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ABSTRACT

Blast fragmentation size distribution is one of the most critical factors in evaluating the blasting
results and affecting the downstream mining and processing operations in open-pit mines.
Image-based methods are widely applied to address the problem but require heavy user
interaction and experience. This study deployed a deep learning model Mask R-CNN to
develop an automatic measurement method of blast fragmentation. The model was trained
using images captured from real blasting sites in Nui Phao open-pit mine in Vietnam. The
trained model reported high average precision scores (Intersection over Union, loU =0.5)
92% and 83% for bounding box and segmentation masks, respectively. The results lay a
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solid technical basis for the automated measurement of blast fragmentation in open-pit mines.

Introduction

Rock blast fragmentation measurement is the central
task to evaluate blasting results in the mining industry.
This measurement supplies valuable information for
optimising blasting and downstream operations,
including digging, loading, hauling, and crushing.
For process integration and optimisation methods,
measurement of the run of mine fragmentation is
essential for model calibration purposes and sub-
sequent application in scenario-based simulations
(Onederra et al. 2010). Typically, the measurement
deploys cumulative passing size distribution (CDF)
or sieving curve to represent muck pile fragmentation
characteristics after blasting. The CDF curve describes
the sieving analysis using screens with a known mesh
size. The screen retains fragments larger than that
mesh size and conversely. The fragments caught on
each screen are then weighed and used to construct
the CDF.

Blasting in mining usually generates a widespread
muck pile containing thousands of fragments of var-
ious sizes and shapes. Whereas quick and accurate
measurement is essential to analyse blasting fragmen-
tation. Direct methods, such as sieving or screening,
can give high accurate CDF of blasting fragmentation
but is costly, time-consuming, and inconvenient (Sud-
hakar et al. 2006). Prediction methods have been
applied widely. Some experimental fragmentation
models, such as Larrson’s equation, SveDeFo formula,
or Kuzram model, are indirect methods that evaluate
the blasting fragmentation, but their accuracy is

questioned (Thornton et al., 2001; Chakraborty et al.
2004; Siddiqui 2009). Artificial Intelligence has gradu-
ally been utilised to predict blast fragmentation size in
the past few years. Many researchers have been applied
machine learning algorithms such as Support Vector
Machine (Shi et al. 2012), fuzzy logic (Monjezi et al.
2009), Artificial Neural Network (Kulatilake et al.
2010; Sayadi et al. 2013; Enayatollahi et al. 2014) to
develop their predictive fragmentation models. Never-
theless, the practicality of these models is a problem
due to the complicated nature of blast parameters
influencing fragmentation, such as blast design par-
ameters, explosive properties, or rock mass properties.

In recent years, computer vision methods based on
image processing have developed and become fam-
iliar. They implement the tasks referred to as instance
segmentation, which localises and segments the rock
fragments on digital images. Split Desktop, WipFrag,
FragScan, and GoldSize are the most popular compu-
ter programs operating on these methods (Hunter
et al. 1990). Computer vision methods are economi-
cally feasible and practical than direct methods. How-
ever, they cannot resolve fragments ranging in size
from metres down to some microns. Consequently,
they merge smaller fragments into larger ones or sep-
arate larger ones into smaller ones and result in a stee-
per or more uniform CDF than sieving (Hunter et al.
1990; Ouchterlony and Sanchidrian 2019; Schenk et al.
2019). Although some programmes introduce correc-
tion techniques to increase the quality of measure-
ment, their results still strongly depend on user
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intervention, expert knowledge, and the form of image
acquisition (Thornton et al., 2001; Chakraborty et al.
2004). Onederra et al. (2015) introduced 3D high-res-
olution laser scanning as an alternative technique to
measure blast fragmentation and to improve 2D ima-
ging systems. However, this method needs a high
initial investment in hardware and training workers
to operate the scanner and software.

