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g r a p h i c a l a b s t r a c t
� Biochar characteristics have signifi-
cant effects on the SEoHM of biochar
system.

� Metal sources, environmental condi-
tions were investigated for the
SEoHM.

� 15 novel hybrid models were pro-
posed for predicting the SEoHM of
biochar system.

� SVM-ANN was proposed as the best
model for predicting the SEoHM of
biochar system.

� Taylor diagram, boxplot and Q-Q plot
were used to evaluate the models.
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a b s t r a c t

Heavy metals in water and wastewater are taken into account as one of the most hazardous environ-
mental issues that significantly impact human health. The use of biochar systems with different materials
helped significantly remove heavy metals in the water, especially wastewater treatment systems.
Nevertheless, heavy metal’s sorption efficiency on the biochar systems is highly dependent on the
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Abbreviations

(O þ N)/C Ratio of O and N with C
A Percentage of ash
AI Artificial intelligence
ANFIS Adaptive neuro-fuzzy inference system
ANN Artificial neural network
BA Bagging
BSA Biochar surface area
C Percentage of carbon in biochar
CEC Cation exchange capacity
CO Heavy metal concentration in wastewater
Cr Chrome
Cu (II) Copper (II)
GA Genetic algorithm
GP Gaussian process
GWI Global Water Intelligence
H/C Ratio of hydrogen and carbon

MAE Mean absolute error
MLR Multiple linear regression
Ni (II) Nickel (II)
npredictors Number of randomly selected predictors
ntree Number of trees in the forest
O/C Ratio of oxygen and carbon
pHsol Solution pH
pHww pH of biochar in wastewater
PSB Particle size of biochar
R2 Determination coefficient
RF Random forest
RMSE Root-mean-squared error
SEoHM Sorption efficiency of heavy metals
SVM Support vector machine
Tenvi Environmental temperature
TP Pyrolysis temperature
Zn (II) Zinc (II)
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biochar characteristics, metal sources, and environmental conditions. Therefore, this study implicates the
feasibility of biochar systems in the heavy metal sorption in water/wastewater and the use of artificial
intelligence (AI) models in investigating efficiency sorption of heavy metal on biochar. Accordingly, this
work investigated and proposed 20 artificial intelligent models for forecasting the sorption efficiency of
heavy metal onto biochar based on five machine learning algorithms and bagging technique (BA).
Accordingly, support vector machine (SVM), random forest (RF), artificial neural network (ANN), M5Tree,
and Gaussian process (GP) algorithms were used as the key algorithms for the aim of this study. Sub-
sequently, the individual models were bagged with each other to generate new ensemble models. Finally,
20 intelligent models were developed and evaluated, including SVM, RF, M5Tree, GP, ANN, BA-SVM, BA-
RF, BA-M5Tree, BA-GP, BA-ANN, SVM-RF, SVM-M5Tree, SVM-GP, SVM-ANN, RF-M5Tree, RF-GP, RF-ANN,
M5Tree-GP, M5Tree-ANN, GP-ANN. Of those, the hybrid models (i.e., BA-SVM, BA-RF, BA-M5Tree, BA-GP,
BA-ANN, SVM-RF, SVM-M5Tree, SVM-GP, SVM-ANN, RF-M5Tree, RF-GP, RF-ANN, M5Tree-GP, M5Tree-
ANN, GP-ANN) are introduced as the novelty of this study for estimating the heavy metal’s sorption
efficiency on the biochar systems. Also, the biochar characteristics, metal sources, and environmental
conditions were comprehensively assessed and used, and they are considered as a novelty of the study as
well. For this aim, a dataset of sorption efficiency of heavy metal was collected and processed with 353
experimental tests. Various performance indexes were applied to evaluate the models, such as RMSE, R2,
MAE, color intensity, Taylor diagram, box and whiskers plots. This study’s findings revealed that AI
models could predict heavy metal’s sorption efficiency onto biochar with high reliability, and the effi-
ciency of the ensemble models is higher than those of individual models. The results also reported that
the SVM-ANN ensemble model is the most superior model among 20 developed models. The predictive
model proposed that heavy metal’s efficiency sorption on biochar can be accurately forecasted and early
warning for the water pollution by heavy metal.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Water is considered an indispensable ingredient for human life.
According to a Global Water Intelligence (GWI) survey, more than
1.2 billion people worldwide do not have clean water to use
(Intelligence et al., 2011). The main reason is attributed to the sig-
nificant influence of industrial development, mining process,
thermal power plants, hydroelectricity, other environmental di-
sasters, and fast population growth (Alrumman et al., 2016; Wang
and Yang, 2016; Cheng et al., 2019; Tran et al., 2020; Nguyen
et al., 2020). According to the statistics of Programme and UN-
Water (2009), an average of more than 2 million tons of indus-
trial, agricultural, and domestic wastewater discharges into the
water environment worldwide every day. Water waste seriously
affects human health, and an estimated 14,000 people die from
wastewater every day (Bolisetty et al., 2019). Besides, pollution of
2

