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A B S T R A C T   

In recent years, the strong development of urban areas and rapid population growth have contributed signifi
cantly to environmental pollution issues, especially SW. Of those, municipal solid waste (MSW) is considered a 
major concern of waste treatment plants. Nowadays, with the development of science and technology, MSW has 
been treated and recycled to recover energy. However, the issue of energy recovery and optimization from MSW 
remains a challenge for waste treatment plants. Therefore, a novel artificial intelligence approach was proposed 
in this study for predicting the gas yield (GY) generated by energy recovery from MSW with high accuracy. 
Accordingly, a deep neural network (DNN) was developed to predict GY from MSW. Subsequently, the Moth- 
Flame optimization (MFO) algorithm was applied to optimize the DNN model and improve its accuracy, 
called MFO-DNN model. The findings revealed that both the DNN and MFO-DNN models predicted GY very well. 
Of those, the proposed MFO-DNN model provided dominant performance than the DNN model. Based on the 
proposed MFO-DNN model, the toxic gases can be thoroughly controlled and optimized to recover the gas field 
from MSW for waste treatment plants, minimizing negative impacts on the surrounding environment.   

1. Introduction 

SW (SW) is becoming a big concern of the community, and it directly 
relates to environmental pollution of soil, water, and air (Brunner, 
2013). The amount of SW is increasing rapidly due to population 
growth, urbanization, and the rapid development of industries (Cheng 
et al., 2020; Malav et al., 2020)(Huan et al., 2020; Thuy et al., 2020). 
According to a World Bank report, about four billion tonnes of waste are 
discharged into the environment per year, of which 1.3 billion tonnes is 
SW. It is forecast that by 2025, the amount of SW discharged into the 
environment annually will be about 2.2 billion tonnes or more 
(Hoornweg et al., 2013; Moya et al., 2017). Therefore, SW treatment and 
management are of particular global concern, especially in low-income 
countries (Bui et al., 2020; Chen, 2018; Iyamu et al., 2020). 

In order to treat SW, only one-fourth of which is recycled, the rest 
(three-fourths) are directly processed at landfills (Bajracharya et al., 
2016). However, municipal solid waste (MSW) is such an acute and not 
an easy problem in urban areas. MSW includes many different types of 
waste in urban areas such as food waste, plastic, rubber, wood, cotton, 
paper, to name a few. Therefore, the treatment of MSW as such can lead 
to critical environmental problems, seriously affecting human health 
(Pires et al., 2011). To mitigate these negative impacts, many countries 
and continents have proposed sustainable development strategies to 
recover energy from MSW as well as address climate change-related 
issues (Amigun et al., 2011; Noor et al., 2013; Rajaeifar et al., 2017; 
Shekdar, 2009; Udomsri et al., 2011; Yi et al., 2018). However, con
trolling the negative impacts on the environment during energy recov
ery from MSW is still a big challenge for scientists (Brunner and 
Rechberger, 2015; Cheng and Hu, 2010; Dalmo et al., 2019). 
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In recent years, new technologies for heat treatment from MSW have 
been proposed to maximize energy recovery and minimize negative 
impacts on the surrounding environment (Bashir et al., 2019; Dalmo 
et al., 2019; Ghosh et al., 2019; Liu et al., 2020; Polygalov et al., 2019; 
Scarlat et al., 2019). The toxic gases (e.g., COx, SOx, and NOx) and ash 
were investigated to gasify the MSW for energy recovery. Biomass 
gasification is also a potential technique to obtain energy from SW, 
aiming to reduce the local impact and greenhouse gases (Panepinto and 
Genon, 2011). However, the performance, as well as the ability to 
recover heating value and gas yield based on those toxic gases, have not 
been properly predicted and assessed. Panepinto and Genon (2016) 
indicated that the substrate pretreatments can improve the biomass 
gasification process’s performance, and an extruder was also proposed 
to improve the electric energy from the methane yield. As an alternative 
method to improve the performance of gasification processes, Dong 
et al. (2003) applied a neural network with feed-forward algorithm 
(FFNN) to predict the heating value recovered from MSW with a 
promising result. Accordingly, 108 samples were collected from several 
areas in China (Nanjing city) in their study. In addition, several empir
ical models were also considered to forecast heating value and compared 
with that of the FFNN model. The FFNN model’s performance showed 
that it is a good model for forecasting heating value with a sum-squared 
error (SSE) of 1.7. In another study, Shu et al. (2006) applied a multiple 
layers perceptron neural network (MLPNN) to predict the energy con
tent of MSW. MSW from 55 sampling sites was collected in various areas 
of Taiwan (e.g., town, villages, remote islands, cities), and analyzed for 
two years (04/2002–03/2003) to determine the characteristics of MSW. 
Different MLPNN models with different input variables were taken into 
account to estimate the heating value of MSW in their study. They 
revealed that the elemental analysis model based on MLPNN could 
predict energy content with the highest accuracy (i.e., R2 = 0.930, MAE 
= 105.45, and RMSE = 146.75), and it became the best fit model for 
predicting heating value from MSW. They also claimed that a more 
appropriate analysis method is necessary for waste treatment operators. 
A similar study for the prediction of heating value was also conducted by 
Akkaya and Demir (2010) using a neural network (ANN) with the 
Levenberg-Marquardt backpropagation algorithm. They found that this 
ANN model can estimate heating value with high reliability (i.e., MSE of 
0.0137 and R2 of 0.991), and they deduced this model as a robust esti
mation tool for the determination of heating value from MSW. In 
another study, Nixon et al. (2013) evaluated the energy recovery ability 
from MSW in several places in India, using the hierarchical analytical 
network process (HANP) approach. Their recommendations indicated 
the alternative technologies that can be applied in India, aiming to 
recover energy from MSW as best as possible. The HANP method pro
vided a ranking of 24% for anaerobic digestion, and it was indicated as 
the preferred technology for energy recovery from MSW in this country. 
Followed by the gasification with a ranking of 23%, and landfill with a 