In the past decade, computer vision has evolved
dramatically using machine learning methods. The
primary idea is to use deep learning frameworks
trained using a massive volume of image data collected
through sensors or the internet to understand pre-
cisely which real-word object makes up an image.
Deep learning models like Fast/Faster R-CNN (Gir-
shick 2015; Ren et al. 2015) and Fully Convolutional
Network (FCN) (Long et al. 2015) are the core systems
for segmentation and localisation of objects in the
image, respectively. For example, DeepMask (Pinheiro
et al. 2015), SharpMask (Pinheiro et al. 2016), and the
following work (Dai et al. 2016) use Region-Based
Convolutional Neural Networks (R-CNN) to segment
objects and then Fast-RCNN to classify them. Dai
et al. (2016) also proposed three hierarchical stages,
including bounding-box proposals, segmentation,
and classification. The problem with all these methods
is slow and less accurate because of the distinct or
sequential implementation of these detection steps.

Recently, Li et al. (2017) merged segment proposals
and object detection in a system named ‘fully convolu-
tional instance segmentation” (FCIS) to fully convolu-
tionally predict a set of position-sensitive output
channels. Solving object class, boxes, and masks in
one step make the system fast. Nevertheless, FCIS
exposes the problem with overlapping instances and
pseudo edges.

The deep learning model Mask R-CNN (He et al.
2017) is considered a state-of-art algorithm and out-
performs others in the instance segmentation pro-
blem. It has shown that superior performance in

natural object detection, but studies using Mask R-
CNN in blasting fragmentation analysis is minimal.
This application was first used by Fabian Schenk
et al. (2019) to analyse the distribution of rock frag-
ments in the blasting muck pile. The input image data-
set was collected and trained in the laboratory before
being tested on real-world large UAV images. The
experiments were promising, but the accuracy in
detecting small fragments need to be improved.

Our study explores the deep learning model Mask
R-CNN to automatically and quickly measure blast
fragmentation at a low cost. We trained the Mask R-
CNN model only using annotation from digital images
collected directly on mine sites and then conducted an
inference to generate the final segmentation image.
The trained Mask R-CNN was evaluated using two
standard metrics in object detection to highlight the
performance. Furthermore, the method is compared
with the SplitDesktop software to assess the accuracy.

The paper proceeds as follows. Section ‘Nui Phao
open-pit mine, Vietnam’ describes the study area,
where Section ‘Methodology’ proposes the used
method for blast fragmentation measurement. Section
‘Results’ presents the results. Discussion in section
‘Discussion’ and conclusion in section ‘Conclusions’
complete the paper.

Nui Phao open-pit mine, Vietnham

Nui Phao mine is located in the northern part of Viet-
nam in Thai Nguyen province, approximately 80 km
northwest of Hanoi capital by road. The mine rep-
resents one of the world’s largest identified tungsten
reserve outside China. Nui Phao is a typical open-pit
mine extracting 6.5 million m®> materials with about
3.7 million ore in 2017. Of this, 3.5 m” required blast-
ing. Figure 1 presents the location of the mine and the
overview of its mining site.

The mine applies the bench blasting technique for
breaking waste rock and ore. To measure the blast

Figure 1. Location and mining site of Nui Phao open-pit mine. ‘Images are available in colour online.’
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Figure 2. An example of image capture for blast fragmentation measurement. ‘Images are available in colour online.’

fragmentation, the images are captured from the front,
middle and back sections of each blast muck pile to
ensure that the size distributions in the images rep-
resent the muck pile as a whole. Split Desktop (Split
Engineering LLC 2016) is then deployed to digitalised
the images and produce the CDF. The capture of
images for blast fragmentation measurement is illus-
trated in Figure 2.

Methodology

Given an image of a blast muck pile, we first applied the
Mask R-CNN model to find the rock fragments in it,
locate their position and classify them. Finally, we com-
pute the CDF to represent the measurement of frag-
mentation for that image. Our methodology rests on
four key steps (Figure 3): (1) cropping the image into
overlapping patches; (2) deploying trained Mask R-
CNN model for rock fragment segmentation; (3) com-
posing unique patches to the full detection image; (4)
measure the fragmentation by computing CDF curve.

