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Blasting plays a fundamental role in rock fragmentation, and it is the first preparatory stage
in the mining extraction process. However, its undesirable effects, mostly ground vibration,
can cause severe damages to the surroundings, such as cracks/collapses of buildings, insta-
bility of slopes, deformation of underground space, affect underground water, to name a few.
Therefore, the primary purpose of this study was to predict the intensity of ground vibration
induced by mine blasting operations with high accuracy, aiming to reduce the severe dam-
ages to the surroundings. A novel artificial neural network (ANN)-based cuckoo search
optimization (CSO), named as CSO–ANN model, was proposed for this aim based on 118
blasting events that were collected at a quarry mine in Vietnam. Besides, stand-alone
models, such as ANN, support vector machine (SVM), tree-based ensembles, and two
empirical equations (i.e., USBM and Ambraseys), were considered and developed for
comparative evaluation of the performance of the proposed CSO–ANN model. Afterwards,
they were tested and validated based on three blasting events in practical engineering. The
results revealed that the CSO algorithm significantly improved the performance of the ANN
model. In addition, the comparative results showed that the accuracy of the proposed hybrid
CSO–ANN model was superior to the other models with MAE (mean absolute error) of
0.178, RMSE (root-mean-squared error) of 0.246, R2 (square of the correlation coefficient)
of 0.990, VAF (variance accounted for) of 98.668, and a20-index of 1.0. Meanwhile, the other
models only yielded performances in the range of 0.257–0.652 for RMSE, 0.932–0.987 for R2,
20.942–98.542 for VAF and 0.227–0.955 for a20-index. The findings also indicated that
explosive charge per borehole has a special relationship with ground vibration intensity. It
should be considered and used instead of total explosive charge per blast in some cases,
especially for the empirical models.

KEY WORDS: Ground vibration, Blasting, Open-pit mine, Cuckoo search optimization, Deep
learning.
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INTRODUCTION

Over the past several decades, blasting was
introduced as the most common method for frag-
menting rock mass or ore in opencast mines because
of its advantages in terms of economic and technical.
Its aim is to fragment intact rocks into smaller pieces
to accommodate subsequent handling operations,
such as loading/unloading, transporting (e.g., trucks
or conveyer), dumping, and crushing. However, due
to the high demand for construction materials and
metals, the rapidly expanding production of open-pit
mines with large amounts of explosive used is sig-
nificantly rising as well (Oliveira et al. 2017). This
problem leads to a variety of environmental issues
induced by blasting operations, such as ground
vibration, flyrock, air over-pressure, back-break, and
dust (Afeni and Osasan 2009; Raina et al. 2011;
Rezaei et al. 2011; Abbas and Asheghi 2018; Nguyen
and Bui 2019). Of these issues, ground vibration,
which is represented by peak particle velocity
(PPV), was considered the most adverse effect in-
duced by mine blasting (Ak et al. 2009; Nguyen et al.
2020). PPV is often used as the target variable of
predictive models for predicting and evaluating
ground vibration intensity because it is a dynamic
response of buildings and it is closely related to
ground vibration (Yan et al. 2020). In mine blasting,
PPV can induce vibration of buildings/tunnels,
instability, and even collapse of benches or slopes in
open-pit/opencast mines, damage to structure of
buildings, as well as threatening lives in neighboring
communities (Tripathy and Gupta 2002; Singh and
Singh 2005; Zgür Akkoyun and Taskıran 2015; Ta-
heri et al. 2017; Tran et al. 2020).

To prevent and mitigate the damages caused by
blast-induced ground vibration, many techniques
have been proposed, such as improving the structure
of buildings, using barriers to reduce ground vibra-
tion (Ekanayake et al. 2014), and predicting its
vibration intensity (Nguyen et al. 2019c). So far,
predicting ground vibration intensity (i.e., PPV) is
considered as the state-of-the-art methodology be-
cause it allows adjustment of blasting parameters
and mitigation of PPV before blasting. In this re-
gard, soft computing (SC) and empirical models are
considered as the most common approaches. Of
those, SC models are well known as state-of-the-art
techniques to predict and evaluate PPV with high
accuracy and reliability (Murlidhar et al. 2020).
Many scholars and researchers have, during the past

decade, studied and proposed different artificial
intelligence (AI) models as the SC models for pre-
dicting PPV with promising results (Table 1).

From Table 1, it can be seen that AImodels have
been proposed and widely applied in predicting PPV
during the past decade. Although their performances
are not similar because the datasets used and geo-
logical conditions are different per study, they are
potential models for predicting PPV. Nevertheless,
the differences have not been demonstrated in all
areas, and the PPV induced by blasting operations in
different locations/areas is not the same (Nguyenet al.
2019d; Kumar andMishra 2020). Therefore, the main
contribution of this study is to propose a novel hybrid
AI model to predict PPV induced by blasting opera-
tions with high accuracy, aiming to reduce severe
damages to surroundings.

The artificial neural network (ANN)-based
cuckoo search optimization (CSO), named as CSO–
ANN model, was proposed for this aim based on 118
blasting events that were collected at a quarry mine
in Vietnam. Besides, stand-alone models, such as
ANN, SVM, tree-based ensembles, and two empir-
ical equations (i.e., USBM and Ambraseys), were
also developed for comparison purposes. Finally, the
developed models were tested and validated based
on three blasting events in practical engineering.

ACADEMIC CONTRIBUTIONS

As reviewed above, many works have been
published in terms of ground vibration-research and
prediction. Various SC models have also been
introduced and widely applied in this field. Never-
theless, their academic contributions and implica-
tions are different. This study contributes not only to
blast-induced ground vibration-research and pre-
diction but also to impact on further research, and
specifically to the following.