ranking of 12%. Pandey et al. (2016) also developed an ANN for 
modeling the gasification of MSW in a fluidized bed reactor based on the 
Levenberg-Marquardt backpropagation algorithm, and gas yield is one 
of the outputs predicted in their research. Their results revealed that 
ANN is a robust technique to predict gas yield generated by energy re
covery from MSW based on two different variants of neural networks (e. 
g., single layer and double layers). The performance metrics, i.e., R2 and 
MSE, indicated that the double layers variant of the ANN model (e.g., 
6/logsig/5/logsig/Gas yield) provided the best performance with an R2 

of 0.990 and MSE of 0.00093. Adamović et al. (2018) also developed a 
GRNN model (general regression neural network) to estimate the effi
ciency of energy recovery from MSW based on a dataset collected from 
16 countries (from 2006 to 2015). They claimed that the GRNN model 
could predict energy recovery efficiency from MSW with outstanding 
performance (i.e., MAPE = 7.757 and R2 = 0.995). In a recently pub
lished paper, Wang et al. (2021) also applied an ANN model for esti
mating energy recovery from MSW. To this end, they collected 151 
datasets from various countries and developed an ANN model that can 
represent and predict a globally distributed database. Finally, they 
found that the developed ANN model was acceptable for the prediction 
of heating value from MSW with a MAPE of 15.92%. Kardani et al. 
(2021) also developed an ensemble soft computing model for similar 
purposes based on various machine learning algorithms, such as deci
sion tree, xgboost (XGB), random forest, ANN, and support vector ma
chine. They were then optimized by an optimization algorithm, i.e., 
particle swarm optimization (PSO), to estimate the MSW gasification. 
Eventually, their ensemble model was developed with an R2 was up to 
0.99 for predicting gas yield from MSW. 

Literature review shows that although some of the advanced tech
nologies have been applied to predict the energy contents of MSW. 
However, they are very rare, and most of them are the ANN models. 
Furthermore, the gas yield is one of the important productions of MSW 
gasification (He et al., 2010; Jun et al., 2017; Luo et al., 2012); however, 
it was only predicted by Pandey et al. (2016) and Kardani et al. (2021) 
based on ANN and PSO-XGB models, and some drawbacks of them were 
not addressed. Therefore, this paper aims to develop and propose a novel 
approach based on artificial intelligence techniques to predict the gas 
yield of MSW, namely MFO (moth-flame optimization) -DNN (deep 
neural network). Also, some drawbacks of the previous studies were also 
addressed and the MFO-DNN model was developed based on those fixed 
problems. 

