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The paper deals with the robust state bounding estimation problem of
stochastic control systems with discrete time Markovian jump. By
using Lyapunov functional method and probability theory, we
propose new sufficient conditions to guarantee robust state
boundedness for the stochastic control systems. The conditions are
derived in terms of linear matrix inequalities, which is simple and
convenient for testing and application. Unfortunately, difficulties arise
when one attempts to derive the sufficient conditions and to extract
the controller parameters for these systems. In fact, we have to cope
with stochastic process and disturbance. Indeed, the Lyapunov
functional method is a powerful tool to stability analysis of
differential systems. However, this method is not effectively applied
for stochastic systems because we do not know how to construct
suitable Lyapunov functions and use them in these systems. To
overcome the difficulties, we first introduced basic concepts of
probability theory. Next, a new sufficient conditions of robust state
boundedness for unforced stochastic systems was established. Finally,
the result was applied to design controllers to guarantee robust state
boundedness for stochastic control systems.
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TU KHOA

Xich Markov

Khoéng gian x4c suat day du

Bit ddng thirc ma tran tuyén tinh
Hé roi rac

Diéu khién ngau nhién

Bai béo nay udc lugng tinh bi chan bén viing cua hé diéu khién ngau
nhién véi xich Markovian roi rac. Bang cach s dung phuong phép
ham Lyapunov va li thuyét xac suét, chiing t6i dé xuat mot sb diéu
kién du ma&i d& dam bao tinh bi chan bén viing cho hé diéu khién
ngau nhién. Cac diéu kién trén l1a cac bit dang thic ma tran tuyén
tinh c6 thé kiém tra va d& dang sir dung trong thuc té. That khong
may mén, c6 nhiéu kho khan nay sinh khi nghién cau cac hé nay khi
chdng ta phai d6i mat vai cac qua trinh ngau nhién va nhiu khong
mong mudn. Thém vao d6, phuong phép ham Lyapunov 1a mét cong
cu day hiéu qua khi nghién ciu tinh 6n dinh cua cac hé phuong trinh
vi phan. Tuy nhién, phuong phap nay khong hiéu qua khi &p dung
cho céc hé ngau nhién do chiing ta khong biét lam thé nao dé ciu tric
cac ham Lyapunov phii hop va 1am thé nao dé sir dung cac ham nay
cho cac qua trinh ngiu nhién. P& vuot qua cac kho khan trén, dau
tién, ching toi gidi thiéu cac khéi niém co ban cua Ii thuyét ngau
nhién. Tiép d6, chung t6i thiét 1ap mot diéu kién du méi vé tinh bi
chan bén ving cho hé ngau nhién khong c6 dieu khién. Cudi cling,
két qua nay duoc ap dung cho viéc thiét ké diéu khién cho hé ngau
nhién co6 diéu khién.
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1. Introduction

Markovian jump systems belong to a significant class of hybrid systems which are described
by the switches between subsystems and a finite-state Markov chain according to a known
Markov law. Discrete-time Markovian jump systems arise in many practical processes subjected
to random abrupt changes in the inputs, internal variables [1]-[4]. Examples of such systems with
Markov chain are solar thermal central receivers, economic systems and manufacturing systems.
Therefore, Markovian jump systems have attracted a lot of attention in many applications of
signal processing, control theory and communications because of their flexibility to model real
world phenomena [5], [6].

In recent years, considerable interest has been focused on many important problems in
systems and control theory of Markovian jump systems. Based on Lyapunov’s second method,
some sufficient conditions in terms of linear matrix inequalities for following problems are
proposed as mean square stability of linear discrete-time systems [7], state bounding problem [8],
[9], stabilisation for Markovian jump systems with state and input delays [10], and H_ control

problems for linear Markovian jump systems with mode-dependent/independent delays [11] etc.

Besides, disturbances is inherent characteristic of many physical systems and ubiquitous in
dynamic systems. These disturbances are the unavoidable source of instability and poor
performance. Hence, the problem of state bounding for Markovian jump systems with
disturbances is a key topic in control engineering. However, to the best knowledge of authors,
there are very few results on the problem for stochastic control system with disturbance input and
discrete-time Markovian chain. This has motivated our research.