Dataset preparation

We started by collecting more than 200 images of blast-
ing muck piles from the Nui Phao open-pit mine, as
illustrated in Figure 2. The images vary with different
sizes of [921 x 1312], [1080 x 1920], [2160 x 3840],
[2408 x 4288], and [3056 x 5440] pixels. We manually
annotated rock fragments on the images in detail
using VGG Image Antonator (VIA) (Dutta et al.
2016) web tool to generate ground truth for training
and evaluation steps. The ground truth is real rock frag-
ments on the image, which are similar to the results of
muck pile sieving. The annotations were stored in
JSON files (www.JSON.org), mainly containing poly-
gons’ coordinates (yellow polygons in Figure 4 left) sur-
rounding the rock fragment objects in the images. We
cropped the image into overlapping patches with the
size of [1024 x 1024] pixels and the overlap of [512 x
512] pixels to avoid running out of memory on the
available graphics processing unit. From the original
images, we generated 3894 patches containing about

[ 4

i > Training Mask RCNN
1 Colleting and

!

! labelling input

: =| Validation dataset Validating

1

\

Segmentation|

| 2
03

4 o
=

F =
2
3

Trained =8

model

Figure 3. General workflow of automated measurement of blast fragmentation. ‘Images are available in colour online.’
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Figure 4. An example of a muck pile image (right) recorded at Nui Phao open-pit mine, Vietnam, containing two colour ball scal-
ing objects and its rock fragments (left) labelled using VIA. ‘Images are available in colour online.’

56,201 individual rock fragments. One fragment on a
cropped patch was required.

For training the Mask RCNN model, we randomly
partitioned the dataset, based on the ratio of 90:10, into
the training dataset and validation dataset, respectively.
Simultaneously, in the training process, we artificially
enlarged the training dataset through standard augmen-
tation techniques like mirroring, rotating, cropping,
and up/downscaling to improve the ability of the model
to generalise on what it has learned to new images.

Deep learning algorithm Mask R-CNN

In this study, we chose the Mask R-CNN algorithm
(He et al. 2017) to detect and segment rock fragments
within blast muck piles due to its simplicity and effec-
tiveness. The Mask R-CNN is developed from Faster-
RCNN (Ren et al. 2015).

It includes two stages as follows (He et al. 2017):

(1) scans the image to generate region proposals (the
regions having the rock fragments);

(2) predicts three outputs (see Figure 5): class label
(rock fragment or background); bounding-box
(BB) (the locations of possible rock fragments in
the image); and binary mask (one for rock frag-
ments and zero for background) for each region
of interest (Rol).

In terms of architecture (Figure 5), Mask R-CNN
mainly deploys:

(1) Convolutional backbone architecture for feature
extraction;

(2) Region Proposal Network (RPN) for generating
Rol;

(3) Rol classifier for class prediction on each Rol;

(4) BB Regressor for refining Rol;

(5) Fully Convolutional Network (FCN) (Long et al.
2015) together with RolAlign (Li et al. 2017)
and bilinear interpolation for predicting pixel-
accurate mask from each Rol.

In this study, we used a Feature Pyramid Net-
work (FPN) (Lin et al. 2017) for the backbone
architecture and Resnet 101 (He et al. 2016) for
the head, as suggested by the authors. A detailed
discussion of the Mask R-CNN algorithm can
refer to He et al. (2017).

Training procedure

We extended the Matterport implementation of
Mask R-CNN (Abdulla 2017), an open-source pack-
age built on Keras and Tensorflow. The training and
inference procedure runs on the cloud service Goo-
gle Colab (LLC Google) with Intel(R) Xeon(R) @
2.20 GHz x one core with 64 Gb of main memory
and a Tesla P100-PCIE-16GB graphics card with
12 Gb RAM. We configured the training with a
mini-batch size of one image, 500 steps per epoch,
a learning rate of 0.0001, a non-max suppression
threshold of 0.2. Besides, a confidence threshold of
0.45 was set for evaluating how likely the found
object was a rock fragment. For instance, at all pro-
posal regions with a confident score of 0.45 or
higher, a rock fragment is present. The readers
can refer to the configuration file of Mask R-CNN
on Github (https://github.com/matterport/Mask_
RCNN) for the full descriptions of training par-
ameter configuration.

