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Abstract
In landslide susceptibility mapping or evaluating slope stability, the shear strength parameters of rocks and soils and their 
effectiveness are undeniable. However, they have not been studied for all-natural materials, as well as different locations. 
Therefore, this paper proposes a novel generalized artificial intelligence model for estimating the friction angle of clays from 
different areas/locations for evaluating slope stability or landslide susceptibility mapping, including the datasets from the 
UK, New Zealand, Indonesia, Venezuela, USA, Japan, and Italy. The robustness and consistency of the model’s prediction 
were checked by testing with various datasets having different geological and geomorphological setups. Accordingly, 162 
observations from different areas/locations were collected from the locations and regions above for this aim. Subsequently, 
deep learning techniques were applied to develop the multiple layer perceptron (MLP) neural network model (i.e., DMLP 
model) with the goal of error reduction of the MLP model. Next, Harris Hawks optimization (HHO) algorithm was applied 
to boost the optimization of the DMLP model for predicting friction angle of clays aiming to get a better accuracy than those 
of the DMLP model, called HHO–DMLP model. A DMLP neural network without optimization of the HHO algorithm 
and two other conventional models (i.e., SVM and RF) were also employed to compare with the proposed HHO–DMLP 
model. The results showed that the proposed HHO–DMLP model predicted the friction angle of clays better than those of 
the other models. It can reflect the friction angle of clays with acceptable accuracy from different locations and regions (i.e., 
MSE = 12.042; RMSE = 3.470; R2 = 0.796; MAPE = 0.182; and VAF = 78.806). The DMLP model without optimization of 
the HHO algorithm provided slightly lower accuracy (i.e., MSE = 15.151; RMSE = 3.892; R2 = 0.738; MAPE = 0.202; and 
VAF = 73.431). Besides, two other conventional models (i.e., SVM and RF) provided low reliability, especially over-fitting 
happened with the RF model, and it was not recommended to be used to predict the friction angle of clays (i.e., RMSE = 6.325 
and R2 = 0.377 on the training dataset, but RMSE = 1.669 and R2 = 0.961 on the testing dataset).
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1  Introduction

Landslide and slope stability are major geohazards that 
need to be handled, predicted, and mapped in worldwide 
[1–3]. It has an essential significance in controlling the 

natural hazards induced by landslides and slope instability. 
Many scholars have succeeded in predicting and mapping 
landslides based on data science [4–7]. However, soils/
rocks shear strength parameters and their effectiveness 
have not been studied for all-natural materials, as well 
as different locations [8–10]. Meanwhile, shear strength 
parameters (e.g., friction angle and cohesion) of natural 
materials are considered as essential factors in assessing 
the deformation and stability of geotechnical structures 
such as slopes, landslide, foundations, dams, and retaining 
walls [11–14]. Of those, cohesion is taken into account 
as the most important factor in evaluating the stability 
of slopes in cases of cemented rocks and soils, and the 
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friction angle for the cases of uncemented rocks and soils 
[15–17]. To determine the values of cohesion and fric-
tion angle, experiments are usually carried out in labora-
tories based on standard methods, such as Mohr–Coulomb 
theory, Bishop [18–20]. Nevertheless, they were recom-
mended in a limited range [21–23]. Furthermore, labora-
tory experiments are often complex and costly due to the 
preparation of samples and experimental conditions [24]. 
In addition, the experimental results often do not reflect 
all the characteristics of rocks and soils in reality [25, 
26]. Therefore, a new method capable of predicting shear 
strength parameters of rocks and soils in practice with high 
reliability is a challenge for engineers and scientists.

Regarding the prediction of rocks/soils shear strength 
parameters, significant efforts have been made in the litera-
ture [27, 28]. Garven and Vanapalli [29] evaluated the per-
formance of nineteen empirical methods to forecast the shear 
strength of unsaturated soils (SSoUS). The suitability of the 
nineteen empirical equations has been recommended and 
highlighted for predicting SSoUS. However, these empirical 
equations resulted into sub-optimal accuracy [30, 31].