water fromwaste is also the primary cause of drastic changes in the
biosphere. According to scientists, arsenic, cadmium, chromium,
lead, mercury, pesticides, and radiation are the major pollutants in
wastewater (Fig. 1). Water scarcity has also pushed the concen-
tration of polluted components, and heavy metals in the water
increased significantly. Therefore, wastewater treatment is an ur-
gent issue that significantly impacts human health, requiring the
whole community’s cooperation.

According to scientists, the heavy metal in wastewater is the
most dangerous and difficult problem to handle (Hua et al., 2012).
Mining activities, industrial zones, commercial centers, and in-
dustrial wastewater are the primary agents that increase heavy
metals concentration inwastewater. Even natural water can also be
contaminated with cadmium, arsenic, and iron (Nguyen and Trinh,
2020). They are the most critical pollutants contributing to human
health risks and other cancers (e.g., liver, lungs, stomach)



Fig. 1. Summary of water pollution by heavy metals, radionuclide, and pesticides, as well as the water scarcity worldwide (Bolisetty et al., 2019).

Fig. 2. A review of composition and volume of treated water (Bolisetty et al., 2019). (a) Components of water pollutants in industrial and commercial areas; (b) The volume of
treated water according to demands in use.
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(Muchuweti et al., 2006; Zhao et al., 2012, 2014). The primary
pollutant components in European industrial and commercial areas
are illustrated in Fig. 2a. Besides, the percentage of water treated by
each field is shown in Fig. 2b. As can be seen, heavy metals in the
water are dangerous materials, and they should be removed. In
recent years, there are several methods to remove heavy metals,
such as physicochemical methods (e.g., mechanical screening, hy-
drodynamic classification, attrition scrubbing, magnetic separation,
gravity concentration, flotation, and electrostatic separation,
chemical precipitation, ion exchange, and electrochemical deposi-
tion), chemical precipitation, membrane filtration, coagulation and
flocculation, electrodialysis, electrochemical treatments, and bio-
logical methods (Gunatilake, 2015; Yu et al., 2017; Gan et al., 2018;
Hern�andez-Cocoletzi et al., 2020; Sankaran et al., 2020). Of those,
biological methods (i.e., biochar systems) are recommended as
effective solutions for absorbing heavy metals due to the following
reasons:

(i) Biochar systems use various low-cost adsorbents (agricul-
tural waste, industrial waste, mining products, forest waste,
algae, to name a few) to remove heavy metals (Inyang et al.,
2012, 2016; Tran et al., 2020; Zhang et al., 2020). These ad-
sorbents are also known as the recycled materials aiming to
reduce environmental pollution.

(ii) Biochar systems have been confirmed with the maximum
removal of heavy metals in water/wastewater (Gomez-
Serrano et al., 1998; Gupta et al., 2001; Idris et al., 2010;
Mohan et al., 2014; Inyang et al., 2016).

As per research by previous researchers, the biochar system’s
heavy metal sorption efficiency depends significantly on its char-
acteristics, metal sources, and environmental conditions (Tytłak
et al., 2015; Li et al., 2017; Hass and Lima, 2018). Therefore, the
prediction of heavy metal sorption efficiency (SEoHM) of biochar
systems based on the biochar characteristics, metal sources, and
environmental conditions is necessary and is very important for
improving water quality.
Fig. 3. Illustrating the mechanism of biochar systems to absorb heavy metals (Li et al.,
2017).
2. Mechanism of biochar systems for heavy metal sorption

As one of the main objectives of this work, mechanisms of
biochar systems play an essential role in the sorption of heavy
metals in water/wastewater, including pH, surface charge, surface
area, porosity, functional groups, and mineral contents (Appel and
Ma, 2002; Uchimiya et al., 2012; Suliman et al., 2016).

