt and model of con- 
tact surfaces as bristles with variation of true contact area from 

the beginning A-A to the end B-B of dwell-time interval. 
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The exploration of the influence of dwell-time on characteris-
ics of sliding motion, presliding motion, stick-slip motion and rate-
ependence of a simple system is studied in detail in a recent paper
y Simoni et al. [61] . The model by Simoni et al. has promising poten-
ial for exploring other engineering systems because it takes advantage
f LuGre model associated with that of Dieterich-Ruina model in which
riction characteristics have been verified from experimental data. In the
ollowing section, we develop the model by Simoni et al. to a problem
f mass block moving on a belt in which stick-slip motion is observed
t low-velocity. Effects related to dwell-time are examined numerically
nd clarified. 

. Model of spring-mass system with dwell-time effect 

Consider a model of mass block traveling on a belt moving at con-
tant speed 𝑣 𝑏 , as shown in Fig. 1 a. The mass block connects to a fixed
all by a spring with stiffness 𝑘 . When moving, the mass contacts with

urface of the belt. The contact surfaces are modeled as elastic bristles
s described in Sect. 2 . Using model proposed by Simoni et al. [61] , the
rue contact area between surfaces varies from the beginning state A-A
o the end state B-B of the dwell-time interval, as illustrated in Fig. 1 b.
he governing equations of the system are written as: 

 ̈𝑥 = − 𝑘𝑥 + 𝜎0 𝑧 
[
1 + 𝑎 

(
1 − exp 

{
− 𝜙∕ 𝜙0 

})]
+ 𝜎1 ̇𝑧 + 𝑐 1 

(
𝑣 𝑏 − �̇� 

)
, (8a) 

̇  = 

(
𝑣 𝑏 − �̇� 

)
− 

𝜎0 ||𝑣 𝑏 − �̇� ||
𝑔 
(
𝑣 𝑏 − �̇� 

) 𝑧, (8b) 

̇ = 1 − 

||𝑣 𝑏 − �̇� ||
𝐷 0 

𝜙, (8c) 

here relative velocity between the mass and belt is 𝑣 𝑟 = 𝑣 𝑏 − �̇� ;
 

(
𝑣 𝑏 − �̇� 

)
is determined based on Eq. (2) for relative velocity 𝑣 𝑏 − �̇�

s follows 

 

(
𝑣 𝑏 − �̇� 

)
= 𝑐 0 + 𝑐 𝑠 exp 

{
− 𝛼||𝑣 𝑏 − �̇� ||}. (9)

In the right-hand side of Eq. (8a) , the first term is spring force,
 𝑠𝑝 = 𝑘𝑥 ; the second term contains two components: the component

0 𝑧 is the elastic force of internal variable 𝑧 , the remaining component

0 𝑎 
(
1 − exp 

{
− 𝜙∕ 𝜙0 

})
𝑧 coupled with the variable 𝑧 is generated from

he consideration of effect of the dwell-time during contact of two sur-
aces; the third and forth terms are related to the damping of internal
ariable state and viscous damping of mass block motion, respectively.
f �̇� is approximate with the belt velocity 𝑣 𝑏 , the contribution of viscous
amping force 𝑐 1 

(
𝑣 𝑏 − �̇� 

)
is not considerable. 

.1. Equilibrium point and added displacement due to dwell-time effect 

The equilibrium point of the system is obtained when derivatives of
ll system state variables in time vanishes, i.e. �̇� = 0 , �̈� = 0 , �̇� = 0 , �̇� =
4 
 . This leads to the following equation for finding equilibrium point
𝑥 𝑒 , 𝑧 𝑒 , 𝜙𝑒 

}
: 

− 𝑘𝑥 + 𝜎0 𝑧 
[
1 + 𝑎 

(
1 − exp 

{
− 𝜙∕ 𝜙0 

})]
+ 𝑐 1 𝑣 𝑏 = 0 , 

𝑣 𝑏 − 

𝜎0 ||𝑣 𝑏 ||
𝑔 
(
𝑣 𝑏 
) 𝑧 = 0 , 

1 − 

||𝑣 𝑏 ||
𝐷 0 

𝜙 = 0 , 

here 𝑔 
(
𝑣 𝑏 
)
= 𝑐 0 + 𝑐 𝑠 exp 

{
− 𝛼𝑣 𝑏 

}
. Solving this system with the assump-

ion of positive belt velocity 𝑣 𝑏 > 0 , we obtain 
{
𝑥 𝑒 , 𝑧 𝑒 , 𝜙𝑒 

}
 𝑒 = 

𝑔 
(
𝑣 𝑏 
)[
1 + 𝑎 

(
1 − exp 

{
− 𝜙𝑒 ∕ 𝜙0 

})]
+ 𝑐 1 𝑣 𝑏 

𝑘 
, (11a) 

 𝑒 = 

𝑔 
(
𝑣 𝑏 
)

𝜎0 
, (11b) 

𝑒 = 

𝐷 0 
𝑣 𝑏 
. (11c) 

Eq. (11c) shows that the equilibrium value of dwell-time variable is
ifferent from zero and is positive. In the case of dwell-time depending
n time t, it is shown that 𝜙( 𝑡 ) is positive for all time because at a certain
ritical time point 𝑡 𝑐𝑟 if exists, the function 𝜙( 𝑡 ) gets minimum value

𝑐𝑟 = 𝐷 0 ∕ 
|||𝑣 (𝑡 𝑐𝑟 )||| and this value is positive. 

It is emphasized that the values 𝑧 𝑒 and 𝜙𝑒 are, respectively, identical
ith values 𝑧 𝑠𝑠 and 𝜙𝑠𝑠 at the sliding steady-state of system motion in
hich derivatives of internal state variables 𝑧, 𝜙 reach to zero at large

elative velocity of mass block on belt. This is because, at large rela-
ive velocity, the bristle deflection tends to a limit value and the sliding
egime starts. The meaning of 𝐷 0 is the finite sliding length, the quan-
ity 𝜙𝑒 has the meaning of sliding time of surface at sliding velocity 𝑣 𝑏 
f the belt. If keeping parameter 𝐷 0 at fixed value, the increase of belt
peed will make the dwell-time 𝜙𝑒 shorter. 

From Eq. (11b), the product 𝑔 
(
𝑣 𝑏 
)
= 𝜎0 𝑧 𝑒 shows that value of func-

ion 𝑔( 𝑣 ) at the velocity 𝑣 𝑏 is the friction force corresponding to the
lastic part of bristles at equilibrium state. It is easy seen that 𝑐 0 ≤ 𝑔 ≤

 0 + 𝑐 𝑠 , where the lower bound 𝑐 0 is the Coulomb friction force and the
pper bound 𝑐 0 + 𝑐 𝑠 is the static friction force. These inequalities for the
unction 𝑔 lead to the fact that the response 𝑧 𝑒 at equilibrium state is
ounded in the interval 𝑐 0 ∕ 𝜎0 ≤ 𝑧 𝑒 ≤ 

(
𝑐 0 + 𝑐 𝑠 

)
∕ 𝜎0 . Moreover, the evolu-

ion response of 𝑧 in time 𝑡 also satisfies 𝑐 0 ∕ 𝜎0 ≤ |𝑧 ( 𝑡 ) | ≤ 

(
𝑐 0 + 𝑐 𝑠 

)
∕ 𝜎0 .

his property of boundedness of average deflection of bristle is con-
rmed by Canudas de Wit et al. [22,23] using the Lyapunov function
ethod. 