Weights and bias are the learnable parameters
inside the network. In the beginning, weights and
bias are initialised randomly. Instead of training the
Mask R-CNN from random initialisation, we used
the Mask R-CNN’s pre-trained weights for the
COCO  dataset  (http://cocodataset.org/#home),
which contains several thousand images. Our Mask
R-CNN was trained with 100 epochs in which the
first five epochs were used for training the network
head (see Figure 5), and the remaining 95 epochs
were used for training both the entire network. The
classification loss (L), BB loss (L), average binary
cross-entropy loss (L), regarding three outputs as
illustrated in Figure 5, are used to describe the accu-
racy of these predictions during training. Thus, we
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Figure 5. The implementation architecture of the Mask R-CNN

attempt to minimise the overall loss
L = Lcls + Lhox + Lmusk (1)
on each sampled Rol (He et al. 2017).

Image fusion

As shown in Figure 3, the trained Mask R-CNN model
is trained to detect and segment rock fragments on
overlapping patches. Hence, it is essential to fuse
them into a global image to compute the final CDF.
The problem is that some individual fragment segmen-
tations are available on a patch that is also in other
patches. To resolve this problem, we followed and
modified the idea in Schenk et al. (2019). From the
set of masks S generated by inferencing on overlapping
patches, we searched the overlapping masks i with an
area M; in pixel and j with an area M; in pixel, based
on the overlapping BB. Then, we computed the general
overlap area S;; between each mask as:

Si=M;NMV;; €S )

Subsequently, we computed the relative overlap
ratios r; and r; for each mask using the equations:

ri = Sij/Mi; rj = Si/M; (3)

If ;> A and r;> A, we merge two masks into one

since it likely the same fragment. We found that a

. Images are available in colour online.

large fragment, whose mask is larger than the size
of a cropped patch, may be separated into some
parts if we keep the mask with the highest confi-
dence value (Schenk et al. 2019). For all other
cases of r; and r;, there is probably no overlap or
tiny overlap or a small fragment located beyond
another. Hence, we include both masks i and j into
S. Moreover, we implemented the experiments with
various A values and found A=0.5 were the most
suitable ones.

CDF computation

As described in section ‘Introduction’, the CDF is used
to express the sieving process, where it computes the
percentage of fragments passing through a known
screening mesh size. Therefore, we are only interested
in the smallest size of a fragment. Fragment size can be
measured as an area of their polygon. However, areas
are challenging to visualise, so fragment sizes com-
monly are represented as the smallest diameters of
equivalent circles (D) or ellipse (Dp;,), as shown in
Figure 6.

If a fragment is equivalent to a circle with diameter
D and area A, its smallest diameter can be calculated
as:

D = 2(A/m)"/? (4)
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Figure 6. Circle-equivalent diameter (left) and ellipse-equival-
ent diameter (right) of the fragment.

Suppose a fragment is equivalent to an ellipse with
two axes Dy.x and Dpi,. In that case, we first use a
marching squares method (Cubes 1987) to find the
contour of the fragment and then implement the Fitz-
gibbon method (Fitzgibbon et al. 1999) to fit an ellipse
around the fragment. The smallest diameter of the
fragment is the minimum value of D,,,x and D,,.

Accuracy evaluation

We implemented an assessment for the accuracy of the
trained Mask R-CNN model and the computed CDF.

Evaluation of the trained Mask R-CNN

The averaged precision score (AP) and mean averaged
precision score (mAP), as described below, are used to
evaluate the model. These metrics are calculated by
comparing the ground truth bounding box and seg-
mentation mask with the model’s predicted bounding
box and segmentation mask. The higher the AP and
mAP values, the more accurate the model is in its
detection. Three steps are required to calculate these
metrics, as follows:

(i) compute the Intersection over Union (IoU) to
identify correct detections. Figure 7 explains
the computation of IoU in which it is the pro-
portion of the intersection and the BB output
union by the model and the ground truth BB.
Similarly, IoU values are calculated for the seg-
mentation mask by using the intersection and
union of the ground truth mask and the mask
generated by the model. In this study, the deter-
mination of a rock fragment with an IoU value
larger than 0.5 is considered correct detection,
and vice versa.