The paper is organized as follows. Section 2 presents definitions and some well-known
technical lemmas needed for the proof of the main results. A main result for designing controllers
to ensure y—mean square boundedness is presented in Section 3. The paper ends with

conclusions.
2. Preliminaries and problem statement

The following notations will be used throughout this paper: N denotes the set of all non-
negative integer numbers R* stands for the set of all non-negative real numbers; R" denotes the n-
dimensional space with the scalar product (x,y)=x"yand the vector norm |X|=x/ﬂ;AT
denotes the transpose of the matrix A and | denotes the identity matrix inR"; A, (A),
Ain (A) stand for the maximal and the minimal real part of eigenvalues of A, respectively;
Q>0 means that Q is positive definite, .i.e., X’Qx>0 for all x=0; A>B means A—B>0;
E[-] is the expectation operator with respect to some complete probability space (2, F,P). The

symmetric terms in a matrix are denoted by *.
Consider the discrete time stochastic control system described by the following equations:

x(k +1) = A(r, ) x(k) + B(r, )w(k) + C(r)u, (k), k e N,
x(0) =0,
where x(k) € R" is the state vector; u, (k) is the control; w(k) e R®is the disturbance input;

2.1)

{r.}._, be adiscrete Markov chain with state space M ={1,2,...,m}. The transition probabilities

of {r}  aregivenby P(r_, =j|r =i)=p;, where p;>0and > p; =1 Vi, je M.
j=1
[A(r). B(r).C(r)]

are system matrices of appropriate dimensions in the finite set of
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{[A .B..C |.ie M} with A = A(i), B, :=B(i),C, :=C(i),Vie M.
The disturbance w(k) satisfies the condition

3b>0:|w(k)|| <b, Yk e N. (2.2)
Definition 2.1. ([8]) For a given y >0, system (2.1) is said to be y—mean square bounded

if every trajectory x(k) of (2.1) satisfies
E[ X IF, [<7, vkeN,

where F, = o {x(0),r,} be the o-algebra generated by (x(0) =0,r,).
Lemma 2.1. ([12]) Give constant matrices Y =Y' >0 and X,Z . Then

X ZT
X+Z2'Y'Z<0 <0.
Z Y
3. Main results

In this section, we will give sufficient conditions of y —mean square boundedness for (2.1).

We first establish a sufficient condition for unforced system (2.1). Then, we design controllers
based on LMIs to guarantee y —mean square boundedness for (2.1).

Let us set
Q=YQ,p,, Q =QU) Vi,jeM;
j=1

f=na @@L,

Theorem 3.1. Give y >0, a (0,1), and a symmetric positive definite matrix Q. If there exist
symmetric positive definite matrices Q,, i € M, satisfying the following LMI conditions for all
ieM,

A'QA-aQ  A'QB
* B'QB -4l
Q=>Q,VieM,
then unforced system (2.1) is » —mean square bounded.
Proof. Consider the following function
V (x(k), 1) = x(k)" Q(r,)x(k), Vk € N.
Suppose that r, =i. Then, at time k +1, the mode r,,, = j with probability p;.
Firstly, we estimate

<0, (3.1)

(3.2)

E[V (x(k +1), f.) [X(K), 1, ]
as follows. It is easy to see that if we fix x(k) and r, =i, the value of
X(k +1) = Ax(k) + B.w(k)
is only dependent on (x(k),w(k)). Then
E[V (x(k +1),r..) [x(k), 1, =i]

is dependent on I,,,. It leads to
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E[V (x(k +2),1,.) [X(K), F, =i] =E[x(k +1)7Q(r, )x(k +1) | x(k),r, = i]

=Zm:x(k +1)"Qx(k +DP(r,, = j|r =i) =Zm:x(k +1)"Q;x(k +1) p; = x(k +1)TQ.x(k +1)

=[AX(K) +Bw()] Q [AX(K) +Bw(k)] - ax(k)T Qx(K) + &V (x(K),r, =i)
I A'QA-aP ATQB Hx(k)

) 2"QE g1 W(k)} + AW +aVv (x(K).1, =i).