From the relationship of responses 𝑧 𝑒 , 𝜙𝑒 and belt velocity 𝑣 𝑏 , one
an express equilibrium deflection 𝑧 𝑒 via the dwell-time 𝜙𝑒 as follows 

0 𝑧 𝑒 = 𝑔 

( 

𝐷 0 
𝜙

) 

= 𝑐 0 + 𝑐 𝑠 exp 
{ 

− 

𝛼𝐷 0 
𝜙

} 

. (12)

𝑒 𝑒 
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As mentioned above, the product 𝐹 elastic , e = 𝜎0 𝑧 𝑒 is value with respect
o elastic component of friction force at equilibrium state. In this situa-
ion, the friction is monotonically increasing with the finite dwell-time
alue 𝜙𝑒 . This means the dwell-time will affect friction force, it makes
riction increase if two surfaces are kept in contact in a certain time
nterval. 

The expression (11a) for the equilibrium displacement response 𝑥 𝑒 
s different from that obtained by the LuGre model because of the con-
ribution of an added displacement component 𝑥 𝑒, dw generated by the
well-time effect: 

 𝑒, dw = 

𝑎𝑔 
(
𝑣 𝑏 
)(
1 − exp 

{
− 𝜙𝑒 ∕ 𝜙0 

})
𝑘 

. (13)

Substituting the expression of 𝑔( 𝑣 𝑏 ) and dwell-time 𝜙𝑒 from
q. (11c) into Eq. (13) , we obtain 

 𝑒, dw = 

𝑎𝑐 0 
𝑘 

( 

1 + 

𝑐 𝑠 

𝑐 0 
exp 

{
− 𝛼𝑣 𝑏 

}) ( 

1 − exp 
{ 

− 

𝐷 0 
𝜙0 𝑣 𝑏 

} ) 

. (14)

Eq. (14) shows the dependence of the added displacement 𝑥 𝑒, dw 
n the belt velocity. The quantity 𝑐 0 ∕ 𝑘 can be considered as a dis-
lacement of a unit mass with the pulling force being equal to the
oulomb friction force. The displacement 𝑎𝑐 0 ∕ 𝑘 obtained from displace-
ent 𝑐 0 ∕ 𝑘 by a scale coefficient 𝑎 that plays role of true contact area of

wo surfaces in contact. In Eq. (14) , the first dimensionless component
 + 

(
𝑐 𝑠 ∕ 𝑐 0 

)
exp 

{
− 𝛼𝑣 𝑏 

}
is the contribution of the Stribeck effect whereas

he second component 1 − exp 
{
− 𝐷 0 ∕ 

(
𝜙0 𝑣 𝑏 

)}
is produced from the re-

ult of dwell-time effect. In the cases of limit, if belt velocity tends to
nfinity, both the Stribeck and dwell-time effects disappears, and there-
ore, the added displacement is equal zero: 

lim 

 𝑏 →+∞
𝑥 𝑒, dw = 0 . (15)

In near-zero range of the belt velocity, it is seen from Eq. (11c) that
he dwell-time 𝜙𝑒 is very large. Therefore, the exponential term
xp 

{
− 𝐷 0 ∕ 

(
𝜙0 𝑣 𝑏 

)}
is approximate to zero whereas the term exp 

{
− 𝛼𝑣 𝑏 

}
s near unit value. As a consequence, the limit of added displacement is

lim 

 𝑏 →0 
𝑥 𝑒, dw = 

𝑎𝑐 0 
𝑘 

( 

1 + 

𝑐 𝑠 

𝑐 0 

) 

. (16)

If we consider 𝑥 𝑒, dw as a function of velocity 𝑣 𝑏 , it can be shown that
he function 𝑥 𝑒, dw is monotonically decreasing with respect to variable
 𝑏 . Hence, the value of 𝑥 𝑒, dw is bounded in a range with lower bound
etermined from (15) and upper bound determined from (16): 

 ≤ 𝑥 𝑒, dw ≤ 

𝑎𝑐 0 
𝑘 

( 

1 + 

𝑐 𝑠 

𝑐 0 

) 

. (17)

The equilibrium point in Eq. (11) can be stable or unstable depend-
ng on the determination range of system parameters. In the following
ubsection, the Routh-Hurwitz criterion is used to examine the stability
f the equilibrium point and effects of dwell-time on the stable property
f the system. 

.2. Stability conditions of equilibrium point via Routh-Hurwitz criterion 

The system (8 a,b,c) is rewritten as 

�̇� = 𝑄 1 ( 𝑥, 𝑦, 𝑧, 𝜙) ∶= 𝑦, 

�̇� = 𝑄 2 ( 𝑥, 𝑦, 𝑧, 𝜙) ∶= − 

𝑘 

𝑚 

𝑥 + 

𝜎0 
𝑚 

𝑧 
[
1 + 𝑎 

(
1 − exp 

{
− 𝜙∕ 𝜙0 

})]
+ 

𝜎1 
𝑚 

[(
𝑣 𝑏 − 𝑦 

)
− 𝜎0 𝑧ℎ 

(
𝑣 𝑏 − 𝑦 

)]
+ 

𝑐 1 
𝑚 

(
𝑣 𝑏 − 𝑦 

)
, 

�̇� = 𝑄 3 ( 𝑥, 𝑦, 𝑧, 𝜙) ∶= 

(
𝑣 𝑏 − 𝑦 

)
− 𝜎0 𝑧ℎ 

(
𝑣 𝑏 − 𝑦 

)
, 

̇ = 𝑄 4 ( 𝑥, 𝑦, 𝑧, 𝜙) ∶= 1 − 

||𝑣 𝑏 − 𝑦 ||
𝐷 0 

𝜙, (18) 

here ℎ ( 𝑣 ) = |𝑣 |∕ 𝑔 ( 𝑣 ) is a function of velocity argument 𝑣 ; 𝑄 𝑗 =
 𝑗 ( 𝑥, 𝑦, 𝑧, 𝜙) (j = 1,2,3,4) are nonlinear functions of state vector variable
 = [ 𝑥 𝑦 𝑧 𝜙] 𝑇 . To analyze properties of stability of the system (18),
5 
e linearize this system in neighborhood of the equilibrium point of
tate vector variable, i.e. the point 𝐰 𝑒 = 

[
𝑥 𝑒 0 𝑧 𝑒 𝜙𝑒 

]𝑇 . Denote �̃� =
 − 𝑥 𝑒 , �̃� = 𝑦 − 0 , �̃� = 𝑧 − 𝑧 𝑒 , �̃� = 𝜙 − 𝜙𝑒 as disturbances of state vector
omponents around the equilibrium point 𝐰 𝑒 . The linearized equation
ystem takes the following form 

̇̃
 = 𝐉 

(
𝐰 𝐞 

)
�̃� , (19)

here 𝐉 
(
𝐰 𝑒 

)
is the Jacobian matrix of nonlinear vector 𝐐 =

𝑄 1 𝑄 2 𝑄 3 𝑄 4 
]𝑇 

calculated at the point 𝐰 𝑒 : 

 

(
𝐰 𝑒 

)
= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
0 1 0 0 
𝑗 21 𝑗 22 𝑗 23 𝑗 24 
0 𝑗 32 𝑗 33 0 
0 𝑗 42 0 𝑗 44 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
, (20)

here 8 elements of the matrix 𝐉 are displayed in which they contain
ystem parameters, other elements are either equal to zero or one: 

 21 = − 

𝑘 

𝑚 

, 

 22 = 

𝛼𝜎1 𝑐 𝑠 
𝑚 

ℎ 
(
𝑣 𝑏 
)
exp 

{
− 𝛼𝑣 𝑏 

}
− 

𝑐 1 
𝑚 

, 

 23 = 

𝜎0 
𝑚 

[
1 + 𝑎 

(
1 − 𝑅 

(
𝑣 𝑏 
))]