To overcome the drawbacks of empirical equations and 
experimental tests in laboratories, in recent years, artificial 
intelligence (AI) has been introduced as a robust technique. 
Many AIs techniques have been successfully applied in prac-
tical engineering [32–41]. For predicting friction angle, Das 
and Basudhar [42] developed an artificial neural network 
(ANN), and clay was the objective considered in their study. 
They concluded that ANN could explain the physical effect 
of clay characteristics and friction angle. In another study, 
Das et al. [43] developed different AI techniques (e.g., ANN-
based and SVM-based) for predicting the friction angle of 
clay. Finally, the SVM model was confirmed as the best AI 
technique in their study to predict friction angle of clay. 
Khan et al. [44] also predicted the friction angle of clay 
based on the same dataset of Das et al. [43], using a func-
tional network (FN). Their results were then compared with 
the obtained results in the paper by Das et al. [43] to prove 
the accuracy of the FN model. Their comparisons indicated 
that FN model was a good candidate for predicting fric-
tion angle of clay. Based on the stochastic approach of the 
Monte Carlo algorithm, Casagrande et al. [45] successfully 
predicted the shear strength of rock discontinuities. Posi-
tive outcomes were then presented in their study with high 
reliability. In another study, Pham et al. [46] successfully 
developed four AI models for predicting shear strength of 
soft soil, including ANN, SVM, and ANFIS based on par-
ticle swarm optimization (PANFIS) and genetic algorithms 
(GANFIS). Finally, the PANFIS was introduced as the best 
model for their purposes. Matos et al. [47] also predicted 
the shear strength of unfilled rock joints based on a novel 
AI approach, namely the first-order Takagi–Sugeno fuzzy 
(FOTSF). Eventually, they introduced the FOTSF model as 

a useful tool to predict the shear strength of unfilled rock 
joints.

Systematic literature review showed that state-of-the-art 
AI techniques have been efficiency used and successfully 
applied terms of shear strength parameters prediction of 
rocks and soils and their effectiveness are undeniable. How-
ever, they have not been studied for all-natural materials, 
as well as different locations. Moreover, novel AI models 
with the improved accuracy are always the goal of scien-
tists/researchers. Hence, this work developed and proposed 
a novel paradigm based on the deep learning technique and 
optimization algorithm for predicting friction angle of clay. 
Accordingly, the deep learning techniques were combined 
with the Harris Hawks optimization (HHO) algorithm to 
train and develop a multiple layer perceptron (MLP) neural 
network for this aim, called HHO–DMLP model. An MLP 
neural network (without optimization), SVM, and random 
forest (RF) models were then investigated and evaluated 
with that of the proposed HHO–DMLP model aiming to 
highlight the obtained results of the HHO–DMLP model.

2 � Methodology

The focus of the present study is to propose a novel paradigm 
based on the hybridization techniques, i.e., HHO–DMLP 
for predicting friction angle of clay. Therefore, this sec-
tion only focusses on the details of MLP neural network 
and HHO algorithm, as well as proposing the framework of 
the HHO–DMLP model. The detail of SVM and RF can be 
referred to the following papers [48–53].

2.1 � Deep neural network (deep learning for MLP 
neural network)

As one of the most common types of ANN used in many 
applications in real life, MLP is well known as a flexible 
neural network with the structure consists of multiple layers 
[54, 55]. In each layer, neurons are the main components, 
and they connect to form a network capable of transmitting 
the information [56]. The process of transferring information 
between layers and neurons is performed by training algo-
rithms, such as feed-forward, back-propagation, and Leven-
berg–Marquardt [57–59]. In MLP neural networks, weights 
are the main information, and they are used to assess the 
quality of the network. They have a significant effect on the 
training performance and accuracy of the network. An MLP 
neural network with multiple hidden layers is capable of 
improvement of information between neurons, called deep 
neural network (DNN) [60].

The concept of DNN has been introduced in recent years 
for complex issues that require a high degree of accuracy. 
However, training a DNN to achieve the desired effect is not 
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easy. Therefore, the concept of deep learning has been intro-
duced and proposed to train DNN to achieve better results 
[61]. In MLP neural networks, deep learning can perform 
many tasks to get the optimal network structure, higher accu-
racy level, faster computing speed, and more stable predic-
tive results [62, 63].