Predicted BB

~

IoU = -

Ground Truth BB

Table 1. Definition of True Positive (TP), False Positive (FP),
and False Negative (FN). They were identified for varying
threshold (T) of the confident score (CS) to measure
whether the model detected a rock fragment. The JloU
determine a rock fragment at the proposal region.

Model predictions compared to ground truth Metrics
CS > T (rock fragment 10U > 0.5 (rock fragment P
detected) present)
10U £ 0.5 (no rock fragment FP
present)

CS < T (no rock fragment detected), but rock fragment present N

(ii) calculate three object detection metrics: True
Positive (TP), False Positive (FP), and False
Negative (FN), as determined according to
Table 1.

(iii) calculate two metrics: precision and recall, as
shown in Equations (5) and (6). Precision is the
percentage of correctly detected rock fragments
of all rock fragments detected by the model.
Recall is the ratio of correctly detected rock frag-
ments of all ground truth rock fragments.

Precisi TP )
recision = ————
TP + EN
TP
Recall = — 6
= TIp+Fp ©

(iv) measure AP and mAP: At a fixed IoU = 0.5, the
thresholds T of CS (Table 1) are varied to create
the precision-recall curve pr. AP is defined as the
mean precision over a set of eleven equally
spaced recall values {0,0.1,...,1} (Everingham
et al. 2010):

1
AP=— Z

Printerp(r) (7)
r€{0,0.1,..,1}

with pfi,er, is interpolated from the precision-
recall curve pr by taking the maximum precision
values for which the corresponding recall exceeds
r:

Printerp(r) = max{p(r')}, r1{0,0.1, ..., 1} (8)

r'>r
where p(7’) is the measured precision at recall r’.
Finally, an average of AP values at ten differ-

ent IoUs {0.5, 0.55, ... ,0.95,1} is done to provide
a single value of mAP.

Predicted BB

/

Ground Truth BB

Figure 7. loU calculation for BBs. ‘Images are available in colour online.’



Evaluation of CDF measurement

We compared our measurement method to the com-
mercial SplitDesktop software to evaluate fragmenta-
tion results. SplitDesktop was set to automatically
delineates rock fragments using its image filter. Since
the SplitDesktop approximates the rock fragments as
elliptical objects (La Rosa et al. 2001), we also applied
this strategy to compute the CDF sieving curve, as dis-
cussed in section ‘CDF computation’.

Results
Training optimisation

We recorded different loss components during the
training and evaluation process. The optimum Mask
R-CNN model was chosen using an early stopping
strategy in which the training process is terminated
at the point when the overall loss starts to degrade.
As shown in Figure 8(a), the lowest overall loss
value measured on the evaluation dataset was gained
after 80 epochs before rebounding. Whereas the over-
all training loss values continued to decrease, indicat-
ing that after 80 epochs, the model tended to fit the
training data rather than learn to generalise rock frag-
ments’ features. The Mask R-CNN class loss values on
the validation dataset in Figure 8(b) eventually
stopped learning in the early stages. Although the
bounding box loss and mask binary cross-entropy

0.7 1 Il ---- Training RPN Class Loss
061 ! —— Evaluation RPN Class Loss
R
054 |
) i
So04{ |
= ]
0.3
0.2 i
““"’.\"--\A-—-.V“,,“_,_ S g g
0'1 T T T T = T i ‘-‘-r
0 20 40 60 80 100
Epoch
(a)
--=-- Training Mask R-CNN BBOX Loss
—— Evaluation Mask R-CNN BBOX Loss

1
]
1
]
0.64 1
]
1
]
\

Loss

0 20 40 60 80 100
Epoch
(c)
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Table 2. Evaluation metrics: averaged precision score (AP) and
mean averaged precision (mAP) of the trained model and the
Mask R-CNN model (He et al. 2017) using Resnet101-FPN
backbone trained on the COCO dataset for bounding boxes
and segmentation masks.
Mask RCNN trained on

Mask RCNN trained on COCO

Metric fragmentation dataset dataset
Bounding Mask Bounding Mask
box segmentation box segmentation
AP 0.921 0.852 0.603 0.573
mAP 0.550 0.428 0.382 0.354

loss in Figure 8(c,d) still fluctuated around their train-
ing loss to the final epochs, they did not contribute too
much to the overall validation loss.