− 

𝜎0 𝜎1 
𝑚 

ℎ 
(
𝑣 𝑏 
)
, 

 24 = 

𝑎 

𝑚𝜙0 
𝑔 
(
𝑣 𝑏 
)
𝑅 

(
𝑣 𝑏 
)
, 

 32 = 𝛼𝑐 𝑠 ℎ 
(
𝑣 𝑏 
)
exp 

{
− 𝛼𝑣 𝑏 

}
, 

 33 = − 𝜎0 ℎ 
(
𝑣 𝑏 
)
, 

 42 = 

1 
𝑣 𝑏 
, 

 44 = − 

𝑣 𝑏 

𝐷 0 
, (21) 

here ℎ 
(
𝑣 𝑏 
)
= 𝑣 𝑏 ∕ 𝑔 

(
𝑣 𝑏 
)
; the term 𝑅 = 𝑅 

(
𝑣 𝑏 
)
= exp 

{
− 𝐷 0 ∕ 

(
𝜙0 𝑣 𝑏 

)}
is re-

ated to the true contact area 𝑎 ( 1 − 𝑅 ) between two surfaces. In this rep-
esentation, 𝑅 is a function of the parameter 𝑣 𝑏 and also depends on two
arameters of dwell-time effect, 𝐷 0 , 𝜙0 . The characteristic polynomial of
he matrix (20) is given by 

4 + 𝑏 3 𝜆
3 + 𝑏 2 𝜆

2 + 𝑏 1 𝜆 + 𝑏 0 = 0 , (22)

here coefficients of the polynomial are determined as follows 

 3 = − 

(
𝑗 22 + 𝑗 33 + 𝑗 44 

)
, 

 2 = 𝑗 22 𝑗 33 + 𝑗 22 𝑗 44 + 𝑗 33 𝑗 44 − 𝑗 23 𝑗 32 − 𝑗 24 𝑗 42 − 𝑗 21 , 

 1 = − 𝑗 22 𝑗 33 𝑗 44 + 𝑗 23 𝑗 32 𝑗 44 + 𝑗 24 𝑗 42 𝑗 33 + 𝑗 33 𝑗 21 + 𝑗 44 𝑗 21 , 

 0 = − 𝑗 33 𝑗 44 𝑗 21 . (23) 

Substituting elements 𝑗 𝑟𝑠 from Eqs. (21) into Eqs. (23) and collecting
xpressions 𝑏 𝑖 ( 𝑖 = 1 , 2 , 3 , 4) in terms of dimensionless quantity 𝛼𝑣 𝑏 , we
btain 

 3 = 

𝜎0 
𝛼𝑐 0 

�̃� 3 
(
𝑣 𝑏 , 𝑘, 𝑐 1 

)
, 

 2 = 

𝑘 

𝑚 

�̃� 2 
(
𝑣 𝑏 , 𝑘, 𝑐 1 

)
, 

 1 = 

𝑘 

𝑚 

𝜎0 
𝛼𝑐 0 

�̃� 1 
(
𝑣 𝑏 , 𝑘, 𝑐 1 

)
, 

 0 = 

(
𝑘 
)2 
�̃� 0 
(
𝑣 𝑏 , 𝑘, 𝑐 1 

)
, 

(24) 
𝑚 
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here �̃� 3 , �̃� 2 , �̃� 1 , �̃� 0 are dimensionless coefficients determined as fol-
ows 

̃
 3 = 

𝛼𝑣 𝑏 

1 + 𝜇𝑠 exp 
{
− 𝛼𝑣 𝑏 

}[ 1 − 

𝛼𝜎1 𝑐 𝑠 

𝑚𝜎0 
exp 

{
− 𝛼𝑣 𝑏 

}] 
+ 

𝑐 0 

𝜎0 𝐷 0 

(
𝛼𝑣 𝑏 

)
+ 

(
𝛼𝑐 0 

)2 
𝑚𝜎0 

𝑐 1 

𝛼𝑐 0 
,

̃
 2 = 1 − 

𝑐 𝑠 

𝑐 0 

𝜎0 

𝑘 

[ 
𝜎1 

𝛼𝑐 0 

𝑐 0 

𝜎0 𝐷 0 

(
𝛼𝑣 𝑏 

)
+ 1 + 𝑎 

(
1 − 𝑅 

(
𝑣 𝑏 
))] 𝛼𝑣 𝑏 exp {− 𝛼𝑣 𝑏 

}
1 + 𝜇𝑠 exp 

{
− 𝛼𝑣 𝑏 

}
+ 

𝜎0 

𝑘 

( 

𝑐 1 

𝛼𝑐 0 
+ 

𝑚𝜎0 

𝛼2 𝑐 2 0 

𝑐 0 

𝜎0 𝐷 0 

(
𝛼𝑣 𝑏 

)) 

𝛼𝑣 𝑏 

1 + 𝜇𝑠 exp 
{
− 𝛼𝑣 𝑏 

}
− 

𝑎𝛼𝑐 0 

𝜎0 𝜙0 

𝜎0 

𝑘 

1 + 𝜇𝑠 exp 
{
− 𝛼𝑣 𝑏 

}
𝛼𝑣 𝑏 

𝑅 

(
𝑣 𝑏 
)
+ 

𝑐 1 

𝛼𝑐 0 

𝑐 0 

𝜎0 𝐷 0 

𝜎0 

𝑘 

(
𝛼𝑣 𝑏 

)
, 

̃
 1 = − 

𝑐 𝑠 

𝑐 0 

𝑐 0 

𝜎0 𝐷 0 

𝜎0 

𝑘 

(
𝛼𝑣 𝑏 

)
×

{ [
1 + 𝑎 

(
1 − 𝑅 

(
𝑣 𝑏 
))] 𝛼𝑣 𝑏 exp 

{
− 𝛼𝑣 𝑏 

}
1 + 𝜇𝑠 exp 

{
− 𝛼𝑣 𝑏 

} − 

𝑐 0 

𝑐 𝑠 

𝑐 1 

𝛼𝑐 0 

𝛼𝑣 𝑏 

1 + 𝜇𝑠 exp 
{
− 𝛼𝑣 𝑏 

}}

− 

𝑎𝛼𝑐 0 

𝜎0 𝜙0 

𝜎0 

𝑘 
𝑅 

(
𝑣 𝑏 
)
+ 

𝛼𝑣 𝑏 

1 + 𝜇𝑠 exp 
{
− 𝛼𝑣 𝑏 

} + 

𝑐 0 

𝜎0 𝐷 0 

(
𝛼𝑣 𝑏 

)
, 

̃
 0 = 

𝑚𝜎0 

𝛼2 𝑐 2 0 

𝜎0 

𝑘 

𝑐 0 

𝜎0 𝐷 0 

(
𝛼𝑣 𝑏 

)2 
1 + 𝜇𝑠 exp 

{
− 𝛼𝑣 𝑏 

} , 
(25) 

here 𝜇𝑠 = 𝑐 𝑠 ∕ 𝑐 0 . In (25), we collect original system parameters into a
et of dimensionless parameters, ℑ , 

 = 

{ 

𝛼𝑣 𝑏 , 𝜇𝑠 , 
𝛼𝜎1 𝑐 𝑠 

𝑚𝜎0 
, 

𝑐 0 

𝜎0 𝐷 0 
, 
𝛼2 𝑐 2 0 

𝑚𝜎0 
, 
𝑐 1 

𝛼𝑐 0 
, 
𝜎0 

𝑘 
, 
𝜎1 

𝛼𝑐 0 
, 
𝑎𝛼𝑐 0 

𝜎0 𝜙0 

} 

. 

(26) 

Here, we consider coefficients ̃𝑏 3 , �̃� 2 , �̃� 1 , �̃� 0 as functions of three in-
erested arguments 𝑣 𝑏 , 𝑘, 𝑐 1 in our numerical investigation of stability
nalysis. 