The first academic contribution of this work to
blast-induced ground vibration-research and prog-
nosis is the generation of an integrative framework
for predicting PPV based on the CSO algorithm and
ANN. It addresses the process character of ground
vibration prediction with various input variables,
and how to predict PPV with the combination of the
CSO algorithm and ANN. Herein, the potentials of
the CSO algorithm are investigated to optimize an
ANN model for predicting PPV.

The second contribution of this work is the
application of deep learning in the development of
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Table 1. Review of related work in predicting PPV using AI techniques in the past decade

References AI tech-

nique

Input parameters Performance

Khandelwal et al. (2010) SVM W, R R2 = 0.955; MAE = 0.226

Monjezi et al. (2010) MLPNN R, W, B/T, Bh, UCS, Dr RMSE = 0.031

Khandelwal et al. (2011) ANN W, R R2 = 0.919; MAE = 0.352

Verma and Singh (2011) GA W, R MAPE = 0.088

Fisne et al. (2011) FL W, R RMSE = 5.31; VAF = 0.91

Hudaverdi (2012) MA B, S, H, T, U, D, PF R2 = 0.908; RMSE = 3.14; VAF = 82.29

Mohamadnejad et al.

(2012)

SVM W, R r = 0.946; RMSE = 1.62

Monjezi et al. (2013) ANN Wtt, W, R RMSE = 0.071; R2 = 0.927; VAF = 92.68

Saadat et al. (2014) ANN W, R, S, H RMSE = 8.796; R2 = 0.957

Hasanipanah et al.

(2015)

SVM W, R RMSE = 0.34; R2 = 0.957; VAF = 94.24

Dindarloo (2015) GEP D, Bh, Hd, B, S, T, W, R, Rr MAPE = 4.7; R2 = 0.97

Hajihassani et al.

(2015b)

PSO-ANN Hd, W, B/S, T, U, PF, Bh, RQD, R MSE = 0.038; R2 = 0.89

Hajihassani et al.

(2015a)

ICA-ANN B/S, T, W, E, R R2 = 0.976; RMSE = 0.685

Armaghani et al. (2015) ANFIS D, Hd, W, B, S, T, PF, Bh R2 = 0.973; RMSE = 0.987; VAF = 97.345

Amiri et al. (2016) ANN-

KNN

W, R R2 = 0.88; VAF = 87.84; RMSE = 0.54

Monjezi et al. (2016) GEP W, R R2 = 0.918; RMSE = 2.321; VAF = 90.879

Ghoraba et al. (2016) ANFIS W, R R2 = 0.952; RMSE = 4.644

Hasanipanah et al.

(2017a, b, c)

CART W, R R2 = 0.950; RMSE = 0.170; NS = 0.948

Hasanipanah et al.

(2017a)

GA W, R R2 = 0.920; RMSE = 0.450; NS = 0.920; VAF = 93.230

Faradonbeh and Mon-

jezi (2017)

GEP B, S, T, D, Hd, W, Bh, PF, R R2 = 0.874; MAE = 5.164; RMSE = 6.732

Hasanipanah et al.

(2017b)

PSO W, R R2 = 0.938; NS = 0.940; VARE = 0.130; RMSE = 0.240

Taheri et al. (2017) ABC-

ANN

W, R RMSE = 0.220; MAPE = 4.260; R2 = 0.920

Shahnazar et al. (2017) PSO-AN-

FIS

W, R RMSE = 0.4835; R2 = 0.984

Samareh et al. (2017) PSO-GA SD, B, S, DF, UCS, Em, PF, Is, Wtt,

VoD, GSI

MSE = 60.260; RMSE = 7.760; VAF = 75.050; R2 = 0.751

Abbas and Asheghi

(2018)

GFNN W, Wtt, R MAPE = 1.310; RMSE = 0.157; VAF = 95.460; R2 = 0.954

Armaghani et al. (2018) ICA W, R RMSE = 0.370; R2 = 0.940

Mokfi et al. (2018) GMDH B/S, Hd, T, PF, W, R RMSE = 0.889; R2 = 0.911

Sheykhi et al. (2018) FCM-SVR B, S, T, Np, W, R RMSE = 1.800; VAF = 85.250; R2 = 0.853

Hasanipanah et al.

(2018)

FS-ICA W, R RMSE = 0.220; VAF = 94.200; R2 = 0.942

Zhang et al. (2019) PSO-

XGBoo-

st

W, R, B, PF, S RMSE = 0.583; MAE = 0.346; VAF = 96.083; R2 = 0.968

Chen et al. (2019) MFA-SVR W, B/S, T, E, Vp, R MAE = 0.556; RMSE = 0.614; R2 = 0.984

Shang et al. (2019) FFA-ANN W, S, R, B, PF RMSE = 0.464; VAF = 96.620; R2 = 0.966; MAE = 0.356

Bui et al. (2019) PSO-KNN W, R RMSE = 0.797; MAE = 0.385; R2 = 0.977

Fang et al. (2019) ICA-

M5Rul-

es

W, R, B, S RMSE = 0.258; MAE = 0.175; R2 = 0.995

Azimi et al. (2019) GA-ANN W, R, Rr, MRr R2 = 0.988; MAPE = 60.011; RMSE = 3.047; VARE =

0.327; VAF = 99.828

Xue (2019) FCM-AN-

FIS

W, R, SD RMSE = 0.080; R2 = 0.930; MAE = 0.062
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the ANN model for improving the accuracy of the
ANN model before optimizing this model by the
CSO algorithm. Typically, scholars often use deep
learning techniques or optimization algorithms for
the aim of enhancing the model�s performance.
However, in this study, we used both approaches to
improve the performance of the ANN model in
predicting PPV. Thus, deep learning was used as the
first step, and the CSO algorithm (optimization
algorithm) was applied as the next step to improve
the model�s accuracy.