In this regard, the characteristics of surface area and porosity are
significant physical properties of biochar systems. Under the high
temperature of biochar systems (pyrolyze), micropores are estab-
lished in biochar systems due to the dehydration process (Plaza
et al., 2014). The size of biochar pore has a significantly influent
on the metal sorption capacity of biochar systems. It is worth
mentioning that the surface area and porosity are highly dependent
on biochar systems’ temperature (Leng et al., 2020). Besides, the
biochar feedstock compositions are also essential in evaluating
biochar systems’ efficiency (Li et al., 2019). Similarity characteristics
are also claimed for pH with temperature and feedstock (Al-Wabel
et al., 2013). Next is the surface charge properties of biochar sys-
tems. It is highly dependent on the pH solutionwhen using biochar
systems for treating water/wastewater. In addition to the surface
area, porosity, pH solution, and surface charge, functional groups
play essential roles in biochar systems’ heavy metal sorption. They
are controlled by pyrolysis temperature and feedstock based on the
carbonization degree. Functional groups are diversity in biochar
systems and they may be lost under increasing temperature (Li and
4

Chen, 2018). The last factor is the mineral components in biochar
systems, such as calcium (Ca), potassium (K), phosphorus (P), and
magnesium (Mg). They are responsible for metal sorption from
water/wastewater. Their primary mission is to exchange or pre-
cipitate with heavy metals to reduce or remove their availability
(Uddin, 2017).

Regarding the heavy metal sorption mechanisms, five mecha-
nisms have been proposed to exercise control over heavy metals
sorption by biochar systems, including complexation, cation ex-
change, precipitation, electrostatic interactions, and chemical
reduction (Li et al., 2017), as illustrated in Fig. 3. Depending on the
heavy metals, the role of each mechanism is different. Further as-
sessments can be referred to the literature (Sajidu et al., 2008; Deze
et al., 2012; Lu et al., 2012; Trakal et al., 2016).

3. Related works

Concerning the heavy metal sorption efficiency of the biochar
system, various materials and methods have been applied. Indeed,
�S�ciban et al. (2007) used the wood sawdust to absorb heavy metals
from electroplating wastewater. Their findings demonstrated that
the wood sawdust could better absorb copper ions in wastewater
than metal solutions. However, other ions have been thought to
reduce cadmium ions’ sorption efficiency - one of the most
dangerous ions in wastewater. In another study, Sarkar and
Majumdar (2011) applied the response surface method to opti-
mize the SEoHM inwastewater (i.e., Cu (II), Ni (II), and Zn (II)) of the
biochar system by surfactant modified chitosan bead. A quadratic
equation has also been used to predict the SEoHMwith a coefficient
determined of 0.8326. Mehta and Gaur (2005) also used algae as a
special material to absorb heavy metals inwastewater. The findings
showed that algae could effectively remove heavy metals from
wastewater. Furthermore, the authors’ recommendations on the
development of the SEoHM predictive models of biochar systems
have been given as a problem to be addressed in future studies.

In recent years, artificial intelligence (AI) is considered a useful
tools in real-life problems (Pal and Deswal, 2009; Qu et al., 2014;
Rodriguez-Galiano et al., 2014; Bui et al., 2019a, 2019b, 2019c, 2020;
Nguyen, 2019; Nguyen and Bui, 2019; Nguyen et al., 2019a; Shariati

mailto:Image of Fig. 3|tif


Fig. 4. Proposing the framework of novel ensemble models for predicting sorption efficiency.

Table 1
Properties of the input and output variables used herein.

Categories TP pHww C (O þ N)/C O/C H/C A

Min. 300 6.78 43.29 0.048 0.033 0.16 1.57
1st Qu. 450 9.69 48.69 0.095 0.08 0.299 7.52
Median 550 10.03 69.04 0.168 0.142 0.392 21.25
Mean 540.9 9.71 65.8 0.1848 0.1676 0.4607 21.3
3rd Qu. 650 10.4 77 0.26 0.243 0.569 33.1
Max. 700 11.1 88.2 0.421 0.359 1.084 47.93