Detection and segmentation of rock fragments
Table 2 reports the evaluation metrics AP and mAP
for the trained model on the full dataset. Compared
with the model trained on the COCO dataset (He
etal. 2017), the trained model performed well to detect
bounding boxes and segmentation mask with the AP
scores are 0.921 and 0.852, respectively. Whereas the
more strict performance measure mAP could be con-
sidered moderate to high. The mAP scores of 0.550 for
bounding box and 0.428 for mask segmentation indi-
cate that the rock fragments were detected, but their
outlines did not fit well due to the fuzzy shape of the
rock fragments.

---- Training Mask R-CNN Class Loss
—— Evaluation Mask R-CNN Class Loss

l"\a N se 4 [
W LY "\‘.“\"’"ﬁufn_:‘\:‘ s h M T
y-E Y v I“,-‘
0.30 1, . . g i i
0 20 40 60 80 100
Epoch
(b)
0.501 ‘: ---- Training Mask Loss
i —— Evaluation Mask Loss
]
0.454 |\

0 20 40 60 80 100
Epoch
(d)

Figure 8. Loss graphs for Mask R-CNN training and evaluation. ‘Images are available in colour online.
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(b)
100
80
£ 60
2
2 a0
—— GroundTruth
20 -—- Mask R-CNN
0 | —— SplitDesktop
0 20 40 60 80 100
Size (em}
(d)

Figure 9. Prediction results of boulder rock fragments using Mask R-CNN model and SplitDesktop. ‘lmages are available in colour online.’

Fragmentation measurement

We conducted case studies from the validation dataset
with different fragment sizes and compositions to evalu-
ate the accuracy of the measurement method. In total, we
tested four typical image scenes: (1) boulder rock image;
(2) densely packed rock image; (3) coloured rock texture
image; (4) dust mixing with rocks image. We compared
our measurement method to the commercial SplitDesk-
top software to evaluate fragmentation results.

(1) Boulder rock image

This case study illustrates a fragmentation measure-
ment result on the boulder rock image (Figure 9(a)).
Figure 9(d) shows our fragmentation measurement
using the Mask R-CNN model was close to the CDF
computed on ground truth. As shown in Figure 9(c,
d), the CDF caused by SplitDesktop was steeper in
the upper part where the large fragments tend to be
separated into smaller pieces, while it was more gentle
in the lower part where the small fragments were
merged into larger ones. The trained Mask R-CNN
model (Figure 9(b)) successfully detected small frag-
ments (smaller than 20 cm). The error occurred for
the larger fragments, likely due to the image fusion
process used to join the image cropping patches.

(2) Densely packed rock image

In case study 2, the number of fragments on the image
increased significantly (Figure 10(a)). Figure 10(d)

shows that the CDF computed by our measurement
was slightly different from the ground truth. Similar
to case study 1, SplitDesktop regularly merged smaller
fragments into larger ones, making its CDF utterly
different from the ground truth, as shown in Figures
10(c,d). Therefore, it requires a tedious effort to edit
the delineation manually.

(3) Coloured rock texture image

In case study 3, we continue to test our measurement
on a rock image containing rock fragments with var-
ious colour texture (Figure 11(a)). Consequently, the
effect of rock texture did not dramatically affect the
trained Mask R-CNN’s performance (Figure 11(b)).
In contrast, SplitDesktop merged adjacent fragments
with the same colour into larger ones (Figure 11(c))
and generated a more gentle CDF curve than the
ground truth (Figure 11(d)).

(4) Dust mixing with rocks image

In Figure 12(a), the whole rock image is not fully occu-
pied by the fragments. Parts of non-fragments regions
are background or covered by dust. Based on the
ground truth image observation, the trained Mask
R-CNN was challenging to detect the fragments cov-
ered by the dust, even though they can be distin-
guished by human vision. In Figure 12(b,c), the
trained Mask R-CNN could determine fore and
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(b)
100
80+
£ g0
o
h=
E 401
—— GroundTruth
291 -—- Mask R-CNN
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Size (cm)
(d)

Figure 10. Prediction results of densely packed rock fragments using Mask R-CNN model and SplitDesktop. ‘Images are available
in colour online.