The third contribution of this work is the
investigation of the effect of the total explosive
charge per blast and the maximum amount of
explosive charge per borehole on blast-induced
ground vibration. The results of the current research
will contribute to implications for further study in

the future based on the role of these parameters and
the blasting method applied.

STUDY SITE AND DATASET USED

This study was undertaken in the Thuong Tan 3
quarry mine in Binh Duong province (Vietnam)
(Fig. 1). The geological structure of the mine is rel-
atively simple. The base rocks are limestone and
calcareous siltstone of the Draylinh Formation;
these rocks are located intertwined. These rocks are
not exposed on the surface but are covered with clay
and mixed clay deposits sandwiched with sand-phase
lenses of the Quaternary complex with average
thickness of 7–8 m. In this mine, the rocks are
mainly quarried are tuff rhyolite with Pro-
todyakonov�s impact strength coefficient of 12. The

Table 1. continued

References AI technique Input parameters Performance

Yang et al. (2019) ANFIS-GA B, S, T, PF, W, R R2 = 0.979; RMSE = 0.240; VAF = 97.952; MAPE = 3.145; MAE =

0.199

Nguyen et al. (2019b) HKM-CA W, R, H, PF, B, S, T R2 = 0.995; MAE = 0.373; RMSE = 0.475

Hosseini et al. (2019) MARS W, R R2 = 0.750; RMSE = 21.640; MAPE = 24.122

Nguyen et al. (2019a) XGBoost W, H, B, S, T R2 = 0.952; RMSE = 1.742

Nguyen et al. (2019c) BGAMs W, R, H, PF, B, S R2 = 0.990; RMSE = 0.582; MAE = 0.430

Ding et al. (2019) ICA-

XGBoost

W, R, H, PF, B, S, T R2 = 0.988; RMSE = 0.736; MAE = 0.527

Nguyen et al. (2019e) HKM-ANN W, R, B, PF, S R2 = 0.983; VAF = 97.488; RMSE = 0.554

Nguyen et al. (2019d) GA-SVR-

RBF

W, R, B, S R2 = 0.991; RMSE = 0.267; VAF = 0.182

Yu et al. (2020a) HHO-RF W, Wtt, R, Rv, B, Tdl, f PPVmean = 10 mm/s; PPV � 19.5 mm/s; the probability is 90%

Zhou et al. (2020) FS-RF S, B, R, W, Hd Testing accuracy of 90.32%

Yu et al. (2020b) RVM W, Wtt, Tdl, B, Rv, R, f RMSE = 0.045, R2 = 0.971

Bayat et al. (2020) FFA-ANN B, S, R, W RMSE = 4.380; VAF = 97.391; R2 = 0.977; a20-index = 0.830

SVM (support vector machine); GEP (genetic expression programming); MLPNN (multilayer perceptron neural network), ANN (artificial

neural network); MA (multivariate analysis); GA (genetic algorithm); FL (fuzzy logic); PSO (particle swarm optimization)-ANN; ANN-

KNN (k nearest neighbors); ICA (imperialist competitive algorithm)-ANN; ANFIS (adaptive neuro-fuzzy inference system); ABC

(artificial bee colony)-ANN; GFNN (generalized feed forward neural network); GMDH (group method of data handling); FCM (fuzzy C-

means clustering)-SVR (support vector regression); FS (fuzzy system)-ICA; PSO-XGBoost (extreme gradient boosting machine); MFA

(modified firefly algorithm)-SVR; FFA (firefly algorithm)-ANN; PSO-KNN; ICA-M5Rules; GA-ANN; FCM-ANFIS; ANFIS-GA; HKM-

CA (hierarchical K-means clustering-cubist algorithm); MARS (multivariate adaptive regression splines); ICA-XGBoost; HKM-ANN;

GA-SVR-RBF (radial basis function); HHO-RF (Harris Hawks optimization-random forest); RVM (relevance vector machine)

R (monitoring distance); W (explosive charge per delay); B/S (ratio of burden and spacing); Bh (number of boreholes); UCS (uniaxial

compressive strength of rock mass); Dr (delay per rows); S (spacing); H (bench height); U (sub-drilling); D (borehole diameter); PF

(powder factor); Wtt (total explosive charged); Hd (hole depth); Rr (radial distance); T (stemming); RQD (rock-quality designation); E

(Young modulus); Es (deformation modulus); DF (discontinuity frequency); Is (impedance); VoD (velocity of detonation); GSI (geological

strength index); Np (number of boreholes per delay); Vp (p wave velocity); MRr (modified radial distance); SD (scaled distance); Rv

(vertical distance); Tdl (delay time of detonator); f (Protodyakonov�s impact strength coefficient)

R2 (determination of coefficient); r (correlation coefficient); VARE (variance absolute relative error); MAE (mean absolute error); NS

(Nash and Sutcliffe); MAPE (mean absolute percentage error); VAF (variance accounted for); MSE (mean-squared error)
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Figure 1. Location and a view of the Thuong Tan 3 quarry mine (Vietnam).
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compressive strength of this rock is in the range of
741–1332 kg/cm2 for the dry state and 693–1261 kg/
cm2 for the saturated state. Thus, blasting is taken as
an effective method for breaking and moving rock
mass in this mine.

In order to fragment rock mass, blasts are car-
ried out in benches with bench high in the range of
7.9–11.5 m. Before blasting, boreholes are drilled
with a diameter of 105 mm and the hole depth in the
range of 9–12.5 m. For each blast site, the number of
boreholes is in the range of 45–66 boreholes. The
primary explosives used are NT /80 and ANFO, and
the delay time of the millisecond-delay blasting
method was applied with the use of digital electronic
detonators. The maximum explosive charge per
blast is 3000 kg and 57 kg for the mass explosive per
hole.