2. Methodology 

2.1. Deep neural network (DNN) 

ANN is one of the famous tools in terms of artificial intelligence (AI), 
which was inspired by the biological structure of the human brain, and it 

Nomenclature 

MSW Municipal solid waste 
SW Solid waste 
GY Gas yield 
DNN Deep neural network 
MFO Moth-Flame optimization 
ANN Artificial neural network 
AI Artificial intelligence 
FFNN Feed-forward neural network 
MLPNN Multiple layers perceptron neural network 
HANP Hierarchical analytical network process 
ReLu Rectified linear unit 
C Carbon 

H Hydrogen 
N Nitro 
S Sulfur 
O Oxygen 
MC Moisture content 
ER Equivalence ratio 
Temp Temperature 
MSE Mean-squared error 
RMSE Root-mean-squared error 
MAPE Mean absolute percentage error 
VAF Variance accounted for 
RSE Root-squared error 
R2 Determination coefficient 
CV Cross-validation  
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has been successfully applied to various problems (Çolak, 2021; 
Özdoğan, 2021; Praveen et al., 2021; Sang et al., 2021). Theoretically, 
an ANN consists of three types of layers: input, hidden, and output (Xu 
et al., 2021). In its topology, each layer is connected through neuro
ns/nodes and exposed by their weights. In which, the input layer con
tains the input neurons that are observations or information 

measured/recorded. Subsequently, they are transferred to the hidden 
layer(s) using transfer functions or active functions. Herein, neurons in 
the hidden layer(s) process the input data and calculate them under the 
training algorithms (e.g., feedforward, backpropagation, 
Levenberg-Marquardt backpropagation, to name a few) (Wali and Tyagi, 
2020). Finally, their results are transferred to the output layer, where the 

Fig. 1. General structure of a DNN model.  

Fig. 2. Mechanism and framework of the MFO algorithm (Ghobaei-Arani et al., 2020; Mehne and Mirjalili, 2020) 
(a) Mechanism of the moths; (b) Framework of the MFO algorithm. 
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output neuron will process and present the outcomes. 
In real-life problems, many complex problems require an ANN with a 

complex structure, as well as various variants of ANN. Indeed, an ANN 
model with multiple hidden layers is called a DNN since it has to train 
and process through multiple layers (Liu et al., 2017). Furthermore, a 
DNN is often trained by deep learning tasks (Kumarasinghe et al., 2020). 
In general, the structure of DNN and ANN is similar, and their training 
algorithm is not different. However, it can find better mathematical 
manipulation to explain the relationship between inputs and output 
even though they have non-linear relationships (Zhang et al., 2020), and 
the structure of DNN is a more obvious hierarchy (Feng et al., 2019). 
Therefore, DNN tends to provide better performance and accuracy than 
conventional ANN models. A structure of DNN is illustrated in Fig. 1. 

Nowadays, DNN is often used for many complexed problems that 
require high accuracy and reliability. It can model non-linear and con
voluted relationships; then, generating models in which the object is 
conducted oneself toward as a layered formation of primitives (Dargan 
et al., 2019). For a regression problem, DNN have to face to the van
ishing gradients, such as poor local minimums and depth of the network 
(Du et al., 2019; Goodfellow et al., 2016a; LeCun et al., 2015). It is 
challenging to know/define the network’s moving direction to optimize 
the loss function. Nevertheless, the rectified linear unit (ReLU) active 
function was proposed to overcome this problem, and it can learn faster 
with many hidden layers (Glorot et al., 2011; Truong et al., 2020). 

It is the fact that DNN has been successfully applied in many fields, 
such as prediction ore production (Baek and Choi, 2019), cardiology and 
arrhythmia issues (Hannun et al., 2019), environment perception of 
intelligent vehicles (Yan et al., 2017), marine environment monitoring 
(Reddy et al., 2020), energy (Du and Li, 2019; Eshratifar and Pedram, 
2018; Li et al., 2019), to name a few. However, it has not been applied to 
predict the energy content of MSW, especially the gas yield. Therefore, it 
was investigated and developed to predict the gas yield of MSW in this 
study. Furthermore, it was taken into account to be optimized by an 
optimization algorithm to boost the DNN model’s accuracy for pre
dicting the gas yield of MSW in this study. 

2.2. Moth-flame optimization (MFO) 

MFO is a nature-inspired heuristic algorithm that was proposed by 
Mirjalili (2015). Based on the moths’ navigational behavior at night, 
they always seek to maintain a fixed angle to the moon and create a 
spiral scrolling path (Frank et al., 2006). Accordingly, moths can fly in 
one, more, or hyperdimensional based on the exchanging the position 
vectors (Fig. 2a). In those dimensional, the spatial position of a moth is 
considered as a variable, and a set of all spatial positions is a potential 
solution of MFO. Fig. 2b illustrates the framework of the MFO algorithm. 