Catergories PSB BSA CEC Tenvi pHsol C0 SEoHM

Min. 0.15 2.46 3.17 20 2 0.0029 0.0003
1st Qu. 0.2 12.78 7.41 20 5 0.008 0.004
Median 0.2 20.1 14.6 25 5.5 0.1429 0.0823
Mean 0.4554 43.8 15.68 24.12 5.504 0.4511 0.2324
3rd Qu. 0.5 41.12 21.8 25 6 0.8897 0.2829
Max. 2 465 45.7 28 10 2.4131 1.5835
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et al., 2019, 2020a, 2020b; Trung et al., 2019; Le and Dang, 2020; Vu
et al., 2020), as well as in terms of sorption efficiency prediction of
heavy metals in wastewater. Prakash et al. (2008) developed an
artificial neural network (ANN) model for predicting the sorption
efficiency of Cu (II) ions inwastewater using sawdust. Their findings
showed that ANN could predict the sorption efficiency of Cu (II)
ions impressive. A similar ANN technique has also been applied to
remove the nickel (II) ions from an aqueous solution by zeolite
(Turp et al., 2011). In another study, Parveen et al. (2017) developed
an intelligencemodel for predicting the sorption efficiency of the Cr
(IV) ions using the support vector machine algorithm (SVM). MLR
and ANNwere also developed to compare and assess the developed
SVM model’s feasibility in predicting the sorption efficiency of
heavy metal. The results showed that the SVMmodel could predict
more precisely than those of the MLR and ANN models. However,
only certain environmental conditions were considered as input
variables in their study. Dolatabadi et al. (2018) also developed ANN
and ANFISmodels to forecast heavymetal removal (i.e., Basic Red46
(BR46) and Cu) fromwastewater of a biochar system using sawdust
based on the characteristics of the metal source (e.g., contact time,
initial Cu (II), initial dye, pH, and adsorbent dosage). To improve the
accuracy of the baseline predictive models, Sutherland et al. (2018)
used the genetic algorithm aiming to optimize an initial ANNmodel
(i.e., ANN-GA) in predicting the SEoHM. Metal sources and envi-
ronmental conditions were taken into account to assess the Cu (II)
ions removal from aqueous solutions. The ANN-GAmodel predicted
its sorption efficiency with a promising result. Besides, the biochar
characteristics were also claimed that have a significant influence
on the heavy metal sorption efficiency of the biochar system (Zhu
et al., 2019). A random forest (RF) and an ANN model were then
developed to predict the SEoHM in wastewater while considering
the biochar characteristics. The results interpreted the high
convergence of the dataset on the RF and ANN models. In other
5

words, the RF and ANN models can predict the SEoHM with high
reliability, and the influence of the biochar characteristics on the
sorption efficiency has also been properly addressed.

An overview of the literature shows that AI is a powerful tool to
predict the SEoHM in biochar systems’ wastewater. However, pre-
vious studies just only passed simple problems and models. Be-
sides, summarizing the above reviews’ conclusions showed that the
biochar characteristics, metal sources, and environmental condi-
tions have a significant impact on the SEoHM of the biochar system.
Nevertheless, they have not been adequately considered and
explained. Therefore, this study aims to develop some novel hybrid
AI models for predicting the SEoHM based on biochar characteris-
tics, metal sources, and environmental conditions. Accordingly,
SVM, RF, ANN, M5Tree, and Gaussian process (GP) algorithms are
used as the key algorithms for predicting the sorption efficiency of
heavy metal. Subsequently, the bagging techniques (BA) is applied

mailto:Image of Fig. 4|tif


Fig. 5. The chart of the correlation matrix of the original database.

Table 2
Properties of the input and output variables in the training dataset.

Categories TP pHww C (O þ N)/C H/C A PSB

Min. 300 6.78 43.29 0.048 0.16 1.57 0.15
1st Qu. 450 9.69 48.69 0.095 0.306 7.425 0.2
Median 550 10 69.04 0.17 0.392 21.25 0.2
Mean 537.1 9.68 65.81 0.1854 0.4675 21.331 0.4528
3rd Qu. 650 10.4 79 0.26 0.569 33.1 0.5
Max. 700 11.1 88.2 0.421 1.084 47.93 2

Catergories BSA CEC Tenvi pHsol C0 SEoHM e

Min. 2.46 3.17 20 2 0.0029 0.0003 e

1st Qu. 12.78 7.2 22 5 0.008 0.003975 e

Median 20.1 14.6 25 5.5 0.131 0.08285 e

Mean 47 15.53 24.16 5.523 0.4376 0.22813 e

3rd Qu. 41.12 21.8 25 5.625 0.8897 0.28375 e

Max. 465 45.7 28 10 2.4131 1.5835 e

Table 3
Properties of the input and output variables in the testing dataset.

Categories TP pHww C (O þ N)/C H/C A PSB

Min. 300 6.78 43.29 0.048 0.16 2.2 0.15
1st Qu. 500 9.81 51.69 0.12 0.291 7.52 0.2
Median 550 10.08 69.04 0.168 0.376 21.25 0.2
Mean 556.5 9.83 65.79 0.1824 0.4326 21.15 0.4659
3rd Qu. 650 10.5 76.3 0.26 0.549 32.27 0.25
Max. 700 11.1 85.3 0.365 1.084 47.93 2

Catergories BSA CEC Tenvi pHsol C0 SEoHM e

Min. 2.46 3.17 20 2 0.0029 0.0003 e

1st Qu. 14.03 7.85 20 5 0.0089 0.004 e

Median 20.1 17.4 25 5.5 0.2 0.0823 e

Mean 30.64 16.26 23.97 5.428 0.5067 0.2502 e

3rd Qu. 41.12 21.8 25 6 1 0.2818 e

Max. 309.29 40.2 28 8 1.9305 1.5568 e
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to generate novel hybrid models (ensemble models) for similar
purposes with improved performance, namely BA-SVM, BA-RF, BA-
M5Tree, BA-GP, BA-ANN, SVM-RF, SVM-M5Tree, SVM-GP, SVM-
ANN, RF-M5Tree, RF-GP, RF-ANN, M5Tree-GP, M5Tree-ANN, and
6

GP-ANN. The details of the models’ development, as well as their
properties, are presented step-by-step in the next sections.

mailto:Image of Fig. 5|tif


Fig. 6. Grid search for the development of the SVM model in predicting sorption efficiency.