For data collection, two groups of the dataset
were divided, including the blasting parameters (i.e.,
input variables) and PPV (i.e., output variable). In
this study, the total explosive charge per blast (Wtt),
the amount of explosive per hole (Wbh), PPV mea-
suring distance (R), spacing (S), burden (B), and
powder factor (PF) were used as the input variables.

As mentioned by many previous researchers,
monitoring distance, spacing, burden, and powder
factor are the parameters that are often used to
predict PPV. However, previous studies only con-
sidered the maximum explosive charge per delay or
the total explosive per blast, but ignored the maxi-
mum amount of explosive charge per borehole.
Therefore, in this study, the effect of the maximum
amount of explosive charge per borehole was con-
sidered, and it was also used as one of the input
variables to predict PPV.

A global positioning sensor (GPS) receiver was
used to measure the distance between the positions
of blast sites and seismograph points. The other in-
put variables were extracted from the blast pattern
by blasting engineers. To estimate PPV, the Micro-
mate seismograph (Instantel) was used (Fig. 2). Fi-
nally, 118 blasting events were recorded at this mine,
and the dataset used is summarized in Table 2.

METHODOLOGY

As introduced above, the primary aim of this
study was to investigate and propose a novel hybrid
CSO-ANN model for PPV prediction in opencast/
open-pit mines, and it was undertaken at the Thuong
Tan 3 quarry mine (Vietnam). Subsequently, an

ANN model (without optimization), SVM, tree-
based ensembles, and two empirical equations were
also applied/developed for comprehensive compar-
ison and assessment to prove the enhanced perfor-
mance of the proposed CSO–ANN model. Because
the respective principles of the SVM and tree-based
ensembles have been introduced and discussed in
many papers (e.g., Hearst et al. 1998; Borisov et al.
2006; Ma and Guo 2014; Ayaz et al. 2015; Abolfathi
et al. 2016; Kaveh et al. 2016; Gholami and Fakhari
2017; Besler et al. 2019; Efthymiou et al. 2019;
Nguyen et al. 2019f; Joshi 2020; Tran 2020), they are
not presented in this section. Only the respective
principles of CSO, ANN, the framework of the
CSO-ANN model, empirical equations, and evalu-
ation criteria are introduced in this section.

Artificial Neural Network

ANN is a state-of-the-art SC technique in
computer science or mathematics during the past
decades. It is inspired by the functional aspects or
structure of the human brain or biological neural
networks. Accordingly, a group of neurons/nodes is
interconnected in an ANN, and it manages the
information by the approach of connectionist to
computing the weights of the neurons/nodes (Daniel
2013; Nguyen and Tong 2020). The artificial neurons
or nodes of an ANN model are often divided into
three types of layers, including input layer, hidden
layer(s), and output layer. Each layer and each
neuron are connected through weights (maybe
negative or positive), which are not similar for dif-
ferent training algorithms.

To train ANN models, many algorithms can be
applied, such as feed-forward, back-propagation,
Levenberg–Marquardt, quick propagation, to name
a few (Can et al. 2019). During training of ANN
models, transfer functions (active functions) are of-
ten used to avoid over-fitting and to improve the
accuracy of an ANN model (Vu et al. 2020). Typical
transfer functions are linear/nonlinear, sigmoid,
adam, relu, to name a few (Zou et al. 2008; Prasad
et al. 2012; Feng et al. 2015; Ye et al. 2020).

A review of the literature shows that ANN is
the most common model that has been developed
and applied in real-life problems, especially in the
mining industry (Nerguizian et al. 2006; Huang et al.
2018). In terms of PPV prediction, ANN is one of
the most popular models as well, and it was often
combined with metaheuristic algorithms (optimiza-
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tion algorithms) to optimize the accuracy and errors
of the model (Table 1). In this study, ANN was used
as the main technique to predict PPV and it then was
optimized by the CSO algorithm to reduce the error
and thus improve the accuracy of the ANN model.
An ANN structure for PPV prediction is shown in
Figure 3.

Cuckoo Search Optimization

Cuckoo search optimization (CSO) was intro-
duced by Yang and Deb (2009) for optimization
problems, and it is well known as a metaheuristic
algorithm. It was introduced and designed based on
the behavior of cuckoo bird in terms of obligate

Figure 2. Seismograph and an event report of ground vibration in the study site.
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brood parasitic and the Lévy flight algorithm. The
CSO algorithm performs three tasks and rules
(Fig. 4).

Based on the rules (Fig. 4), the CSO algorithm
can maintain a balance (ba) between global random
walk (Grw) and local random walk (Lrw). Therefore,
it is considered as a robust global optimization
solution. It is worth noting that a switching param-

eter pa can control the ba. The (Lrw) and (Grw) can
be calculated, respectively, by the following equa-
tions:

xtþ1
i ¼ xti þ bsHF1 pa � dð ÞH xtj � xtk

� �
ð1Þ

xtþ1
i ¼ xti þ bL 1; kð Þ ð2Þ

Table 2. Summary of the input and output variables used for predicting PPV

Category Wtt Wbh R S B PF PPV

Min 1936 32 198.8 3.1 3.1 0.4 0.458

1st Quartile 2796 40 273.4 3.4 3.2 0.44 1.659

Median 2971 46 351.7 3.4 3.2 0.45 2.796

Mean 2782 45.79 364.7 3.417 3.227 0.4404 3.246

3rd Quartile 3000 53.5 439.7 3.5 3.3 0.45 4.521

Max 3000 57 750 3.7 3.4 0.45 11.17

Figure 3. An ANN structure for PPV prediction with three hidden layers.
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where b is the scaling factor with positive step sizes
and b[0; 1 is the step size; F denotes the function of
heavy-side; H represents entry-wise multiplications;
d is the random number of uniform distribution;
xti; x

t
j; x

t
k stand the current positions; Lð1; kÞ is the

Lévy distribution. The algorithm development pro-
cess of the CSO algorithm is described in the pseu-
do-code (Fig. 5). Further details of the CSO
algorithm can be found in the literature (Yang and
Deb 2009, 2014; Gandomi et al. 2013; Wang et al.
2016; Mareli and Twala 2018).