For performing the algorithm, a population is necessary, and it can 
be set up by the following matrix: 

M =

⎡

⎢
⎢
⎣

m1,1m1,2......m1,d
m2,1m2,2......m2,d
⋮⋮⋮⋮⋮
mn,1mn,2......mn,d

⎤

⎥
⎥
⎦ (1)  

where n denotes the number of moths, and the dimensions (variables) 
are represented by d. 

To sort the fitness of moths based on the objective function, an array 
is assumed, as follow: 

FitnessMobj func =

⎡

⎢
⎢
⎣

FitnessM1
FitnessM2
⋮
FitnessMn

⎤

⎥
⎥
⎦ (2) 

Since the moths fly around the flames, therefore, a matrix of flames is 
necessary like to the matrix of the moths, and it is one of the main 
components of the MFO algorithm: 

F =

⎡

⎢
⎢
⎣

F1,1F1,2......F1,d
F2,1F2,2......F2,d
⋮⋮⋮⋮⋮
Fn,1Fn,2......Fn,d

⎤

⎥
⎥
⎦ (3)  

And similar to the fitness of the moths, an array to sort the fitness of 

Fig. 3. Proposed framework of the MFO-DNN model for predicting GY.  
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Table 1 
Characteristics of the MSW database used.  

Elements C H N S O MC Ash ER Temp GY 

Min. 11.15 1.47 0.16 0.04 0 0 0.15 0.2 400 0.58 
1st Qua. 42.27 4.62 0.18 0.07 6.9 0.02 0.6 0.2 503.5 1.385 
Median 43.73 5.3 0.27 0.11 38.43 6.96 2.0 0.4 602 1.98 
Mean 44.45 5.946 0.6036 0.1301 26.97 17.66 4.36 0.403 582.7 2.415 
3rd Qu. 46.8 5.63 1.1 0.14 40.95 8.42 6.72 0.6 653 2.88 
Max. 85.83 14.38 1.65 0.3 40.96 78.12 17.1 0.6 798 7.51  

Table 2 
Correlation matrix of the dataset collected for GY prediction.   

C H N S O MC Ash ER Temp GY 

C 1 0.969 − 0.723 − 0.148 − 0.136 − 0.770 − 0.054 0.038 0.190 0.701 
H 0.969 1 − 0.575 − 0.159 − 0.370 − 0.604 − 0.111 0.040 0.186 0.744 
N − 0.723 − 0.575 1 0.363 − 0.430 0.806 0.208 − 0.041 − 0.132 − 0.259 
S − 0.148 − 0.159 0.363 1 0.197 − 0.174 0.885 − 0.050 0.060 − 0.009 
O − 0.136 − 0.370 − 0.430 0.197 1 − 0.494 0.320 − 0.020 − 0.008 − 0.383 
MC − 0.770 − 0.604 0.806 − 0.174 − 0.494 1 − 0.343 − 0.008 − 0.163 − 0.396 
Ash − 0.054 − 0.111 0.208 0.885 0.320 − 0.343 1 − 0.065 0.014 0.017 
ER 0.038 0.040 − 0.041 − 0.050 − 0.020 − 0.008 − 0.065 1 0.019 0.562 
Temp 0.190 0.186 − 0.132 0.060 − 0.008 − 0.163 0.014 0.019 1 0.169 
GY 0.701 0.744 − 0.259 − 0.009 − 0.383 − 0.396 0.017 0.562 0.169 1  

Fig. 4. Visualization of the dataset used and its distribution, correlation, and density.  
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flames based on the objective function is also assumed, as follows: 

FitnessFobj func =

⎡

⎢
⎢
⎣

FitnessF1
FitnessF2
⋮
FitnessFn

⎤

⎥
⎥
⎦ (4) 

It is worth mentioning that both flames and moths are the solutions, 
and the main difference is the update and treatment at each iteration. 
For each iteration, moths fly around the search space with many spatial 
positions, whereas flames are the best spatial position of moths during 
searching, and moths mark them to avoid losing their best solution. 
During searching, moths continuously exchange their experiences and 
update the better positions. 

Fig. 5. Determination of the number of hidden layers using deep learning.  