100{" —
801
£ 60
o
£
v
ﬁ 40 A
— GroundTruth
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Figure 11. Prediction results of coloured rock texture image using Mask R-CNN model and SplitDesktop. ‘Images are available in
colour online.
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Figure 12. Prediction results of dust mixing with rock fragments using Mask R-CNN model and SplitDesktop. ‘lmages are available

in colour online.

background while SplitDesktop over-segmented the
fragments and interpreted the background as large
fragments. Consequently, the CDF computed by our
measurement was close to the ground truth, while
SplitDesktop produced an incorrect and uniform dis-
tribution (Figure 12(d)).

Discussion

Blasting fragmentation analysis is a difficult task and
relies heavily on the quality of the segmentation
results. Since rock fragment images vary from one to
another, developing a segmentation algorithm for all
kinds of rock fragment images without using a manual
edition is challenging. This study selected Mask R-
CNN, a deep learning model, to conduct an automated
instance segmentation of the blasting fragments. The
training and validation dataset was collected from
the real mine blasts and cropped into smaller ones
to reduce memory utilisation. A fusion approach was
developed to combine the inference images into the
final segmentation. The rock fragments in the images
were successfully detected and segmented with high
AP values for bounding box (0.921) and mask seg-
mentation (0.852). Whereas the more strict perform-
ance measure mAP could be considered moderate to
high. However, future efforts should compare Mask
R-CNN’s performance to other similar segmentation
methods such as U-Net (Ronneberger et al. 2015) or
MaskLab (Chen et al. 2018) in fragmentation
measurement. In this study, we applied default

hyperparameters and early stopping to minimise
overfitting in the training process. Hence, it would
also be valuable to conduct comprehensive exper-
iments on model optimisation to improve training
time and accuracy.

Image processing methods based on edge segmen-
tation algorithms have been the most widely used in
blast fragmentation measurement. In many
instances, these methods are sensitive to image fea-
tures such as fragment distribution (Figure 9 and
10), texture on fragments (Figure 11), or image back-
ground (Figure 12). The trained Mask R-CNN model
successfully utilised the multi-level feature represen-
tations learned from the training data to overcome
these disadvantages. With their AP and mAP scores,
the case studies clarify the model’s robustness to rock
fragment detection. However, there can be a
reduction of mask segmentation when the image’s
complexity increases. There are likely two main
reasons for this problem: (1) lack of training data;
(2) fragments have fuzzy boundaries or blend with
the background; and (3) the spatial resolution of
the image is not suitable for inference. We proposed
two possible solutions to improve the mask segmen-
tation ability: (1) enriching training dataset from
different sources; (2) enhancing the spatial resolution
of the image to be suitable for inference. For
instance, the image in Figure 13(a) has a resolution
of 1204 x 2144, and the prediction result is illustrated
in Figure 13(b). We doubled its resolution to
2048x4288, and the inference result is shown in
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Figure 13. Fragment segmentation improvement when resizing the original image. ‘Images are available in colour online.

Figure 13(c). It is clearly visible that the number of
detected fragments significantly increases, enabling
the CDF computation accuracy.

Conclusions

There are significant economic incentives to measure
blast fragmentation in mining. However, the measure-
ment is still time-consuming and heavily relies on user
interaction and experience. This study provided an
automatic measurement method for blast fragmenta-
tion in Nui Phao open-pit mine. The method utilises
the deep learning model Mask R-CNN, which was
trained and validated using the muck pile images cap-
tured in the mine. It is demonstrated that the pro-
posed method can detect and segment rock
fragments with a high average precision score for
bounding box (0.921) and mask segmentation
(0.852) for a given IoU threshold of 0.5.

Our future work will enrich the dataset and model
optimisation by testing various combinations of train-
ing hyperparameters. Since we have training weights
for rock blasting images captured using regular cam-
eras, we also want to challenge our model with the
UAYV images or ones captured on other mining equip-
ment such as excavators, trucks, or crushers.
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