ANN-based Cuckoo Search Optimization

As mentioned above, ANN is one of the most
common methods used not only for predicting PPV

but also for solving many real-life problems. How-
ever, the crucial issues of an ANN model are its
structure, weights and biases; addressing these is
challenging for development of an optimal ANN
model. Therefore, many researchers applied opti-
mization algorithms to address those issues with
promising results (e.g., Leardi 2003; Mirjalili et al.
2012; Jafarian et al. 2013; Kaydani and Mohebbi
2013; Zăvoianu et al. 2013; Aljarah et al. 2018).

Regarding prediction of PPV in open-pit mines,
many optimization algorithms have been applied to
enhance the ANN model (Table 1). Most of them
are based on the optimization mechanism of weights
and biases to reduce the error of the predictive
model. Nevertheless, the CSO algorithm has not
been considered for the optimization of ANN in
predicting PPV. Hence, this section proposes the

Figure 4. Rules of the CSO algorithm.
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framework of the CSO–ANN model for PPV pre-
diction.

Generally, preparation and normalization of a
dataset are often adopted before developing any AI
models. Here, the dataset was pre-processed as a
mandatory procedure to avoid over-fitting of the
models. Next, an ANN model with initial weights
and biases is established for PPV prediction. Sub-
sequently, the CSO algorithm performs a global
search to find out the optimal parameters of the
established ANN model. The searching process is
conducted continuously to get the optimal weights
and biases. Then, the error is calculated, and the
criterion stopping is checked for determining the
optimal CSO–ANN model through the objective
function (i.e., RMSE). The flowchart of the pro-
posed CSO–ANN network for PPV prediction is
shown in Figure 6.

Empirical Equations

Empirical equations are considered rapid
determination methods of PPV because of their
inherently simple calculations. Accordingly, they

often use only total explosive charge per blast (or
maximum explosive charge per delay) and moni-
toring distance as the primary input variables for
estimating PPV. The equations of the United States
Bureau of Mines (USBM) (Duvall and Fogelson
1962) and Ambraseys (1968) have been used as the
most famous empirical equations for estimating
PPV. Therefore, they were used in this study for
comparison purposes, and they are defined as fol-
lows:

ið ÞUSBM equation : PPV ¼ k
Rffiffiffiffiffi
W

p
� ��a

ð3Þ

iið Þ Ambraseys equation : PPV ¼ k
Rffiffiffiffiffi
W3

p
� ��a

ð4Þ

where k and a are the site coefficients, and they are
calculated based on multivariate regression analysis
of the dataset used.

Evaluation Criteria

To assess the efficiency as well as the stability of
the developed PPV predictive models, as well as to

Figure 5. Pseudo-code of the CSO algorithm.

2672 Bui et al.



have a comprehensive comparison of their perfor-
mance, MAE, RMSE, R2, VAF, and a20-index were
used as performance metrics in this study. They are
computed as follows.

MAE ¼ 1

nblast

Xnblast
i¼1

yi PPV � ŷi PPVj j ð5Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nblast

Xnblast
i¼1

ðyi PPV � ŷi PPVÞ2
s

ð6Þ

R2 ¼ 1�

Pnblast
i¼1

yi PPV � ŷi PPVð Þ2

Pnblast
i¼1

yi PPV � yi PPVð Þ2
ð7Þ

VAF ¼ 1�
var yi PPV � _yi PPV

� �

var yi PPVð Þ

0
@

1
A� 100 ð8Þ

a20 - index ¼ m20

nblast
ð9Þ

where nblast is number of blasting events; yi PPV,
ŷi PPV, and yi PPV are the ith PPV measured, pre-
dicted, and mean of measured values, respectively;

m20 is number of samples in the range of 80%
confidence level (between 0.80 and 1.20).

CONFIGURATION AND TRAINING
OF MODELS

ANN Model

In order to train the ANN model for PPV
prediction, a deep learning technique with a differ-
ent number of hidden layers and neurons was ap-
plied to determine the optimal structure of the ANN
model (Fig. 7). As a data pre-processing step, the
MinMax scale [0,1] was used to avoid over-fitting of
the ANN model. Then, the ANN model with struc-
ture of 6–18–16–6–1 (3 hidden layers) was deter-
mined and used for predicting PPV in this study
(Fig. 8).

CSO–ANN Model

To build the CSO–ANN model, the CSO
algorithm was coupled with the ANN model based
on the principle that was proposed in Figure 6.

Figure 6. Flowchart of the proposed CSO–ANN hybrid model for predicting PPV.
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Accordingly, the weights and biases of the initial
ANN model (i.e., 6–18–16–6–1) were optimized by
the CSO algorithm. RMSE was used as the objective
function during the training and optimizing the
ANN model. Before training the ANN model, the

parameters of the CSO algorithm were set up, and
they were selected as follows: pa = 0.25; step size
(s) = 0.01; Lévy flight (L) = 1.6. In addition, the
number of cuckoo birds that has a significant effect
on the performance of the optimization process was

Figure 7. Deep learning for selection of optimal ANN structure: a RMSE of different hidden layers; b RMSE of different hidden

neurons.

Figure 8. Optimal structure of the ANN model for PPV prediction.
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defined. Therefore, the global search of cuckoo birds
was conducted with different numbers of cuckoo
birds, i.e., 50, 100, 150, 200, 250, 300, 350, 400, 450,
500. To satisfy stopping conditions, the global search
of the CSO–ANN model was performed for 1000
iterations. The performance of the CSO–ANN
model in training and predicting PPV is shown in
Figure 9. Eventually, the optimal CSO–ANN model
(with RMSE = 0.163) was defined with 350 cuckoo
birds and iterations of 979.