Literature review shows that DNN has been successfully 
applied in many fields, especially in mining and geotechnical 
engineering [64–69]. In this study, deep learning was con-
sidered training a deep MLP neural network for predicting 
friction angle of clay, for determining the optimal structure 
and loss function of the MLP neural network. Besides, the 
activation functions between layers also play an important 
role in understanding the connection as well as the per-
formance of the network [70, 71]. Review of the literature 
shows that the rectified linear activation function (ReLU) 
has been used as a result in many works [72–76]. By the 
use of the ReLU activation function, MLP can overcome 
the problem of vanishing gradient. Furthermore, it allows 
the MLP model to train faster and get better performance. 
Thus, it is considered as the most widely used activation 
function in deep learning models and it works great in most 
applications. Herein, we used the ReLU active function to 
discover the connections of neurons in the hidden layers. 
Also, a linear activation function was applied for the output 

layer of the network to evaluate the quality of the outcomes. 
The structure and flowchart of an MLP neural network as 
well as the activation functions used for predicting friction 
angle of clay are shown in Fig. 1.

2.2 � Harris Hawks optimization (HHO) algorithm

HHO is one of the swarm-based algorithms which was 
developed by Heidari et al. [77]. Inspired by the predatory 
behavior of hawks, the HHO algorithm implements strate-
gies to optimize its goals, including two main steps: explo-
ration and exploitation (Fig. 2). In exploration step, Har-
ris Hawks can perch at random locations of other hawks to 
explore prey. Then, they can apply the soft or hard besieges 
strategies for attacking the prey (exploitation step) (Fig. 3). 
In fact, the prey can detect hawk attacks and escape before 
they are attacked. Therefore, HHO algorithm applied the soft 
or hard besieges with progressive rapid dives strategies to 
eliminate the ability of the prey to escape. Figure 2 presents 
step by step of the HHO algorithm for optimization prob-
lems. Please note Eqs. (1–6) in the optimization sequence 
of the HHO algorithm [77] are presented in supplementary 
materials. More details of HHO algorithm are described in 
Heidari et al. (2019).

Fig. 1   Structure and flowchart 
of the MLP neural network for 
predicting friction angle
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Literature review shows that the HHO algorithm has 
been successfully applied for many problems [78–82]. 

Herein, the HHO algorithm was used as a nature-
based optimization algorithm for the optimization 

Fig. 2   Mechanism, phases, and the optimization sequence of the HHO algorithm (modified after Heidari et  al. [77]). a Strategies of Harris 
Hawks and b the optimization sequence of the HHO algorithm
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and improvement of a deep MLP neural network (i.e., 
HHO–DMLP), for predicting friction angle of clay.

2.3 � Proposing the framework of HHO–DMLP

To propose the framework of the HHO–DMLP model, three 
models are prepared: deep learning techniques, MLP neu-
ral network, and HHO algorithm. Accordingly, MLP neural 
network was selected as the key model for predicting friction 
angle of clay in this study. Deep learning was then applied 
to finding the optimal structure of the MLP neural network 
(e.g., hidden layers and neurons). Furthermore, learning rate 
and batch size of the MLP neural network were also opti-
mized by deep learning. Finally, the HHO algorithm was 
applied as a meta-learning model to optimize the weight val-
ues of the MLP neural network. Herein, MSE was selected 
as the objective function for deep learning and optimization 
of the HHO algorithm. The lowest MSE was considered as 
the best performance of the HHO–DMLP model. The pro-
posed framework of the HHO–DMLP model for forecasting 
friction angle of clay is introduced in Fig. 4.

3 � Data acquisition and preparation

The focus of the present study is to propose a novel para-
digm based on the hybridization techniques that can predict 
and represent for the friction angle of clays at different areas/

locations. Therefore, a database containing 162 observations 
was collected from the previous studies [30, 83–86] at dif-
ferent areas. Four input variables were taken into account 
to predict friction angle (ϕr), including clay fraction (CF), 
liquid limit (LL), plasticity index (PI), and deviation from 
A-line in Casagrande’s classification chart (∆PI). The range 
as well as properties of the collected dataset is listed in 
Table 1.