= [x(k), w(k)

From (3.1), we have
E[V (x(k +1), 1) [x(k),r, =i] < ﬁ||w(k)||2 +aV (x(k),r, =i), VieM.
Hence, because of (2.2), we obtain
E[V (x(k +1),5,,) [X(k), 1 ]< b+ aV (x(K), k). (3.3)
Next, we use the inequality (3.3) to evaluate
E[V (x(k),r.) [x(0),1,], k e N.
From (3.3), we have the followings.
For k =0,
E[V (x(D),1,) [x(0),1,] < Bb+aV (x(0),r,) = Bb+ ax(0)" Q(r,)x(0) = Sb. (3.4)
For k =1,
E[V (x(2),1,) [x(D),r, ] < Bb+aV (x(D),1,).
Consequently,
E[V (x(2),1,) IX@), 1, ]1(x(0), 1) < b+ aV (x(1), 1) [(X(0), I, )-
Taking expectation both sides of the above inequality, we have
E[V (x(2),1,) [X(0), r, ] = E(E[V (x(2),1,) X, . ]| (x(0), ,))
< pb+aE(V (x(@), 1) [(x(0),1,))< b+ apb = pb(1+a).
Similarly, we obtain

E[V<x(k),rk)|x(0),ro]sﬂb(1+a+-~-+a“)=ﬂb1‘“H vk eN.
l-«o
Hence,
E[V (x(k),r) K] =E[V (x(k),r) [x(0),r, ] < 1";b vk e N. (3.5)
-

Since the condition (3.2), the following inequality holds
V(x(K), , =i) = x(K)" Qx(k) = X(K)" Qx(K) = Ay, (Q)[X(K)] "

Moreover,
V(K(K),5) 2 Ay QX[ Wk eN. (36)
Using (3.6) and the monotonicity of the operatorE[-] , We have
BV (<), 1) 1Fo ]2 E| Ay (QXCOI] I, | = 2 (QUE [ IF, | 37

Combining (3.5) and (3.7), we obtain

el M1
Sl ey g

which completes the proof of the theorem.
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The remaining of this section is to design controllers in the form of u, (k) =L, x(k) such

that the system (2.1) is y —mean square bounded.
Let us denote

Q=20 Q =QU). Vi.jeM;
j=1

Q= ATauA +A'KC +[Kici ]T A -aQ;
Q, = AaiB+CiTKiBi; Qy, = BiTaBi -pl.
Theorem 3.2. Given y >0, « €(0,1), and a symmetric positive definite matrix Q. If there
exist symmetric positive definite matrices Q,, i € M, and matrices K,, i € M, satisfying the
following LMI conditions for all i € M,

Qll QlZ [ Ki Ci ]T

*Q, 0 |<0 (3.8)
* * _ﬂ’min (Q) I
Q=Q (3.9)

then system (2.1) is y —mean square bounded with the controller.

0,k =[Q ] Kx(k).
Proof.
From (3.2) and

Q=2Q,p 2Py =1 p, 20,
we have a "
(Si:inj Py = inpi,- =Q24,,(Q)1>0,
itleads to A, (Q) = 4y, (Q)>0.

= ““min

Consequently,

QT <l ) - e

Use the above inequality and (3.8) and Schur complement lemma (Lemma 2.1) with

L=[Q] K. ieM,
we have
[A +LC, ]T al[pﬁ + LiCi]_aQi [Ai +LG; ]T 6iBi _ Q11+[Kici]T |:6i:|_1 KC Q,
* BiTaiBi _ﬂl * sz

. (3.10)
Q,+——[KC]KC @,
S j’min (Q)

* QZZ
From (3.9) and (3.10), using Theorem 3.1, system (2.1) is y —mean square bounded. This
completes the proof of the theorem.

<0,VieM.
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4. Conclusion

In this paper, we have studied the robust state bounding estimation problem of stochastic
control systems with discrete time Markovian jump. The proposed analytical tools used in the
proof are based on Lyapunov functional method. The sufficient conditions for y —mean square

boundedness have been established in terms of LMIs.
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