The Routh-Hurwitz criterion [63–66] implies that the equilibrium
oint 𝐰 𝐞 is asymptotically stable if and only if coefficients 𝑏 𝑖 , ( 𝑖 =
 , 2 , 3 , 4) satisfy the following conditions: 

 0 > 0 , 𝑏 3 > 0 , 
𝑏 2 𝑏 3 − 𝑏 1 
𝑏 3 

> 0 , (
𝑏 2 𝑏 3 − 𝑏 1 

)
𝑏 1 − 𝑏 2 3 𝑏 0 

𝑏 2 𝑏 3 − 𝑏 1 
> 0 . 

(27) 

Substitution of (24) into (27) yields 

 1 = ̃𝑏 0 > 0 , 
 2 = ̃𝑏 3 > 0 , 

 3 = 

�̃� 2 �̃� 3 − ̃𝑏 1 

�̃� 3 
> 0 , 

 4 = 

(
�̃� 2 �̃� 3 − ̃𝑏 1 

)
�̃� 1 − ̃𝑏 2 3 �̃� 0 

�̃� 2 �̃� 3 − ̃𝑏 1 
> 0 , 

(28) 

here we denote 𝜍 𝑖 ( 𝑖 = 1 , 2 , 3 , 4 ) as functions of system parameters. It
s easily seen that the condition 𝜍 1 = ̃𝑏 0 > 0 is obvious. The condition
 2 = ̃𝑏 3 > 0 gives: 

𝛼𝑣 𝑏 

1 + 𝜇𝑠 exp 
{
− 𝛼𝑣 𝑏 

}[ 1 − 

𝛼𝜎1 𝑐 𝑠 
𝑚𝜎0 

exp 
{
− 𝛼𝑣 𝑏 

}] 
 

𝑐 0 
𝜎0 𝐷 0 

(
𝛼𝑣 𝑏 

)
+ 

(
𝛼𝑐 0 

)2 
𝑚𝜎0 

𝑐 1 
𝛼𝑐 0 

> 0 
(29) 

We assume that the magnitude of parameter 𝜎0 is enough large
n comparison with that of parameters 𝛼, 𝜎1 , 𝑐 𝑠 so that the in-
quality 𝛼𝜎1 𝑐 𝑠 ∕ 

(
𝑚𝜎0 

)
≪ 1 holds. The inequality exp 

{
− 𝛼𝑣 𝑏 

}
≤ 1 holds
6 
or all positive velocity 𝑣 𝑏 . From these inequalities, we have
𝜎1 𝑐 𝑠 ∕ 

(
𝑚𝜎0 

)
exp 

{
− 𝛼𝑣 𝑏 

}
< 1 . Consequently, the condition �̃� 3 > 0 is ful-

lled. 
Due to the complicated expressions of the remaining conditions in

28), they are not been displayed here. Characteristics of stability are
hecked via numerical calculations in Section 4 . 

.3. Stability conditions for the case of LuGre model 

When the dwell-time is not considered, Eq. (22) is reduced to the
uGre model and the corresponding characteristic polynomial equation
s given by: 

3 + 𝑙 2 𝜆
2 + 𝑙 1 𝜆 + 𝑙 0 = 0 , (30)

here 

 2 = 

𝑘 

𝑚 

𝑙 2 
(
𝑣 𝑏 , 𝑘, 𝑐 

)
, 𝑙 1 = 

𝑘 

𝑚 

𝜎0 
𝛼𝑐 0 

𝑙 1 
(
𝑣 𝑏 , 𝑘, 𝑐 

)
, 𝑙 0 = 

(
𝑘 

𝑚 

)2 
𝑙 0 
(
𝑣 𝑏 , 𝑘, 𝑐 

)
(31)

ith ̃𝑙 𝑖 ( 𝑖 = 1 , 2 , 3 ) being dimensionless coefficients defined as follows 

 ̃2 = 

𝛼𝑣 𝑏 

1 + 𝜇𝑠 exp 
{
− 𝛼𝑣 𝑏 

}[ 1 − 

𝛼𝜎1 𝑐 𝑠 
𝑚𝜎0 

exp 
{
− 𝛼𝑣 𝑏 

}] 

+ 

(
𝛼𝑐 0 

)2 
𝑚𝜎0 

𝑐 1 
𝛼𝑐 0 

, 

 ̃1 = 1 − 

𝑐 𝑠 

𝑐 0 

𝜎0 
𝑘 

𝛼𝑣 𝑏 exp 
{
− 𝛼𝑣 𝑏 

}
1 + 𝜇𝑠 exp 

{
− 𝛼𝑣 𝑏 

}
+ 

𝜎0 
𝑘 

𝑐 1 
𝛼𝑐 0 

𝛼𝑣 𝑏 

1 + 𝜇𝑠 exp 
{
− 𝛼𝑣 𝑏 

} , 
 ̃0 = 

𝛼𝑣 𝑏 

1 + 𝜇𝑠 exp 
{
− 𝛼𝑣 𝑏 

} . (32) 

It is observed that the expressions 𝑙 2 , ̃𝑙 1 , ̃𝑙 0 from (32) are obtained
rom (25) by removing terms related to parameters 𝐷 0 , 𝜙0 , 𝑎 of dwell-
ime effect in the expressions �̃� 3 , ̃𝑏 2 , ̃𝑏 1 , respectively. 

The condition for stability of the LuGre model is 

 0 > 0 , 𝑙 2 > 0 , 
 1 𝑙 2 − 𝑙 0 > 0 . 

(33) 

The substitution of (31) into (33) yields 

 ̃0 > 0 , 𝑙 2 > 0 , 
 ̃1 𝑙 2 − ̃𝑙 0 > 0 . 

(34) 

Assume that the inequality 𝛼𝜎1 𝑐 𝑠 ∕ 
(
𝑚𝜎0 

)
≪ 1 holds, as presented in

29) for the two-state model, we also have 𝑙 2 > 0 . The stability condi-
ion of equilibrium point of the LuGre model is now dependent on the
hird condition in (34), i.e. ̃𝑙 1 𝑙 2 − ̃𝑙 0 > 0 . This condition will be checked
umerically in the Section 4 . 

.4. Hopf bifurcation 

A Hopf bifurcation analysis is necessary to identify the appearance
r disappearance of a periodic orbit through a local change in the stabil-
ty properties of a fixed point of nonlinear dynamical systems [68,69] .
he bifurcated limit cycles can be observed in phase space of dynamical
ystems. In the traditional approach, the Hopf bifurcation is stated in
erms of the properties of eigenvalues in which a pair of complex con-
ugate eigenvalues of the Jacobian matrix pass through the imaginary
xis while all other eigenvalues have negative real parts [67] . This ap-
roach is convenient in cases eigenvalues can be found explicitly. To
heck the existence of Hopf bifurcation of system (18), however, we use
nother equivalent implicit algorithm criterion of Hopf bifurcation de-
eloped by Liu [70] , called Liu’s criterion, on the basis of the Routh-
urwitz stability criterion, which is stated in terms of the coefficients
f the characteristic equations instead of those of eigenvalues. Applying
he Liu’s criterion [70] to the characteristic polynomial (22), we have
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Fig. 2. Graphs of curves 𝜍 2 = 𝜍 2 
(
𝑣 𝑏 
)
, 𝜍 3 = 𝜍 3 

(
𝑣 𝑏 
)

with the viscous damping co- 
efficient 𝑐 1 = 0 . 5 . 

Table 1 

Parameters used in simulation. 