SVM Model

In order to build the SVM model for PPV
prediction, the radial basis kernel function was ap-
plied with C(cost) and r used as the principal coef-
ficients to control the accuracy of the SVM model.
One hundred SVM models with different ranges of
C and r were checked to find the best SVM model
for predicting PPV in this study. A tenfold cross-
validation (CV) technique and the Box-Cox trans-
formation were applied to normalize the dataset
used to avoid over-fitting of the models. Ultimately,
the best SVM model was defined with C = 23.460
and r = 0.019. More details of 100 SVM models are
presented in Table 3. Notably, the training dataset
used for the configuration of the SVM model is the
same as those used for the previous models.

Tree-Based Ensembles Model

For the tree-based ensembles modeling, the
maximum interaction depth and the prediction
mode (e.g., mean and outbag) were used to adjust
the accuracy of the tree-based ensembles model. A
similar techniques as above, namely tenfold CV,
Box-Cox transformation, and grid search, were ap-
plied for the development of the tree-based ensem-
bles model. The maximum interaction depth was set
in the range of 1–20 with trial-and-error procedure
of the prediction mode (i.e., mean or outbag)
(Fig. 10). Finally, the best tree-based ensembles
model was developed with the maximum interaction
depth of 6 using the ‘‘mean’’ prediction mode.

Empirical Models

To configure the empirical models, Eqs. (3) and
(4) were applied to the training dataset to find the
site coefficients. It is worth noting that the empirical
models were developed based on the same training
dataset as those developed for the AI models (i.e.,
SVM, ANN, CSO-ANN, and tree-based ensembles).
Multivariate regression analysis was applied to cal-
culate the site coefficients based on Eqs. (3) and (4).
Eventually, two official empirical equations were
proposed for estimating PPV in this study, thus:

Figure 9. RMSE of the proposed CSO-ANN model in PPV prediction (training phase).
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Table 3. Performance measures of different SVM models for PPV prediction. The best predictive model is highlighted in bold