Fig. 7. RMSE of the RF model on the training phase with different randomly selected predictors.
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4. Methodology

As mentioned above, this study applies the BA techniques to
develop various novel hybrid models (ensemble models), including
BA-SVM, BA-RF, BA-M5Tree, BA-GP, BA-ANN, SVM-RF, SVM-
M5Tree, SVM-GP, SVM-ANN, RF-M5Tree, RF-GP, RF-ANN, M5Tree-
GP, M5Tree-ANN, and GP-ANN. Therefore, the methodology of the
hybrid models will be presented in detail in this section. Besides,
the sub-methods background, such as SVM, RF, M5Tree, GP, and
ANN, are presented in the Supplementary material.
7

Ensemble models are known as an approach to improving
forecasting models (Nguyen et al., 2020; Ke et al., 2018; Zhou et al.,
2021; Zhou et al., 2021). They rely on bagging to combine many
weak predictors to create a new model with better predictability
and higher reliability (Breiman, 1996; Quinlan, 1996; Dudoit and
Fridlyand, 2003). Based on bagging theory, the efforts of this
study are to combine single models (i.e., SVM, RF, M5Tree, GP, and
ANN) to generate ensemble models (hybrid models) with better
performance, including BA-SVM, BA-RF, BA-M5Tree, BA-GP, BA-
ANN, SVM-RF, SVM-M5Tree, SVM-GP, SVM-ANN, RF-M5Tree, RF-

mailto:Image of Fig. 6|tif
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Fig. 8. RMSE of the M5Tree model on the training phase.

Fig. 9. RMSE of the GP model on the training phase with various values of s
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GP, RF-ANN, M5Tree-GP, M5Tree-ANN, and GP-ANN. The frame-
work of novel ensemble models for predicting the SEoHM of the
biochar system in this study is presented in Fig. 4.

The original dataset is split into two parts to developing the
ensemble models: 80% for training and 20% for testing (Nguyen,
2020). The single models are then developed based on the
training dataset, including SVM, RF, M5Tree, GP, and ANN. Note that
8

these single models are different from the optimal developed single
models before. They should be weak models, and they are consid-
ered as the sub-models for the ensemble models. In the next step,
the sub-models are combined based on the outcome predictions.
Ultimately, the testing dataset is used to test and evaluate the
performance, as well as the accuracy of the ensemble models in
practice. The process of developing ensemble models to predict the

mailto:Image of Fig. 8|tif
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Fig. 10. Performance of the ANN model with different hidden layers and hidden neurons.

Fig. 11. The ANN structure for predicting the sorption efficiency of heavy metal on biochar.
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SEoHM in this study is proposed in Fig. 4.
To evaluate the performance of the machine learning models,

statistical indicators are used to evaluate the accuracy of the model
and model compatibility with the dataset used, including root-
mean-squared error (RMSE), determination coefficient (R2), and
mean absolute error (MAE). In addition to these statistical
9

indicators, additional model evaluationmethods based on the color
spectrum, data distribution, and standard deviation were also
performed, including the boxplot and Taylor diagram. The details of
these methods are described in Supplementary material.
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Fig. 12. Color spectrum for model assessment. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Table 4
Performance of the single and novel ensemble models in predicting the SEoHM.

Model Training Testing

RMSE R2 MAE RMSE R2 MAE

SVM 0.073 0.953 0.044 0.089 0.951 0.050
RF 0.064 0.972 0.035 0.066 0.973 0.033
M5Tree 0.072 0.962 0.041 0.079 0.959 0.031
GP 0.114 0.897 0.066 0.136 0.885 0.082
ANN 0.058 0.972 0.030 0.075 0.965 0.036
BA-SVM 0.080 0.975 0.038 0.071 0.972 0.043
BA-RF 0.057 0.980 0.029 0.060 0.977 0.032
BA-M5Tree 0.070 0.967 0.030 0.073 0.965 0.034
BA-GP 0.121 0.889 0.070 0.133 0.892 0.080
BA-ANN 0.054 0.973 0.031 0.071 0.970 0.038
SVM-RF 0.055 0.978 0.034 0.063 0.974 0.036
SVM-M5Tree 0.078 0.955 0.047 0.090 0.952 0.051
SVM-GP 0.168 0.813 0.080 0.194 0.793 0.086
SVM-ANN 0.036 0.995 0.018 0.046 0.987 0.026
RF-M5Tree 0.066 0.969 0.031 0.072 0.967 0.033
RF-GP 0.176 0.891 0.148 0.184 0.916 0.152
RF-ANN 0.079 0.952 0.043 0.096 0.948 0.050
M5Tree-GP 0.139 0.905 0.078 0.152 0.903 0.082
M5Tree-ANN 0.069 0.976 0.030 0.074 0.967 0.035
GP-ANN 0.057 0.977 0.029 0.064 0.974 0.036
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5. Data acquisition and analyses