Description/Unit Notation Value 

Spring stiffness (Nm −1 ) 𝑘 100 
Mass (kg) 𝑚 1 
Internal stiffness (Nm −1 ) 𝜎0 60,000 
Internal damping (Nsm −1 ) 𝜎1 2 
Viscous damping (Nsm −1 ) 𝑐 1 0.5 
Coulomb friction (N) 𝑐 0 15 
Friction difference (N) 𝑐 𝑠 10 
Stribeck velocity coefficient (sm −1 ) 𝛼 1 
Sliding length (m) 𝐷 0 0.002 
Surface contact area coefficient 𝑎 0.1 

Fig. 3. Plots of curve 𝜍 4 = 𝜍 4 
(
𝑣 𝑏 
)

with various values of viscous damping coef- 
ficient 𝑐 1 for determining velocity range of belt corresponding to stable state of 
equilibrium point. The zero-points 2.9958, 2.3026, 1.6095 in the graphs of the 
curve 𝜍 4 are corresponding to the cases 𝑐 1 = 0 . 5 , 1 . 0 , 2 . 0 . 
he following conditions for the occurrence of Hopf bifurcation with bi-
urcation parameters 𝑣 𝑏 : 

 𝐿 1) ∶ 𝑏 0 > 0 , 𝑏 3 > 0 , 𝑏 2 𝑏 3 − 𝑏 1 > 0 , 𝑏 1 𝑏 2 𝑏 3 − 𝑏 0 𝑏 
2 
3 − 𝑏 2 1 = 0 (35)

 𝐿 2) ∶ 𝑑 

𝑑𝑣 𝑏 

(
𝑏 1 𝑏 2 𝑏 3 − 𝑏 0 𝑏 

2 
3 − 𝑏 2 1 

)
≠ 0 (36)

here the coefficients 𝑏 3 , 𝑏 2 , 𝑏 1 , 𝑏 0 are determined from (23). Using the
ransformation of coefficients (24), the conditions (L1) and (L2) can
e rewritten in terms of dimensionless coefficients �̃� 3 , �̃� 2 , �̃� 1 , �̃� 0 as fol-
ows 

 𝐿 1) ∶ �̃� 1 = �̃� 0 > 0 , �̃� 2 = ̃𝑏 3 > 0 , �̃� 3 = ̃𝑏 2 �̃� 3 − ̃𝑏 1 > 0 , 

�̃� 4 = ̃𝑏 1 �̃� 2 �̃� 3 − ̃𝑏 0 �̃� 
2 
3 − ̃𝑏 2 1 = 0 (37) 

 𝐿 2) ∶ 𝑑 

𝑑𝑣 𝑏 

(
�̃� 4 
)
≠ 0 (38)

It is noted that the condition (L2) also can be applied to other
ifurcation parameters of the system. Three conditions �̃� 0 > 0 , �̃� 3 >
 , �̃� 2 �̃� 3 − ̃𝑏 1 > 0 are shown as similar to that in (28) for Routh-Hurwitz
riterion. The fourth condition �̃� 4 = ̃𝑏 1 �̃� 2 �̃� 3 − ̃𝑏 0 �̃� 

2 
3 − ̃𝑏 2 1 = 0 is equivalent

o the equation 𝜍 4 = 𝜍 4 
(
𝑣 𝑏 
)
= 0 where 𝜍 4 is determined from (28) be-

ause if removing the denominator term from 𝜍 4 , the equation �̃� 4 = 0 is
btained. The condition (L2) is checked by numerical calculation as pre-
ented in Section 4 . We are interested in the equation �̃� 4 = 0 for which
 relationship between system parameters is formed, for example, the
elation �̃� 4 

(
𝑣 𝑏 , 𝑘, 𝑐 1 

)
= 0 for the belt velocity 𝑣 𝑏 , stiffness 𝑘 and damp-

ng coefficient 𝑐 1 . The picture of Hopf bifurcation for the system (18) is
llustrated in Fig. 11 . 

. Numerical simulations and analysis 

.1. Stable and unstable zones with dwell-time effect 

Stable and unstable zones of equilibrium point in the plane of a cer-
ain pair of system parameters are formulated based on solving inequal-
ties obtained from the Routh-Hurwitz criterion (28) for the present
wo-state model and (34) for the LuGre model. As shown before in
29), the system of inequalities (28) gives 𝜍 1 > 0 , 𝜍 2 > 0 . The inequalities
 3 > 0 , 𝜍 4 > 0 are checked by numerical calculations for various values
f system parameters. Here, we are interested in three parameters: the
elt velocity 𝑣 𝑏 , viscous damping coefficient 𝑐 1 , and stiffness 𝑘 . Because
he parameter 𝑣 𝑏 contributes the change of relative velocity between
urfaces of mass element and belt, in this study, the phenomenon of
tick-slip motion of the mass block on the belt will be observed with the
onsideration of dwell-time effect in our model. The parameter 𝑐 1 con-
ributes the viscous damping effect of friction force. The viscous effect
n the stability of the equilibrium point is considerable if the parameter
 1 has a enough large value. The stiffness parameter 𝑘 is a scale factor
f the elastic force acting on the mass block. During motion there is an
xchange of energy between elastic energy potential of spring and en-
rgy dissipation of friction force, and therefore the exploration of effect
f stiffness 𝑘 will be considered in our numerical analysis. 

For a set of system parameters, the stable state of equilibrium point
an be reached if belt velocity 𝑣 𝑏 lies on an appropriate range that sat-
sfies the condition of Routh-Hurwitz criterion. Fig. 2 portrays graphs
f curves 𝜍 2 = 𝜍 2 

(
𝑣 𝑏 
)
, 𝜍 3 = 𝜍 3 

(
𝑣 𝑏 
)

with the viscous damping coefficient
 1 = 0 . 5 

(
Nsm 

−1 ). The calculation parameters are given in Table 1 . The
unctions 𝜍 2 , 𝜍 3 increase monotonically and larger than zero for all pos-
tive value 𝑣 𝑏 . The positive value of 𝜍 2 is confirmed from analytical
xpression (29) whereas that of 𝜍 3 is shown by the numerical illus-
ration in Fig. 2 . Fig. 3 exhibits the behavior of function 𝜍 4 = 𝜍 4 

(
𝑣 𝑏 
)

ith various values of viscous damping coefficient 𝑐 1 . The function 𝜍 4 
s positive if 𝑣 𝑏 is larger than a value 𝑣 𝑏,𝑍𝑃 that is a zero-point of Eq.
 4 
(
𝑣 𝑏 
)
= 0 . The solution 𝑣 𝑏,𝑍𝑃 is obtained using the Newton-Raphson
7 
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Table 2 

Values of zero-points of function 𝜍 4 
(
𝑣 𝑏 
)

with various values of viscous damping coefficients 𝑐 1 for two models: 
LuGre and present two-state friction models. 

𝑐 1 0.2 0.3 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

LuGre 3.9120 3.5066 2.9957 2.3026 1.8971 1.6094 1.3863 1.2039 1.0498 0.9162 
Present 3.9121 3.5066 2.9958 2.3026 1.8972 1.6095 1.3864 1.2040 1.0499 0.9164 

Fig. 4. Plot of zero-point curve of the function 𝜍 4 
(
𝑣 𝑏 
)

versus the viscous damp- 
ing coefficient 𝑐 1 . The stable zone (I) and unstable zone (II) are separated by the 
zero-point curve, called boundary velocity curve. 

m  

l  

c  

𝑣  

v  

𝑣  

p  

𝑐  

s  

(  

a  

r  

t  

a
 

m
i  

m  

a  

l  

a  

i  

o  

d  

d  

e  

s  

p  

e  

i
 

l  

c  

p  

w  

Fig. 5. Difference between values of zero-point curves corresponding to the 
present friction model and LuGre model. Zero-points corresponding to the LuGre 
model are obtained by solving the last equation of Eqs. (34) , i.e. ̃𝑙 1 𝑙 2 − ̃𝑙 0 = 0 . 