No r C RMSE R2 MAE No r C RMSE R2 MAE

1 0.008 383.617 0.368 0.977 0.228 51 0.141 0.219 0.659 0.938 0.424

2 0.009 2.831 0.541 0.949 0.351 52 0.177 0.346 0.586 0.948 0.362

3 0.010 0.045 1.840 0.855 1.479 53 0.180 0.131 0.886 0.903 0.590

4 0.010 0.040 1.856 0.855 1.492 54 0.188 562.255 0.560 0.921 0.367

5 0.011 0.243 1.051 0.883 0.770 55 0.196 0.070 1.237 0.858 0.884

6 0.011 208.810 0.367 0.977 0.227 56 0.216 71.964 0.493 0.953 0.331

7 0.012 3.901 0.473 0.960 0.303 57 0.222 3.196 0.482 0.961 0.299

8 0.013 13.728 0.381 0.973 0.240 58 0.312 5.045 0.502 0.956 0.324

9 0.015 206.931 0.375 0.977 0.232 59 0.478 501.630 0.807 0.832 0.482

10 0.016 0.274 0.868 0.904 0.610 60 0.551 0.392 0.766 0.916 0.491

11 0.016 0.580 0.666 0.931 0.436 61 0.650 13.683 0.619 0.928 0.417

12 0.016 814.147 0.438 0.968 0.273 62 0.662 0.931 0.676 0.923 0.432

13 0.019 23.460 0.366 0.976 0.226 63 0.669 0.202 1.046 0.877 0.724

14 0.019 0.069 1.520 0.860 1.186 64 0.678 0.077 1.548 0.787 1.168

15 0.019 0.491 0.675 0.930 0.444 65 0.678 997.127 1.034 0.723 0.590

16 0.019 43.173 0.368 0.977 0.229 66 0.895 0.660 0.780 0.906 0.512

17 0.020 78.083 0.370 0.977 0.229 67 0.916 2.026 0.714 0.913 0.474

18 0.024 5.517 0.382 0.974 0.244 68 0.921 475.392 0.934 0.768 0.567

19 0.026 634.875 0.460 0.966 0.299 69 0.937 0.034 1.855 0.625 1.444

20 0.026 0.168 0.914 0.896 0.642 70 0.938 1.215 0.747 0.908 0.484

21 0.028 31.972 0.367 0.977 0.231 71 0.947 48.029 0.713 0.891 0.471

22 0.028 1.739 0.464 0.962 0.295 72 1.078 26.915 0.732 0.896 0.495

23 0.028 0.060 1.457 0.862 1.122 73 1.131 2.294 0.765 0.900 0.514

24 0.028 8.164 0.373 0.975 0.234 74 1.170 138.105 0.854 0.831 0.552

25 0.038 2.183 0.401 0.971 0.256 75 1.310 579.951 0.939 0.780 0.597

26 0.038 0.048 1.492 0.863 1.149 76 1.311 136.065 0.881 0.820 0.576

27 0.044 18.444 0.381 0.976 0.239 77 1.321 13.352 0.790 0.884 0.542

28 0.046 0.738 0.513 0.956 0.326 78 1.328 35.163 0.790 0.872 0.535

29 0.049 3.910 0.387 0.973 0.244 79 1.366 438.786 0.937 0.782 0.603

30 0.050 0.111 0.952 0.891 0.661 80 1.415 2.273 0.830 0.881 0.566

31 0.054 62.569 0.421 0.972 0.270 81 1.443 1.321 0.868 0.876 0.579

32 0.055 27.938 0.402 0.975 0.253 82 1.451 0.184 1.406 0.768 1.023

33 0.055 0.031 1.623 0.863 1.266 83 1.601 117.870 0.915 0.811 0.616

34 0.057 0.829 0.467 0.962 0.298 84 1.754 57.054 0.903 0.830 0.620

35 0.060 41.372 0.419 0.973 0.267 85 2.103 0.223 1.451 0.734 1.064

36 0.065 40.624 0.423 0.972 0.271 86 2.131 0.146 1.621 0.678 1.226

37 0.065 8.006 0.393 0.974 0.248 87 2.170 9.018 0.929 0.833 0.654

38 0.066 19.752 0.406 0.974 0.257 88 2.224 0.154 1.615 0.679 1.220

39 0.071 4.267 0.399 0.972 0.249 89 2.245 1.673 0.985 0.831 0.680

40 0.072 38.836 0.427 0.972 0.275 90 2.297 0.041 1.914 0.442 1.499

41 0.073 6.530 0.400 0.973 0.253 91 2.417 436.374 0.975 0.795 0.684

42 0.077 11.450 0.406 0.974 0.259 92 2.578 30.107 0.966 0.807 0.684

43 0.078 0.109 0.931 0.893 0.638 93 2.691 0.157 1.656 0.645 1.257

44 0.078 0.158 0.782 0.911 0.519 94 2.702 260.413 0.988 0.793 0.699

45 0.078 3.940 0.406 0.971 0.254 95 2.789 7.654 0.996 0.808 0.710

46 0.084 6.143 0.408 0.972 0.259 96 2.835 11.138 0.993 0.806 0.709

47 0.118 14.825 0.440 0.969 0.282 97 2.845 2.960 1.018 0.806 0.721

48 0.120 268.770 0.531 0.947 0.350 98 2.921 1.515 1.068 0.800 0.746

49 0.128 25.593 0.447 0.967 0.290 99 2.978 0.084 1.817 0.492 1.407

50 0.129 0.066 1.203 0.865 0.855 100 3.158 0.090 1.812 0.493 1.401
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iiið Þ USBM equation : PPV ¼ 41:273
Rffiffiffiffiffi
W

p
� ��1:461

ð8Þ

ivð Þ Ambraseys equation : PPV

¼ 332:088
Rffiffiffiffiffi
W3

p
� ��1:510

ð9Þ

RESULTS AND DISCUSSION

Once the AI and empirical models were well
configured, performance measures (i.e., MAE,
RMSE, R2, VAF, and a20-index) are computed for

the observations in the testing dataset to verify the
training performance, as well as to evaluate the
overall performance of the models. Further, the
proposed hybrid CSO–ANN model was compared
with the other models, i.e., ANN, SVM, tree-based
ensembles, USBM and Ambraseys empirical equa-
tions. The comparative prediction results of the
developed models are summarized in Table 4.

From Table 4, we can see that the empirical
models are a failure in this study because of high
errors (i.e., MAE and RMSE), and their R2 values
also indicate that they are not suitable for the da-
tabase used in this study; the VAF and a20-index
also revealed the weakness of the empirical models.
In contrast, the four AI models modeled PPV very
well, and all of them overcame the over-fitting issue.
This finding indicates that the PPV should not be

Figure 10. Performance of the tree-based ensembles model on the training phase.

Table 4. Overall performance and the error of the models developed

Model Training phase Testing phase

MAE RMSE R2 VAF a20-index MAE RMSE R2 VAF a20-index

ANN 0.153 0.276 0.982 98.226 0.948 0.172 0.257 0.987 98.542 0.955

CSO-ANN 0.108 0.163 0.994 99.383 0.979 0.178 0.246 0.990 98.668 1.000

SVM 0.226 0.366 0.976 97.625 0.914 0.256 0.503 0.960 94.482 0.909

Tree-based ensembles 0.306 0.501 0.953 95.058 0.893 0.308 0.652 0.932 90.869 0.864

USBM empirical 1.261 1.701 0.361 36.033 0.198 1.389 1.902 0.229 21.023 0.227

Ambraseys empirical 1.258 1.705 0.360 35.949 0.198 1.395 1.905 0.227 20.942 0.227
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modeled by linear relationships, mostly based on Wtt

and R only; instead, the AI models can explain the
nonlinear relationships of the inputs and output very
well, especially the use of multiple (here, 6) input
variables. Of the four AI models developed (i.e.,
ANN, CSO–ANN, SVM, and tree-based ensem-
bles), the tree-based ensembles model provided the
lowest accuracy. The accuracy of the SVM was
slightly higher than those of the tree-based ensem-
bles model. Considering the ANN model, we can see
that it performed better the SVM and tree-based
ensembles models in terms of PPV prediction.
Remarkably, the CSO-ANN model provided the
best performance after optimization by the CSO
algorithm. This finding indicated that the CSO
algorithm successfully optimized the ANN model,
and the accuracy of the ANN model was improved
significantly in predicting PPV herein. In other
words, the proposed hybrid model, i.e., CSO–ANN,
was the model with the most superior performance
in this study.

For further assessment of the accuracy and the
probability of the developed models, the correlation
between measured PPVs and PPVs predicted by the
developed models was taken into account (Fig. 11).
As depicted in Figure 11, the ANN and CSO pre-
dicted ANN models predicted PPV very well with
close correspondence between measured and pre-
dicted PPVs. However, the ANN model provided a
lower accuracy of PPV predictions, especially PPVs
in the range of 5–11 mm/s. Similar results were
found with the SVM and tree-based ensembles
models; however, the regression angle of these
models was higher than those of the ANN and CSO–
ANN models. They indicated that the reliability of
the predictions of these models is quite different
from the measured PPVs, even though the correla-
tion coefficient is high. In particular, the empirical
models provided incorrect PPVs based on the cor-
relation between measured and predicted PPVs, and
on the angle of the regression line in Figure 10.
These results are agreement with the computed re-
sults given in Table 4. Therefore, the empirical
equations should not be used in practical engineer-
ing in this mine, even though it is a rapid method for
estimation of PPV.