Before developing the predictive models, some data 
analyses are necessary to ensure the accuracy as well as the 
stability of the models. Based on the properties of the dataset 
in Table 1, it is clear that the range of all inputs and output is 
widely varied. They predict a result with great variability in 
this study. Therefore, scaling features are necessary to make 
for them to a particular range (e.g., [0,1], [-1, 1]). Also, the 
correlation between inputs and output should be carefully 
checked to evaluate the effects of inputs on the output, as 
well as the overlap of the inputs in the dataset used. A cor-
relation matrix is analyzed in Table 2 to show those points.

In data mining, correlation between variables is a cru-
cial parameter to evaluate the quality of the dataset used, 
as well as having a good plan for models’ development. 
Accordingly, the acceptable correlation of the variables 
should be in the range of − 0.8 to 0.8 [32]. It can be seen 
that most of the variables have an acceptable correlation 
as shown in Table 2. In particular, the correlation between 
LL and PI is highest (i.e., 0.782). However, this is still 
acceptable since their correlation with the other variables 

Fig. 3   The strategies of the 
HHO algorithm [77]
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is low, and the value of 0.782 is not too high to remove one 
of them from the dataset collected. Therefore, we used all 
four input variables (i.e., LL, PI, ∆PI, and CF) for predict-
ing the friction angle (ϕr) in this study.

For training the prediction models, as well as evaluating 
the performance of the friction angle predictive models in 
practical engineering, a data split procedure was conducted 
with 70% of the whole dataset which was used for training 

Fig. 4   Introduction of the HHO–DMLP flowchart for forecasting the friction angle of clay in this study

Table 1   Statistical indices of the dataset used

Category LL PI ∆PI CF ϕr

Min 22 4.5 − 94.89 0.4 4
1st Qu 54 21.68 − 4.197 20 9.825
Median 64 34.05 1.97 32.1 13.05
Mean 67.57 35.08 0.353 33.87 15.502
3rd Qu 78.8 46 7.202 50 19.825
Max 213 132 29.07 91 39

Table 2   Correlation matrix of the friction angle database used

LL PI ∆PI CF ϕr

LL 1 0.782 − 0.362 0.564 − 0.220
PI 0.782 1 0.297 0.692 − 0.572
∆PI − 0.362 0.297 1 0.171 − 0.519
CF 0.564 0.692 0.171 1 − 0.536
ϕr − 0.220 − 0.572 − 0.519 − 0.536 1

Table 3   Statistical indices of the training dataset used

Category LL PI ∆PI CF ϕr

Min 22 5 − 94.89 0.4 4
1st Qu 54 21.9 − 4.36 20 9.8
Median 66 34.6 1.96 33 12.7
Mean 69.32 36.08 0.07628 35.29 15.34
3rd Qu 80 46 7.44 52 20
Max 213 132 29.07 91 39

Table 4   Statistical indices of the testing dataset used

Category LL PI ∆PI CF ϕr

Min 26 4.5 − 44.29 1.8 6.4
1st Qu 48.6 20 − 3.37 19.2 10
Median 63 33 1.98 30.2 14.4
Mean 63.54 32.78 0.9912 30.58 15.88
3rd Qu 76 43.9 6.47 45 19
Max 120 83 12.5 76 35
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the prediction models, and the remaining 30% was used for 
evaluation purposes. The details of the datasets are listed in 
Tables 3 and 4.

4 � Results

Once the dataset was well prepared, the procedures for 
developing friction angle predictive models were applied. 
In this study, two data scaling methods, such as MinMax 
and BoxCox, were used to normalize the dataset aiming to 
avoid over-fitting. Accordingly, the MinMax scaling method 
was applied during developing the DMLP and HHO–DMLP 
models, whereas the BoxCox scaling method was applied 
for the SVM and RF models. To do end, Fig. 4 is applied 
for developing the HHO–DMLP model. Note that some 
deep learning techniques were applied to develop the initial 
MLP neural network model. Accordingly, a deep learning 
procedure was employed for the selection of the optimal 
number of hidden layers in the MLP neural network based 
on the MSE values. To find out the optimal results, 500 
epochs were used for this task. Finally, as shown in Fig. 5, 
the results showed that 3 hidden layers are the best structure 
for the MLP model in this work.