Fig. 6. Stable and unstable zones in plane 𝑘 − 𝑣 𝑏 for the present friction model 
are separated by the zero-point curve of the function 𝜍 4 

(
𝑣 𝑏 
)

versus the stiffness 
parameter 𝑘 . The value of 𝑘 is taken from 100 to 60,000 𝑁𝑚 −1 . 
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ethod for Eq. 𝜍 4 
(
𝑣 𝑏 
)
= 0 . The equilibrium point is stable if the belt ve-

ocity 𝑣 𝑏 is on the range 𝑣 𝑏 > 𝑣 𝑏,𝑍𝑃 . In the following, the value 𝑣 𝑏,𝑍𝑃 is
alled the boundary velocity . In Fig. 3 , for 𝑐 1 = 0 . 5 

(
Nsm 

−1 ), the point
 𝑏,𝑍𝑃 is found to be 𝑣 𝑏,𝑍𝑃 = 2 . 9958 

(
ms −1 

)
. For larger viscous damping

alue 𝑐 1 = 2 . 0 
(
Nsm 

−1 ), value of zero-point 𝑣 𝑏,𝑍𝑃 is shifted to left, i.e.
 𝑏,𝑍𝑃 = 1 . 6095 

(
ms −1 

)
. Table 2 presents calculation data of finding zero-

oints 𝑣 𝑏,𝑍𝑃 with ten different values of viscous damping coefficient
 1 for two cases: the present and LuGre models. The zero-points corre-
ponding to the LuGre model are obtained from Eq. 𝑙 1 𝑙 2 − ̃𝑙 0 = 0 [see
34)]. It is observed that the zero-points obtained from the LuGre model
re smaller than those obtained from the present two-state model. This
eveals that dwell-time effect makes friction force larger, and therefore
he belt needs a corresponding larger speed value to keep the mass block
t equilibrium point. 

Fig. 4 displays the graph of data in Table 2 for the present two-state
odel. The curve of zero-point 𝑣 𝑏,𝑍𝑃 versus the damping coefficient 𝑐 1 

llustrates a boundary of stable zone (I) and unstable zone (II) for present
odel with dwell-time effect. The increase of viscous damping leads to
 result in which the boundary velocity 𝑣 𝑏,𝑍𝑃 will be pulled down to a
ower level. That means the stable state can be reached at low velocity
nd large damping. The difference between zero-points of two models
s demonstrated in Fig. 5 via the numerical simulation with a set value
f damping coefficient 𝑐 1 varying from 0.2 to 4.0 

(
Nsm 

−1 ). The smallest
ifference value is reached at about 𝑐 1 = 1 

(
Nsm 

−1 ) whereas the evident
ifference is at large value of viscous damping. The positive difference
xhibits that the presence of the dwell-time effect has caused a small
hift of stable zone to the direction of increase of belt velocity in com-
arison with stable zone obtained from the LuGre model. The effect is
vident at large value of viscous damping because the factor of increas-
ng damping makes motion of mass block become slower. 

The stable and unstable zones of equilibrium point are also formu-
ated in the plane 𝑘 − 𝑣 𝑏 for our present friction model. The numeri-
al results for boundary velocity versus the spring stiffness 𝑘 are de-
icted in Fig. 6 . These results are obtained by solving Eq. 𝜍 4 

(
𝑣 𝑏 
)
= 0

ith fixed value 𝑐 1 = 0 . 5 
(
Nsm 

−1 ) and various values of stiffness 𝑘 from
8 
00 to 60,000 ( Nm 

−1 ) . The remaining used parameters are the same as
n Fig. 4 (see Table 1 ). It is seen that the change of the boundary ve-
ocity versus the stiffness parameter 𝑘 almost decreases linearly. In the
onsidered range, 100 ≤ 𝑘 ≤ 60000 , the increase of stiffness leads to the
escent of belt velocity to attain the stable state of equilibrium point.
his descent, however, is quite small, about 0 . 2 × 10 −3 ( ms −1 ) from the
aximum to minimum values of boundary velocity curve. Fig. 7 shows

hat the difference of values of zero-point curves between the present
nd LuGre models in plane 𝑘 − 𝑣 𝑏 is positive in the considered range of
elt velocity. There is a slight shift of zero-point curve of the present
odel in the direction of increase in belt velocity in comparison with

hat of the LuGre model. This mechanism reveals the effect of dwell-
ime, i.e. it can make the motion of mass element become heavier due
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Fig. 7. Difference between values of zero-point curves corresponding to the 
present friction model and LuGre model in plane 𝑘 − 𝑣 𝑏 . 

Fig. 8. Plots of evolutions of displacement 𝑥 , relative velocity 𝑣 𝑟𝑒 = 𝑣 𝑏 − �̇� and 
friction force for the two-state and LuGre models in case of belt velocity 𝑣 𝑏 = 0 . 1 . 
The time intervals of stick and slip phases are distinguished by cyan and yellow 

colors (color online). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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Fig. 9. Comparison of evolutions of displacement 𝑥 , relative velocity 𝑣 𝑟𝑒 = 
𝑣 𝑏 − �̇� and friction force for the two-state and LuGre models in case of small 
belt velocity 𝑣 𝑏 = 0 . 03 . The initial condition is chosen to be [ 0 . 2 0 . 1 0 0 ] 𝑇 for 
displacement, velocity, internal variable 𝑧 and dwell-time 𝜙, respectively. 

Fig. 10. Graph of 𝑑 ̃𝜍 4 ∕ 𝑑𝑣 𝑏 and its zero-point. 
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o the increasing friction effect, and a larger belt velocity is needed to
eep the mass at the equilibrium point. 

.2. Stick-slip motion analysis with two friction models 

In this subsection, we investigate the behavior of stick-slip motion of
ass block on the belt for the two-state and LuGre models. Parameters in

ur simulation for Eqs. (8 a,b,c) are given in Table 1 . Numerical results
re shown in Figs. 8 –15 . 
9 
In Fig. 8 , results for displacement 𝑥 ( 𝑡 ) , relative velocity 𝑣 𝑟𝑒 = 𝑣 𝑏 − �̇�

nd friction force 𝐹 𝑓𝑟 corresponding to two models are compared in time
omain. The time interval is taken to be [0, 6] (s). The initial condition
𝑥 ( 0 ) �̇� ( 0 ) 𝑧 ( 0 ) 𝜙( 0 ) 

]𝑇 
in our simulation for the system state

ector is chosen to be 
[

0 . 2 𝑣 𝑏 0 0 
]𝑇 

, where �̇� ( 0 ) = 𝑣 𝑏 = 0 . 1
uarantees that at the initial relative velocity, there is no deformation
f bristle and initial deflection 𝑧 (0) is set to be zero. The dwell-time
ariable is of zero and the mass block is at rest on the belt at the start-
ng time of motion. The expression for friction force is determined from
q. (6) where the notation 𝑣 is replaced by relative velocity 𝑣 𝑏 − �̇� . This
xpression occurs in the right-hand side of Eq. (8a) . The initial value
f friction force determined from the initial condition of system state is
ero. 
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Fig. 11. The phase trajectories of 𝑥 − 𝑥 𝑒 and �̇� for three cases of point ( 𝑐 1 , 𝑣 𝑏 ) : 𝑆 1 (0 . 5 , 3 . 5) , 𝑆 2 (0 . 5 , 2 . 9958) , 𝑆 3 (0 . 5 , 0 . 03) belong to stable zone, boundary curve and 
unstable zone. Squared shape notation: starting point of phase trajectory. 
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In the first interval of time, about 0.6 (s), the mass block is in stick
hase in which it is kept on the belt with near-zero relative velocity.
his is because the friction force is predominant, the spring force is not
nough large to overcome the magnitude of this friction force. Due to
he existence of micro-motion during stick phase, the relative velocity
etween surfaces of belt and mass block is different from zero with very
mall relative value. This leads to the variation of friction force from
ero at rest to non-zero values during motion because the micro-motion
s related to the time-varying of internal state variable response of bristle
n the friction model. [ The internal variable was introduced in the LuGre

odel to capture the micro-motions that affects the change of friction force

uring stick phase ]. 
When spring force is larger than friction force, the mass block starts

oving on the belt and the stick phase is replaced by a slip phase. Dur-
ng slip motion, relative velocity is increasing considerably in time in
omparison with that of stick phase. After a maximum value of relative
elocity 𝑣 𝑟𝑒 is reached, this velocity begins to decrease gradually to near-
ero values. There is a phenomenon of rapidly dropping of friction force
t near-zero relative velocity before increasing again to compensate for
he force from spring. 