The maximum explosive charge per blast used
in this mine is 3000 kg, and many blast patterns were
designed with 3000 kg as the total explosive charged.
However, the measured PPVs at this site are dif-
ferent because the mine uses the non-electronic
delay blasting method, and the delay time of each
borehole is different. In addition, the number of
boreholes and the other parameters of boreholes are
different; therefore, the PPV induced by each blast
was not similar or not the same. It is for this reason
that we have used the explosive charge per borehole
as one of the input variables in this study, and the AI
models seem to have exploited this advantage of the
dataset used. To further demonstrate this finding, a
sensitivity analysis of the input variables was adop-
ted based on the best model (i.e., CSO–ANN mod-
el). The sensitivity analysis results are shown in
Figure 12. Based on this visualization, we have rea-
son to believe that Wbh (maximum explosive charge
per borehole) has a significant effect on blast-in-
duced PPV, and it should be used as an essential
variable in predicting blast-induced PPV. In addi-
tion, the results indicated that R, Wtt and Wbh were
the most critical variables for predicting blast-in-
duced PPV. Of these variables, R has the highest
effect on blast-induced PPV, and this is in agree-
ment with the conclusions of Wang et al. (2020). In
other previous studies, some researchers stated that
PF has a positive effect on blast-induced PPV (e.g.,
Faradonbeh and Monjezi 2017). However, in this
study, PF has a low impact on blast-induced PPV
because the hardness of rock mass is not too similar,
and the Protodyakonov coefficient (representing
hardness of rock mass) was, in this case study,
determined to be equal to 12.

VALIDATION OF THE MODELS
FOR PRACTICAL ENGINEERING

Once the PPV predictive models were well
developed and thoroughly assessed based on both
training and testing datasets, their accuracies were
verified using three blasts in practical engineering.
The data collection steps were similar to the data
collection step that was described earlier, and the
details of the validation blasting events are listed in
Table 5. In addition, the location of blasts and
measurement points, as well as the distance between
blast sites and seismographs, are depicted in Fig-
ure 13. It is worth noting that the seismographs were
placed at these locations to record the blast-induced

bFigure 11. Correlation results of the PPV prediction models

(testing dataset).
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PPVs to control the stability of benches and slopes
of the mine. Once the input variables were fully
collected, they were used to predict PPVs using the
developed models. The practical results were then
compared with the actual values that were recorded
by the seismograph, and the results are listed in
Table 6.

From Table 6, we can see that the developed AI
models predicted PPVs very well; in particular, the
proposed CSO–ANN model predicted PPVs with
the highest accuracy. Remarkably, the tree-based
ensembles model provided the same accuracy on all
three validation blasting events, but its accuracy was
the lowest among the AI models developed. This
problem occurred because the tree-based ensembles
model used the ‘‘mean prediction mode,’’ and then
all the outcome predictions were computed by their

means. The empirical models were still consistent to
the results they yielded for the training and testing
datasets with considerable deviations, and they do
not guarantee the confidence level to predict PPV in
this case.

CONCLUSIONS

Ground vibration is an undesirable phe-
nomenon during mine blasting. It decreases the
efficiency of blasting operations and it generates
many adverse side effects, such as vibration of
building, crashing the structure of buildings, insta-
bility of benches and slopes, and threatens the lives
of workers, as well as breakdown of equipment if
landslides occur. Therefore, accurate prediction of

Figure 12. Importance level of the input variables in this study.

Table 5. Validation dataset in practical engineering (3 blasting events)

Wtt Wbh R1 R2 R3 S B PF PPV1 PPV2 PPV3

3000 50 130 125 145 3.3 3.5 0.44 5.563 5.322 5.118

2900 41 125.5 130 223 3.6 3.2 0.45 2.648 2.508 2.386

3000 44 198 203 215 3.4 3.2 0.45 2.912 2.815 2.446

PPV1, PPV2, PPV3 values are corresponding to the R1, R2, R3
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PPV is crucial to optimize blasting events and to
control its undesirable effects. Based on the ob-
tained results, the following conclusions are made.

(1) The AI models are state-of-the-art tools for
predicting PPV with high performance. Of those
used in this study, the proposed CSO-ANN model is
a robust AI model that can be used in PPV predic-
tion, which can help in reduction of the adverse ef-
fects of ground vibration.

(2) The CSO algorithm played a vital role in the
optimization and enhancement of the ANN model
for predicting PPV. AI models should be enhanced
and improved by the optimization/metaheuristic
algorithms to get better performance and accuracy
in practical engineering.

(3) The explosive charge per borehole is an
essential parameter in blasting, especially for the
electric/non-electric delay blasting methods. In the
case of the use of the electric/non-electric delay
blasting methods for each borehole, it should be

used as the primary parameter to predict blast-in-
duced ground vibration instead of the total explosive
charge per blast or maximum explosive charge per
row.

(4) Monitoring distance, mass explosive per
hole, and total explosive charge per blast are the
most important parameters for PPV prediction in
mine blasting with high efficiency. For the empirical
models, mass explosive per hole, total explosive
charge per blast, and maximum explosive charge per
row should be taken into account and selected
depending on the blasting methods applied. In
addition, empirical equations that can explain the
nonlinear relationships of the relevant blasting
parameters are necessary for future research aiming
to improve the accuracy of the inherent empirical
equations.

(5) Based on the obtained results, the proposed
CSO–ANN model can be used to control, predict, as
well as mitigate blast-induced ground vibration in

Figure 13. Location of the validation blasts and their monitoring distances.
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practical blasting with high reliability. Although the
accuracy of this model is ideal in this study, it would
be greater if the geological conditions were consid-
ered. Future studies may benefit from blasting
parameters and geological conditions for more
comprehensive assessment and application condi-
tions.
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