Fig. 6. Determination of the number of neurons using deep learning 
(a) Training process to determine the number of neurons using deep learning; 
(b) Zoom-out of the DNN performance with different number of neurons. 

Fig. 7. Performance curves of the DNN model for predicting GY.  

Fig. 8. Results of the DNN model and the correlation between measured vs. 
predicted GY values. 
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As presented by Mirjalili (2015), MFO contains three optimization 
problems (steps) based on global optimization, including (i) random 
population of moths and their fitness, (ii) the search space, and the way 
moths move around the search space (exchanging experiences and up
date the positions), (iii) checking the stop criterion whether it is satisfied 
or not. 

In step 2, moths update their position using the following equation: 

Mi =P
(
Mi,Fj

)
=Rjexpαk.cos(2πk) + Fj (5)  

where P denotes the spiral function of moths; Mi and Fj are the ith moth 
and jth flame; Rj is the distance between ith moth and jth flame (Rj > 0); 
α stands the coefficient of the spiral function; and k is a random number 
in the range of − 1 to 1. 

Further details of the MFO algorithm can be read and referred to the 
literature (Abd El Aziz et al., 2017; Allam et al., 2016; Bahrami et al., 
2018; Mirjalili, 2015; Wang et al., 2017; Yamany et al., 2015) 

2.3. Hybridization of DNN and MFO for predicting gas yield 

As stated earlier, this study’s primary purpose is to develop and 
propose a novel AI model for predicting GY based on the MFO algorithm 
and DNN model. The idea of this study is based on the disadvantage of 
DNN and the advantage of the MFO algorithm. Whereas the DNN can 
overcome the local minimum and improve the accuracy of an ANN 
model since it can find a better way to train the network, the selection 
and calculation of the optimal weights and biases still are challenging of 
DNN (Uddin et al., 2017). In contrast, the MFO algorithm can perform a 
global optimization for optimization problems (Mehne and Mirjalili, 
2020; Mirjalili, 2015). Therefore, the MFO algorithm was used to opti
mize weights of the DNN model, called MFO-DNN model. The frame
work of the MFO-DNN model for predicting GY is proposed in Fig. 3. 

Accordingly, the database is divided into two sections, one for 
training with 70% of the whole dataset, one for testing with the 
remaining 30% of the dataset. At the first step, an initial ANN model is 
necessary for the optimization step. However, it is hard to design an 
optimal structure of the ANN model. Therefore, deep learning tech
niques were applied to find the optimal number of hidden layers and 
hidden neurons, such as configure capacity with layers and neurons 
(evaluate deeper and wider network topologies), configure gradient 
precision with batch size, optimization of loss functions, and configure 
speed of learning with learning rate (Goodfellow et al., 2016b; Sham
shirband et al., 2019; Shickel et al., 2017; Wang et al., 2019). Finally, a 

DNN (deep neural network) is developed. 
Although a DNN model is developed with the optimal structure; 

however, the weights still are random, and different performances can 
be generated with many runs. In other words, the weights of the DNN 
model need to be optimized to have an optimal DNN model with the 
accuracy improved. To this end, the MFO algorithm is applied. Mean- 
squared error (MSE) is used as the objective function for the optimiza
tion process with the lowest MSE, and the best MFO-DNN model is 
selected. Ultimately, the testing dataset is applied to evaluate the opti
mized MFO-DNN model’s accuracy for predicting GY. 

3. Municipal solid waste gasification database 

In this study, an MSW database from different sources, such as wood, 
paper, kitchen garbage, PE plastic, textile, to name a few, were collected 
with 67 observations, and it is available in (Choy et al., 2004; Pandey 
et al., 2016). Based on that, carbon (C), hydrogen (H), nitro (N), sulfur 
(S), oxygen (O), moisture content (MC), ash, equivalence ratio (ER), and 
temperature (Temp) were taken into account to estimate the gas yield 
(GY) during gasification in a fluidized bed reactor. The mechanism of 
the fluidized bed reactor was described by Choy et al. (2004). Of those, 
the content of C is in the range of 11.15%–85.83%; 1.47 < H < 14.38; 
0.16 < N < 1.65; 0.04 < S < 0.3; 0 < O < 40.96; 0 < MC < 78.12; 0.15 <
Ash <17.1; 0.2 < ER < 0.6, and the Temp increase from 400 to 798 ◦C 
(oC). The details of the collected MSW database were summarized in 
Table 1. 