It is observed from Fig. 8 that the system motion is almost periodic
ith two phases of stick and slip changing alternatively. The system
ehaviors obtained from two models have similar shapes. However, due
o the consideration of dwell-time effect, the system behavior of the two-
tate model has a delay in phase in comparison with that of the LuGre
 m  

10 
odel. This is because the dwell-time effect between two surfaces makes
hem keep in contact in a longer time. This is observed and confirmed
rom experiment by Simoni et al. [28] for a joint mechanism of industrial
obot manipulator. 

The phase delay interval will expand if relative velocity 𝑣 𝑟𝑒 has
maller values, for example, 𝑣 𝑏 = 0 . 03 in Fig. 9 . The effect of dwell-time
s obvious in the case of small velocity of belt. This observation suggests
hat, for slow motion of mass block on the belt, one may prefer to use
he model of two internal state variables to attain the higher precision
n calculating motion trajectory of the system, especially in the problem
f precise control. There is a small difference of friction force between
wo models because of the presence of the Simoni’s added area term
 𝑡 = 𝑎 

(
1 − exp 

{
− 𝜙∕ 𝜙0 

})
in expression of friction force of the present

wo-state model. The effect of this term is larger if dwell-time increases.

.3. Formulation of limit cycle via Hopf bifurcation 

Analytical expressions for occurence conditions of Hopf bifurcation
re given in (37) and (38). We now check these conditions via numer-
cal evaluations with given parameters of the system. The condition
�̃� 4 = ̃𝑏 1 �̃� 2 �̃� 3 − ̃𝑏 0 �̃� 

2 
3 − ̃𝑏 2 1 = 0 in (37) gives the equation of determining re-

trained curves of parameters at which the stability of the equilibrium
oint 𝐰 𝑒 changes as one of system parameters varies. We focus on the
ifurcation parameter 𝑣 𝑏 to show the effect of belt velocity on system’s
otion, especially in the regime of low velocity motion. For the condi-
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Fig. 12. Evolutions of dwell-time and relative velocity in the time interval [8, 
10] (s) for case 𝑣 𝑏 = 0 . 03 [cyan color: stick stage; green color: acceleration stage; 
yellow color: deceleration stage]. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 13. Dwell-time as a function of relative velocity for case 𝑣 𝑏 = 0 . 03 . The 
limit cycle for relationship of dwell-time and relative velocity can be divided 
into three main stages of cycle: near-zero velocity stage E 1 E 2 , acceleration stage 
E 2 E 3 and deceleration stage E 3 E 1 . 

Fig. 14. Plots of the change of relative velocity, dwell-time and friction with 
three different values of belt velocity: 𝑣 𝑏 = 0 . 03 , 0 . 05 , 0 . 1 . 
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ion (38), the graph of curve 𝑑 ̃𝜍 4 ∕ 𝑑𝑣 𝑏 for 𝑐 1 = 0 . 5 is ploted in Fig. 10 . The
ero-point of 𝑑 ̃𝜍 4 ∕ 𝑑𝑣 𝑏 for 𝑐 1 = 0 . 5 is found to be 2.4054 that is marked
y a squared shape in Fig. 10 . 

In Fig. 4 , we select two different points, a point 𝑆 1 ( 𝑐 1 , 𝑣 𝑏 ) = (0 . 5 , 3 . 5)
ies on the stable zone (I) and a point 𝑆 3 ( 𝑐 1 , 𝑣 𝑏 ) = (0 . 5 , 0 . 03) belongs
o the unstable zone (II). The selection of 𝑣 𝑏 should be different from
 𝑏 = 2 . 4054 that is solution of 𝑑 ̃𝜍 4 ∕ 𝑑𝑣 𝑏 . For the first case, 𝑆 1 , in the phase
lane ( 𝑥 − 𝑥 𝑒 , �̇� ) , the starting point for motion trajectory is at (0 . 0695 , 0) ,
.e. we choose initial condition [ 𝑥 (0) , �̇� (0) , 𝑧 (0) , 𝜙(0)] = [0 . 24 , 0 , 0 , 0] for
ur simulation. For the second case 𝑆 3 , we choose [ 𝑥 (0) , �̇� (0) , 𝑧 (0) , 𝜙(0)] =
 𝑥 𝑒 , 0 , 0 , 0] where 𝑥 𝑒 is determined from Eq. (11). The phase trajectories
or two cases 𝑆 1 and 𝑆 3 are ploted in Fig. 11 a,c. Fig. 11 a shows that
he equilibrium point 𝐰 𝑒 is stable. After a long time, the displacement
 ( 𝑡 ) approaches to the equilibrium value 𝑥 𝑒 whereas the velocity �̇� tends
o zero. That means the mass block is almost motionless in x-coordinate
lthough the belt is still moving with velocity 𝑣 𝑏 . The velocity 𝑣 𝑏 = 3 . 5 is
onsidered as a large value in comparison with the velocity 𝑣 𝑏 = 0 . 03 in
he regime of low velocity motion. At 𝑣 𝑏 = 0 . 03 , the phase trajectory por-
rayed in Fig. 11 c exhibits a limit cycle after a long time of motion. It is
een that the equilibrium point 𝐰 𝑒 is unstable in the range of low velocity
hat is smaller than zero-point. In our situation, the zero-point is found
o be 𝑣 𝑏,𝑍𝑃 = 2 . 9958 . In Fig. 4 , at boundary point 𝑆 2 with 𝑣 𝑏,𝑍𝑃 = 2 . 9958
nd 𝑐 1 = 0 . 5 , the phase trajectory is shown in Fig. 11 b with initial con-
ition [ 𝑥 (0) , �̇� (0) , 𝑧 (0) , 𝜙(0)] = [0 . 24 , 0 , 0 , 0] . This trajectory is approaching
o a limit cycle as time tends to infinity. From the behaviors of phase
rajectories in Fig. 11 , we can say that the system has undergone a super-
ritical Hopf bifurcation. The exploration of effects of two parameters 𝑘
nd 𝑐 1 on the behavior of Hopf bifurcation is done in the same way. 

.4. Influence of belt velocity on phases of stick-slip motion 

To explore the effect of belt velocity 𝑣 𝑏 on the relative velocity, dwell-
ime and friction force responses, we select three cases 𝑣 𝑏 = 0 . 03 , 0 . 05 , 0 . 1
or our simulation. The obtained results are illustrated in Figs. 12 –14
n time interval [6, 10] (s) in which the steady-state of responses can
e attained. For the first case 𝑣 𝑏 = 0 . 03 , relative velocity is quite small.
his slow motion will make surfaces be kept in contact in a longer
ime. Consequently, the dwell-time response increases in stick phase.
ig. 12 shows that the behavior of dwell-time is nearly linear in stick
hase, for example, in time interval [8.25, 9.15] (s). It can be shown
hat the dwell-time is always positive for all time. In the slip phase,
owever, the dwell-time has very small positive value. The dwell-time
11 
ill disappear if the system is in the grossing slip state and has not stick
otion. The dependence of dwell-time on relative velocity is portrayed