To carry out this study, a dataset of 353 observations of heavy
metal adsorption was collected from the previous 12 studies (Sun
et al., 2014; Trakal et al., 2014; Shen et al., 2015, 2017a, 2017b;
Cui et al., 2016a, 2016b; Ding et al., 2016; Jiang et al., 2016; Zama
et al., 2017; Li et al., 2018; Gao et al., 2019). The dataset character-
istics include biochar characteristics, adsorption conditions, the
initial concentration ratio of heavy metals to biochar, and heavy
metal properties. However, the heavy metal properties, such as ion
radius, charge number, and electronegativity, were indicated that
not significant with the sorption efficiency of heavy metal (Zhu
et al., 2019). Therefore, they were not used to predict the SEoHM
in the present study. Instead, biochar characteristics, metal sources,
and environmental conditions were taken into account to predict
ESoHM in this studywith 13 input variables, such as biochar surface
area (BSA), percentage of ash (A), cation exchange capacity (CEC),
particle size of biochar (PSB), pH of biochar in wastewater (pHww),
percentage of carbon in biochar (C), the ratio of oxygen and carbon
(O/C), the ratio of hydrogen and carbon (H/C), ratio of O and N with
C [(O þ N)/C], solution pH (pHsol), heavy metal concentration in
wastewater (CO), pyrolysis temperature (TP), and environmental
temperature (Tenvi). The characteristics of the dataset are presented
in Table 1.

In machine learning, data needs to be well understood before
developing machine learning models in order to increase the reli-
ability of predictive models (Nguyen et al., 2020). In other words,
the data needs to be analyzed to select the models as well as the
appropriate model training methods. As can be seen, the number of
input variables in the dataset is high, so an analysis of the corre-
lation as well as the distribution of them is needed to minimize the
number of input variables if the level is similarities high. A corre-
lation and distribution matrix, as well as the density of the input
variables, are analyzed in Fig. 5. Accordingly, it can be seen that the
correlation between pairs of variables (Oþ N)/C and O/C is absolute
(i.e., correlation value equal to 1). A closer look at the distribution
10
and density of this pair of variables in Fig. 5 shows that their sim-
ilarity is almost absolute. Therefore, one of the two variables needs
to be removed to ensure the objectivity of the model. Looking at the
composition of the two variables (i.e., (O þ N)/C and O/C), it can be
seen that the (O þ N)/C variable includes the ratio of oxygen and
nitrogen with carbon. Meanwhile, the O/C variable does not reflect
the influence of nitrogen on carbon. Therefore, the O/C variable was
removed in this research.

Before developing the machine learning models mentioned
above, the dataset is split according to the ratio of 80/20with 80% of
the whole sorption efficiency dataset was randomly selected to
develop the models through the learning of the algorithms. Sub-
sequently, the remaining 20% is used to evaluate/validate the
developed models’ performance. The characteristics of the training
and testing datasets are listed in Tables 2 and 3, respectively.
6. Development of the models

In this section, the detail of the models’ development is
described step-by-step. To develop the SVMmodel, the dataset was
normalized using the BoxCox, center, and scaled methods to avoid
overfitting the model (Grace and Durham, 2001; Schnitzer et al.,
2003). Besides, the 10-fold cross-validation technique was also
used to improve the SVM model’s accuracy. For the regression
problems (i.e., SEoHM), kernel functions are applied to support the
model’s mapping data, as presented above. A review of the litera-
ture shows that the radial basis function (RBF) often provides better
results for regression problems (Nguyen, 2019; Nguyen et al.,
2019b). Therefore, RBF was selected as the primary kernel func-
tion to develop the SVM model for predicting SEoHM in this study
with s and Cost (t) are the main parameters used to control the
SVM model’s accuracy. The grid search with s in the range of
[0.0125, 0.1] and t in the range of [50, 200] was established to
define the optimal SVM model for the present problem. Finally,
1207 SVM models were taken into account and computed for
performance with different parameters, as illustrated in Fig. 6. The
results indicated that the best SVM model for estimating the
SEoHM in this study reached at s ¼ 0.05 and t ¼ 50.