Before developing the models, in order to get most of the dataset, it 
must be well-prepared, including data cleaning, feature selection, and 
data transforms (Liu and Motoda, 2012; Zhang et al., 2003)(Hoang, 
2020; Jian et al., 2021; Tinh et al., 2020). Therefore, a correlation matrix 
of the collected dataset was computed to discover the relationship be
tween variables, as shown in Table 2. 

Accordingly, the input variables with high correlation should be 
eliminated to ensure the generalization of the predictors and model. In 
other words, the inputs that have similar characteristics and roles should 
be considered carefully. In Table 2, it is clear that C and H are the var
iables with the highest correlation (i.e., 0.969–1). Therefore, one of 
them must be removed from the collected dataset. Considering the 
correlation between C, H and the output variable, i.e., GY, it can be seen 
that the correlation between H and GY is higher than those of C and GY. 
Thus, C variable should be removed in this study. By the similar tech
nique, MC and Ash variables were also removed from the collected 
dataset since their correlation is very high (>0.8). This problem is a 

Fig. 9. MFO optimizer for optimization of the DNN model through weights and biases (MFO-DNN).  

L. Yang et al.                                                                                                                                                                                                                                    



Journal of Cleaner Production 311 (2021) 127672

8

drawback of the previous study (Pandey et al., 2016) as well, where they 
have not yet fully evaluated the correlation of the variables. Therefore, 
this study considered the drawbacks of the previous study and used only 
six input variables instead of nine input variables. Finally, H, N, S, O, ER, 
and Temp are the remaining variables used to predict GY in this study. 
The distribution, density, and correlation of the variables are illustrated 
in Fig. 4. 

4. Results and discussion 

Once the dataset was well-prepared, it was divided into two sections, 
as mentioned in section 2.3. Aiming to prevent over-fitting, the MinMax 
scaling method with the range of [-1, 1] and 5-fold cross-validation (CV) 
technique were applied during the development of the models (Dung 
and Chi, 2020; Jian et al., 2021; Yingui et al., 2021). The python envi
ronment (version 3.7.9) was used to program and develop the 
mentioned models in this work. 

As shown in Fig. 3, an initial ANN model is necessary for predicting 
GY before optimizing and improving its performance. However, it is 

hard to design an optimal structure of an ANN model. Therefore, deep 
learning techniques were applied to find an optimal topology network 
(e.g., hidden layers, neurons) with the performance improved, as shown 
in Figs. 5 and 6. It is worth noting that in order to define the optimal 
number of hidden layers, the trial-and-error technique with a fixed 
number of neurons (i.e., 10 neurons). The results showed that the 
optimal network topology is of two hidden layers. Once the optimal 
number of hidden layers was defined, the number of neurons in the 
hidden layers were defined based on the errors of the network topology 
(i.e., MSE). The number of neurons with the lowest MSE were selected 
for the second hidden layer, followed by the number of neurons with a 
slightly higher MSE for the first hidden layer. Eventually, an optimal 
structure of DNN was defined with 2 hidden layers, and 22 neurons in 
the first hidden layer, 16 neurons in the second hidden layer, 
respectively. 

Once the DNN structure was defined to predict GY, it was built, and 
its performance was computed based on both training and testing pro
cess, as shown in Fig. 7. Herein, the DNN performance is very well in 
predicting GY, and the train line and test line are very close. Finally, the 
predictions of GY by the DNN model were reported and shown in Fig. 8. 

Although the performance of the DNN model for predicting GY is 
good, as mentioned above. However, the weights of the DNN model 
have not been yet optimized. Therefore, we tried our best to optimize the 
weights of the developed DNN model and discover whether the perfor
mance of the DNN model can be further improved or not. And the MFO 
algorithm was used for this aim. 

To optimize the DNN model by the MFO algorithm, the parameters of 
the MFO must be set up first. For instance, the number of moths and 
flames are necessary for the global search and they have a great impact 
on the accuracy of the model. Therefore, they were selected as 50, 100, 
150, 200, 250, 300, 350, 400, 450, 500, respectively, to check the 
different random population’s performance. Also, the number of fea
tures and dimensions was selected as 6, the number of iterations was set 
as equal to 1000, and the other coefficients were selected in the range of 
− 1 to 1. MSE was selected to evaluate the optimization process. The 
MFO-DNN training performance is shown in Fig. 9. Once the weights of 
the DNN were optimized by the MFO algorithm, the predictions of the 
optimized DNN model (i.e., MFO-DNN) was re-computed, and they are 
shown in Fig. 10. For further assessment of the DNN and MFO-DNN 
models, RMSE, MAPE, R2, VAF, and RSE, were used and computed, as 
listed in Table 3. 