n Fig. 13 for the case 𝑣 𝑏 = 0 . 03 . It is seen that at steady-state regime
f stick-slip motion, a limit cycle can be formulated. The limit cycle
or relationship of dwell-time and relative velocity can be divided into
hree main stages of cycle: (I) near-zero velocity stage, (II) acceleration
tage and (III) deceleration stage. The stage (I) is corresponding to the
tick phase of motion, illustrated on a curve segment E 1 E 2 in Fig. 13 . In
his stage, there is a slight oscillation phenomenon of dwell-time about
ero-relative velocity. The stage (II), depicted in curve segment E 2 E 3 , is
orresponding to the growing state of relative velocity 𝑣 𝑟𝑒 in slip phase
ecause in this stage, the spring force is enough large to win the friction
orce and causes a sliding motion of mass block. The stage (III) displayed
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Fig. 15. Duration of stick stage (I), acceleration stage (II), and deceleration 
stage (III) in three cases of belt velocity 𝑣 𝑏 = 0 . 03 , 0 . 05 , 0 . 1 . The duration of 
stick phase is increasing with decreasing of belt velocity. 
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Fig. 16. Friction force as a function of dwell-time in the cases 𝑣 𝑏 = 0 . 03 , 0 . 05 , 0 . 1 . 
For the stick phase, the friction force in the case of low belt velocity 𝑣 𝑏 = 0 . 03 is 
higher than remaining cases with higher belt velocity. 

Fig. 17. Plots of the change of true contact area in time and in dwell-time. The 
true contact area will expand if the belt velocity decreases from 0.1 to 0.03 
( ms −1 ). 
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n the curve segment E 3 E 1 is the stage of reducing of relative velocity
nd mass block motion has a tendency to end a period of stick-slip vi-
ration. The formation of two stages (II) and (III) in Fig. 13 shows the
hange of the process of transferring energy between spring and friction
orces. In stage (II), the energy of spring force is compensated by the loss
art of the friction energy whereas in the stage (III) the trend of energy
quilibrium state is established from the increase of friction force due
o the effect of dwell-time. The dwell-time value of stage (II) is larger
han that of stage (III). 

Fig. 14 shows the influence of the belt velocity on the behavior
f relative velocity, dwell-time and friction force in three cases 𝑣 𝑏 =
 . 03 , 0 . 05 , 0 . 1 . If increasing the velocity 𝑣 𝑏 , the peak of relative veloc-
ty is uplifted and has a shift to the left. In these simulated cases, the
ase 𝑣 𝑏 = 0 . 03 gives system’s motion with slowest relative velocity but
he longest time of stick phase. Against, the largest relative velocity and
hortest time of stick phase belong to the case 𝑣 𝑏 = 0 . 1 . The estimated
urations of stick stage (I), acceleration stage (II), and deceleration stage
III), respectively, are about 0.9, 0.38, 0.15 (s) for the case 𝑣 𝑏 = 0 . 03 and
.60, 0.37, 0.156 (s) for the case 𝑣 𝑏 = 0 . 1 . The data of simulation are il-
ustrated by bars in Fig. 15 . It is seen that the duration of stick phase is
ncreasing with decreasing of belt velocity. In the slip phase, however,
he change of duration of stages (II) and (III) is not considerable. 

The dependence of friction force on the dwell-time is illustrated in
ig. 16 for cases 𝑣 𝑏 = 0 . 03 , 0 . 05 , 0 . 1 . In Figs. 14 and 16 , for the stick
hase, the friction force in the case of low belt velocity 𝑣 𝑏 = 0 . 03 is higher
han remaining cases with higher belt velocity. 

Fig. 17 demonstrates the change of true contact area 𝑠 𝑡 = 𝑎 (1 −
xp {− 𝜙∕ 𝜙0 }) in time and in dwell-time. The true contact area will ex-
and if the belt velocity decreases from 0.1 to 0.03 ( ms −1 ). The depen-
ence of the true contact area on dwell-time is nearly linear because for
mall dwell-time value, we have an approximation 𝑠 𝑡 = 𝑎𝜙∕ 𝜙0 . 

. Conclusions and remarks 

The new point of present research is to introduce a two-state model,
ecently developed by Simoni et al. to study the problem of motion of
 spring-mass system placed on a belt moving at constant low speed.
he low velocity of the belt is considered in our study because at this
elocity, the influence of two internal state variables is evident. The first
tate variable was included in the LuGre model to capture the Stribeck
ffect in motions with the relatively low velocity between two surfaces.
he second state variable proposed by Simoni et al. is based on a com-
12 
ination of the LuGre model and Dieterich-Ruina model to capture the
well-time effect of motion between two surfaces in which the friction
orce increases if two surfaces are kept in contact in a certain time. Two
nternal state variables included in the model are considered as a more
ealistic description than the LuGre model with only one internal state
ariable. Calculations for our model, however, will be more complicated
han those for the LuGre model because the total number of state vari-
bles of the system is four (two conventional state variables are displace-
ent and velocity; and two internal state variables are bristle deflection

nd dwell-time) whereas that of the system using the LuGre model is
hree (without dwell-time variable). The research results are shown in
he following main points: 

- The equilibrium point position of the system is investigated in the
friction-induced vibration model with the presence of the dwell-time
effect. We obtain an analytical expression of an added equilibrium
displacement generated by the dwell-time effect. If considering this
added displacement as a function of belt velocity, the result shows
that it is a monotonically decreasing function and is bounded in a
specified interval. 

- Stable property of the equilibrium point of the system is examined
using the Routh-Hurwitz criterion for a quartic characteristic equa-
tion of the matrix corresponding to the linearized system of the orig-



N.N. Hieu and P.N. Chung International Journal of Mechanical Sciences 205 (2021) 106605 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p  

p  

T  

a  

j  

t  

n  

m  

e  

a  

a  

c  

f  

s

D

 

A  

a

C

 

-  

W

A

 

T  

s  

G

R

 

 

 

 

 

 

 

 

 

 

 

[  

[  

[  

 

[  

 

[  

 

[  

[  

 

 

[  

[  

[  

[  

[  

[  

[  

[  

[  

 

[  

[  

[  

 

[  

 

[  

 

[  

 

[  

 

[  

[  

 

[  

 

[  

 

[  

 

[  

 

[  

 

 

inal nonlinear system around the equilibrium position. The calcula-
tion results have exhibited two zones of stability and instability with
common boundary being a curve containing zero-points of an equa-
tion obtained from Routh-Hurwitz criterion. Because of the presence
of dwell-time effect, we show that there is a small shift of the stable
zone in the increasing direction of belt velocity relative to the stable
zone obtained from the LuGre model. 

- The formulation of limit cycle in the regime of low velocity motion
is presented via Hopf bifurcation analysis. 

- Analysis of stick-slip motion using the two-state model shows the
effect of dwell-time in the case of small belt velocity, i.e. the effect
of increasing friction force with slow motion of the belt (the LuGre
model does not capture this effect). 

- Three stages of the stick-slip motion are analyzed in detail, which
show that the time duration of dwell-time phase is significant in
the case of the low relative velocity between the mass block and
belt surfaces. The stick-slip vibration generates limit cycles of system
motion, in which the limit cycle in plane of the relative velocity -
dwell-time is presented. 

Experimental study of frictional systems is a complex problem, es-
ecially for models that consider many different effects. Our research
roblem is based on the two-state model recently proposed by Simoni.
he Simoni’s model was experimentally verified on an industrial robotic
rm to evaluate the influence of dwell-time on torque response of robot
oints at low velocity motion regime. In our opinion, this is a poten-
ial model for further studies of complex systems in both analytical and
umerical approaches. Based on the empirical evidence of the Simoni’s
odel, it motivates us to study the stick - slip motion of system mod-

ls in engineering that takes into account the dwell-time effect using
pproach of theoretically qualitative analysis combined with numerical
nalysis. Therefore, the results of the paper initially provide theoreti-
al insights for the system under consideration. The experimental result
or confirming the behavior of the system is necessary and should be
tudied in the future. 
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