For the RF model, the same techniques were applied to develop
the RF model as those used for the SVM model. The number of
randomly selected predictors (npredictors) and the number of trees in
the forest (ntree) are the critical parameters in developing the RF
model. According to previous researchers, ntree should be diverse to
ensure that the predictive results represent high confidence.
Therefore, the ntree was selected equal to 2000 to meet the above
requirements. In this study, 12 predictors were used to predict the
SEoHM as introduced above; therefore, the npredictors should be
selected in the range of [1,12]. The results of calculating the RF
model’s performance on the training dataset with different pa-
rameters show that the best RF model at ntree ¼ 2000 and
npredictors ¼ 12 (Fig. 7).

For the M5Tree model, the regression tree development was
performed to predict the SEoHM. To develop regression trees,
pruning may be necessary to minimize errors of the model. Sub-
sequently, the smooth task can be applied to smooth out the
pruned locations, minimize errors and losses. The rules were also
considered whether they could be applied or not to improve the

mailto:Image of Fig. 12|tif


Fig. 13. Correlation of measured and predicted by different intelligence models.
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model’s accuracy. Finally, eight M5Tree models were developed
based on three parameters: pruned, smoothed, and rules. The
optimal M5Tree model was then defined, as shown in Fig. 8.

For the GPmodel, the development process is similar to the SVM
11
model. The RBF was also applied to support the GP model with the
Gaussian distribution. However, there is only one parameter
involved in adjusting the GP model’s performance, i.e., s. A grid
search with s in the range of [0, 0.7] was established to determine
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the optimal GP model. Finally, the optimal GP model was defined
with s ¼ 0.128, as shown in Fig. 9.

For the ANNmodel, the normalized technique of MinMax in the
range [0,1] was applied to prevent overfitting occurrence. Then, the
BP algorithm was selected as the potential algorithm for training
the ANN model. Different hidden layers and hidden neurons was
applied to select the ANN model’s best structure, as shown in
Fig. 10. Accordingly, the optimal structure of the ANN should
include two hidden layers with 26 and 24 hidden neurons in the
first and second hidden layers, respectively (Fig. 10). Eventually, an
optimal ANN was proposed to predict the SEoHM of biochar based
on the BP algorithm, as introduced in Fig. 11.

To develop the ensemble models, the framework in Fig. 4 was
applied. Accordingly, the single models with low performance (i.e.,
weak regressors) were used as the sub0-models and combined to
generate a new ensemble model with higher accuracy. Herein, we
selected five sub-models for each ensemble model and combined
them with each other. Subsequently, their performance on the
training and testing datasets was computed and compared through
statistical metrics, color intensity, boxplot, and Taylor diagram. The
development of the novel ensemble models for predicting the
SEoHM in this study was implemented as follows:

- BA-SVM model: generate five weak SVM models, then combine
them by the SVM.

- BA-RF model: generate five weak RF models, then combine
them by the RF.

- BA-M5Tree model: generate five weak M5Tree models, then
combine them by the M5Tree.

- BA-GP model: generate five weak GP models, then combine
them by the GP.

- BA-ANN model: generate five weak ANN models, then combine
them by the ANN.

- SVM-RF model: generate five weak SVM models, then combine
them by the RF.

- SVM-M5Tree model: generate five weak SVM models, then
combine them by the M5Tree.

- SVM-GP model: generate five weak SVM models, then combine
them by the GP.

- SVM-ANN model: generate five weak SVM models, then
combine them by the ANN.

- RF-M5Tree model: generate five weak RF models, then combine
them by the M5Tree.
Fig. 13. (con
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- RF-GP model: generate five weak RF models, then combine
them by the GP.

- RF-ANN model: generate five weak RF models, then combine
them by the ANN.

- M5Tree-GP model: generate five weak M5Tree models, then
combine them by the GP.

- M5Tree-ANN model: generate five weak M5Tree models, then
combine them by the ANN.

- GP-ANN model: generate five weak GP models, then combine
them by the ANN.
7. Results and discussion

Prior develop the SEoHM predictive models, three statistical
indices, including RMSE, R2, and MAE were pointed out as the
standards for evaluating themodels. The evaluations are performed
on both training and testing datasets in order to evaluate the per-
formance of modeling in theory and practice. The SEoHMpredictive
models’ results are computed and listed in Table 4. Also, the color
spectrum method (Fig. 12) was applied to highlight the models’
quality.