The performance metrics in Table 3 show that both DNN and MFO- 
DNN performed very well in predicting GY. Remarkably, the MFO- 
DNN performance is more superior than the DNN model on all the 
performance indices. In other words, the MFO algorithm improved the 
DNN performance based on the optimization of the weights. Considering 
the testing dataset and the correlation between measured and predicted 
GYs (Fig. 8b), it is clear that although the DNN model performed very 
well; however, there are some data points that outside of the 80% 
confidence level of the model. Those data points were performed better 
by the MFO-DNN model, and they are inside the 80% confidence level of 
the model (Fig. 10b). These results interpreted that the MFO algorithm 
contributed a significant role in reducing the DNN model’s violation. 
The proposed MFO-DNN model accuracy compared with the DNN model 
and measured GYs is further demonstrated in Fig. 11. 

5. Sensitivity analysis 

The obtained results demonstrated the accuracy and agreement of 
the proposed MFO-DNN model in predicting GY generated by energy 
recovery from MSW. This model is helpful for improving the perfor
mance of the gasification process by adjusting the input parameters (i.e., 
C, H, N, S, O, MC, ER, and Temp). Nevertheless, the problem now is 
which parameters should be adjusted? The answer for this question was 
interpreted by a sensitivity analysis to calculate the importance of the 
input variables (Fig. 12). To this end, the Olden method (Olden et al., 

Fig. 10. Results of the MFO-DNN model and the correlation between measured 
vs predicted GY values from the MFO-DNN model 
(a) Training dataset; (b) Testing dataset. 
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2004) was applied for such a DNN model. Based on the importance 
scores of the inputs in Fig. 12, Temp and H are the highest importance. 
Followed by the variables O, S, and N. The ER variable seems to be of 
very low importance for the gasification process. Based on these ana
lyses, the gasification performance can be improved by adjusting the 
input variables with high importance scores. 

6. Conclusion 

MSW is a big concern of countries and urban areas. It severely affects 
the environment and people if not handled properly. The recycling and 

recovery of energy from MSW is considered an effective solution for 
cleaner production, minimizing negative impacts on the surrounding 
environment, and contributing more renewable energy to the countries. 
However, the recycling and recovery of energy from MSW should be 
accurately predicted to minimize excess harmful gases, such as C, H, O, 
N, S, and increase energy efficiency. Therefore, this study developed and 
proposed a novel hybrid AI model (i.e., MFO-DNN) for predicting GY 
generated by energy recovery from MSW with high accuracy. This model 
allows MSW processing plants to accurately predict the amount of gas 
yield collected from MSW sources to have a plan for rational adjustment 
and distribution of energy. Also, the proposed MFO-DNN model can be 

Fig. 11. Measured vs predicted GY by DNN and MFO-DNN models (testing).  

Fig. 12. Importance of the input variables in the proposed MFO-DNN model using the Olden sensitivity analysis method.  

Table 3 
The accuracy and errors of the DNN and MFO-DNN models for predicting GY.  

Model Training dataset Testing dataset 

R2 RMSE MAPE VAF RSE R2 RMSE MAPE VAF RSE 

DNN 0.992 0.145 0.056 99.245 0.003 0.969 0.299 0.101 96.773 0.001 
MFO-DNN 0.995 0.117 0.045 99.506 0.001 0.981 0.230 0.090 98.052 0.0004  
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considered to adjust the components aiming to create the most optimal 
GYs, avoiding the generation of excess harmful gases into the sur
rounding environment. 

Although the findings of this study are meaningful and the contri
butions and insights into the gasification process are valuable for the 
scientific community. Nevertheless, its limitations still need further 
researcher in the future, including: 

A larger database with different MSW types and furnaces is better to 
explain and develop a predictive model for gasification processes.  

- The performance of the proposed MFO-DNN model for other waste 
treatment technologies (e.g., biological gasification) needs to be 
investigated and discussed.  

- This study just solved the first phase of the problem, i.e., predicting 
GY generated by energy recovery from MSW. The second phase of 
this problem should be further researched in the future, aiming to 
optimize the input variables to achieve the highest performance in 
the gasification process. 
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