Once the optimal number of hidden layers is well deter-
mined, the optimal number of neurons is also determined 
based on the similar deep learning techniques in the range 
of 8–30. Eventually, the optimal number of hidden neu-
rons for each hidden layer was determined as 18, 16, and 
8, for the first, second, and third hidden layers, respectively 
(Fig. 6a). The optimal structure of the MLP neural network 
was defined as DMLP 4-18-16-8-1, and its performance is 
illustrated in Fig. 6b.

Once the DMLP model was well defined, the HHO was 
applied as a robust optimization algorithm to improve the 
performance of the DMLP model through the weight’s 

adjustment. The different number of Harris Hawks was set as 
50, 100, 150, 200, 250, 300, 350, 400, 450, 500 to examine 
the performance of the HHO algorithm in optimization of 
the DMLP model. Furthermore, 1000 iterations were estab-
lished to find out the best result with the lowest MSE for the 
DMLP model. Figure 7 shows the performance of the HHO 
algorithm with a different number of Harris Hawks (popula-
tion size). The results in Fig. 7 show that the DMLP model 
achieved the optimal value with the population size of 200 
at the iteration of 799 (MSE = 13.493).

To prove the performance of the HHO–DMLP model, 
the DMLP without optimization by the HHO algorithm was 
also employed based on the same structure and datasets. 
Furthermore, two forms of the conventional models, namely 
SVM and RF, were also considered and evaluated in terms of 
modeling and accuracy to have a comprehensive assessment 
of the DMLP and HHO–DMLP models. It is worth noting 
that all the predictive models are developed based on the 
same training dataset. Herein, radius basis function (RBF) 
and a grid search of the parameters were applied for the 
SVM model, whereas 2000 trees and 4 randomly predictors 

Fig. 5   The error of the MLP paradigm with a different number of 
hidden layers and epochs

Fig. 6   a The error of the MLP neural network with different neurons. 
b The error and performance of the selected deep MLP neural net-
work (DMLP)
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were applied for the RF modeling to ensure the robustness 
of the model. Feature scaling and tenfold cross-validation 
method was applied for the development of the SVM and RF 
model to improve the accuracy of the models. Ultimately, the 
results of four AI models developed are shown in Table 5. 
Both performances on the training and testing datasets were 
computed and are discussed in Table 5 to evaluate the accu-
racy and stability of the models.

5 � Discussion

Considering the performance of the models on the training 
dataset, it is clear that the HHO–DMLP and DMLP models 
are much better than the SVM and RF models. Of those, the 
HHO–DMLP model is the most outstanding model with the 
highest performance. Remarkable, R2 values of the SVM 
and RF are low (0.554 for SVM model and 0.377 for the 
RF model), reflecting the unsuitable of the dataset for these 
models. The dataset was collected from different areas/loca-
tions, and their properties are dissimilar. Therefore, with 
an RMSE of 3.673, R2 of 0.777, and MAPE of 0.195%, the 
HHO–DMLP model can represent for the properties of the 
clay and friction angle of clay at different areas in this study. 
However, this conclusion needs to verify through the dataset 
in practical engineering, i.e., testing dataset. Note that the 
testing dataset was not used for training and developing the 

friction angle predictive models. In other words, they can be 
considered as the unseen dataset in practice.

Considering the testing dataset and the performances of 
the developed models, it is very interesting to note that all 
the predictive models are good with high performance. It is 
worth mentioning that the RF model provided highest accu-
racy on the testing dataset with an MSE of 2.786, RMSE of 
1.669, R2 of 0.961, MAPE of 0.069%, and VAF of 95.125. 
However, compared with the performance of the RF model 
on the training dataset, it is clear that the RF model was 
over-fitted on the testing dataset although several techniques 
have been applied to prevent over-fitting. Therefore, it is 
not reliable for predicting friction angle of clay from dif-
ferent areas/locations in practice. Three remaining models 
(i.e., HHO–DMLP, DMLP, and SVM) performed good and 
reliable on the testing dataset. Of those, a positive result 
was also found for the HHO–DMLP model on the testing 
dataset. With an RMSE of 3.470, R2 of 0.796, and MAPE 
of 0.182% on the testing dataset, it can be concluded that the 
HHO–DMLP performed very well and stable in practice. 
Figures 8 and 9 reflect the reliability and correlation of the 
prediction models.

It is easy to recognize that the HHO–DMLP was fitted 
with the dataset over the other models (Fig. 8). Values in 
the range of 6 to 12 of friction angle are not fitted with the 
HHO–DMLP model. They should be carefully taken in pre-
dicting friction angle of clay in practical sense. On the SVM 

Fig. 7   Performance of the HHO 
algorithm in training the DMLP 
neural network

Table 5   Performance of the 
friction angle predictive models

Note: The best model for predicting friction angle is highlighted by bold type

Models Training phase Testing phase

MSE RMSE R2 MAPE VAF MSE RMSE R2 MAPE VAF

HHO–DMLP 13.493 3.673 0.777 0.195 77.692 12.042 3.470 0.796 0.182 78.806
DMLP 15.008 3.874 0.752 0.204 75.200 15.151 3.892 0.738 0.202 73.431
SVM 27.494 5.243 0.554 0.290 54.884 17.215 4.149 0.700 0.220 69.665
RF 40.001 6.325 0.377 0.304 34.329 2.786 1.669 0.961 0.069 95.125
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and RF models, it is clear that the dataset is not fitted with 
these models and we can see that most of the observations 
are not converged on the regression line or 80% confidence 
level. Similar recommendations are achieved with the mod-
els (Fig. 9). Notably, the RF model is over-fitted in practice 
and it should be eliminated in predicting friction angle of 
clay. Based on the distribution of the dataset (Figs. 8 and 9), 
it can be claimed that the 80% confidence level of the pro-
posed HHO–DMLP model can represent the friction angle 
of clay from different areas/locations. A comparison of the 
accuracy of the HHO–DMLP, DMLP (without optimiza-
tion), and SVM models in predicting friction angle of clay is 
illustrated in Fig. 10, and further evaluation of them through 
the Taylor diagram is shown in Fig. 11. Note that since the 
RF model was over-fitted in this study, therefore, it is not 
compared in these figures.

From Fig. 10, it can be seen that the orange points (i.e., 
HHO–DMLP model) are closer to the blue points (i.e., actual 
values) than the other points. They indicate that the accuracy 

of the proposed HHO–DMLP model is higher than the remain-
ing models in practice. Furthermore, observing the models on 
the Taylor diagram, we can confirm the accuracy and perfor-
mance of the HHO–DMLP model as mentioned above. It is 
clear that the standard deviation of the actual model is high. It 
shows the high volatility of friction angle of clays compared to 
the average value, and finding a general model capable of rep-
resenting the friction angle of clays at different areas/locations 
is not easy. The Taylor diagram showed that the HHO–DMLP 
model also provided high standard deviation with highest cor-
relation. The visualization of the Taylor diagram showed that 
the HHO–DMLP model was closer to the actual model than 
the other models.

Fig. 8   Distribution of the friction angle on AI models developed (training phase)
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Fig. 9   Distribution of the friction angle on AI models developed (testing phase)

Fig. 10   Comparison of the 
HHO–DMLP, DMLP (without 
optimization), and SVM models 
in predicting friction angle of 
clay
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6 � Conclusion

Friction angle of clays is an essential parameter to evaluate the 
stability of slopes and landslide. Different areas with different 
clay properties have a significant influence on the stability of 
the slopes and landslide, especially the friction angle. There-
fore, a generalized model capable of predicting friction angle 
of clays from different areas/locations with high reliability is 
ideal for assessing slope stability and landslide. This study 
proposed a novel generalized artificial intelligence model 
for estimating the friction angle of clays from different areas 
based on deep MLP neural network and HHO algorithm (i.e., 
HHO–DMLP). The robustness and consistency of the model’s 
prediction were checked by testing with various datasets hav-
ing different geological and geomorphological setups. The 
results showed that the proposed HHO–DMLP model can pre-
dict fiction angle of clays from different areas/locations with 
high reliability. It can be used in practice instead of experimen-
tal tests in a laboratory to save time and costs.

Although the obtained results are highly reliable from this 
study, the future work is identified with more database from 
other areas/locations. Future studies with more databases are 
useful in improving the predictive models. Such models will 
contribute to the current knowledge in this field and can be 
applied in any geographical territories.
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