Table 4 indicated that the machine learning models predicted
the SEoHM very well. Among the single models, the RF model
provided the most superior performance (i.e., RMSE of 0.064 and
0.066; R2 of 0.972 and 0.973; and MAE of 0.035 and 0.033) on the
training and testing datasets. In contrast to the RF model, the GP
model provided the lowest performance on the datasets (e.g., RMSE
of 0.114 and 0.136; R2 of 0.897 and 0.885; MAE of 0.066 and 0.082).
These results revealed that the Gaussian distribution does not
appear strong enough to explain clearly the relationship between
the SEoHM and the input variables. Further experimental tests
were conducted on the GP-based models (ensemble models based
on the GP model) to confirm this statement.

Looking at the new ensemble models’ results, we can see that
most ensemble models predicted the SEoHM better than individual
models. Indeed, the values in Table 4 revealed that combining
multiple SVM models (weak SVM models) to create new hybrid
models, such as BA-SVM, SVM-RF, SVM-M5Tree, and SVM-ANN, is
better than the single SVMmodel. In particular, the color spectrum
showed that the SVM-ANN model is the best of the 20 models
developed to predict SEoHM in this study with a promising result
(i.e., RMSE ¼ 0.046, R2 ¼ 0.987, and MAE ¼ 0.026 on the testing
tinued).
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dataset). However, not all ensemble models are superior to single
models. Indeed, comparing the SVMmodel’s performance with the
SVM-M5Tree model, the performance between them is not too
different. More significantly, the combination of many sub-SVM
models by GP has led to the SVM-GP model’s performance being
even lower than the single GP model. Similar problems have also
occurred for the RF-GP and M5Tree-GP models. This finding ex-
plains the Gaussian distribution mismatch for the SEoHM data in
this study, as stated above. However, the combination of multiple
Gaussian distributions (i.e., weak GP models) by ANN (GP-ANN)
16
seems to yield higher performance than the single ANN model in
the SEoHM prediction. This finding shows that ANN can explain the
Gaussian relationship of weak GP models in this study well. To
better assess the feasibility of the developed models in predicting
the SEoHM of the biochar system, let’s look at the correlation of
predictive models and actual in Fig. 13.

It is a fact that ensemble models based on sub-models of SVM,
RF, and M5Tree seem to be better suited to the actual dataset. The
ensemble models’ predicted values based on sub-models of SVM,
RF, and M5Tree are closer to the regression line than the remaining
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Fig. 15. Taylor diagram for models’ assessment through standard deviation and correlation metrics.

Fig. 16. Boxplot of the sorption efficiency predictive models.
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Fig. 17. Q-Q plot of the sorption efficiency predictive models for evaluating the fitness of the models.
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models. Meanwhile, the ensemble models based on the GP’s sub-
models have provided predicted values far from the regression
line. A closer look at the ensemblemodels for predicting the SEoHM
by GP showed that the greater the sorption efficiency, the higher
the error of the model. In other words, GP seems to be not suitable
to predict the SEoHMwith high adsorption efficiency (>0.2 mmol/g
in this study). To compare the absolute accuracy in practical, the
18
predicted values and the actual values are illustrated in Fig. 14. The
prediction resulting of the models on the testing dataset is pre-
sented in Supplementary materials. Furthermore, a Taylor diagram
and a boxplot were also analyzed to assess further the models
developed, as shown in Figs. 15 and 16.

As seen in the Taylor graph (Fig. 15), it is easy to recognize that
the SVM-ANN model is the best model for predicting the SEoHM in
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this study, with the standard error is lower than the observed and
the correlation is highest. The RF-M5Treemodel seems to provide a
slightly lower correlation; however, its standard error is higher
than the SVM-ANN model. Observing the distribution of the
models’ output (predicted SEoHM) on the boxplot shows that all
models appear outliers. However, the SVM-ANN model’s predicted
SEoHM distribution has the highest similarity to the actual model
19
(measured SEoHM). They show the high stability of the SVM-ANN
model in predicting the SEoHM in this study. Notably, the RF-GP
model has the smallest IQR, much lower than the actual model.
The outliers also appeared more than the actual model. They show
significant differences between the RF-GPmodel and the remaining
models in predicting the SEoHM.

Fig. 16 shows that the dataset’s distribution through the boxes
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and whiskers showed that the SVM-ANN model is very close to the
actual model. Some other models, such as GP, BA-GP, SVM-RF, SVM-
GP, RF-M5Tree, provided fewer outliers; however, their distribution
is very different from the actual model. Remarkably, the RF-GP
model’s data distribution showed that the average of the pre-
dicted SEoHM is much higher than the actual model, and the data
tends to lean heavily above the mean. These findings show that the
predicted SEoHM values of the RF-GP model have large fluctua-
tions, instability, and low quality. The GP algorithm’s machine
learning models also provided large deviations, indicating the
models’ instability.

Although the models’ accuracy, performance, and stability have
been evaluated in detail as presented above. However, the models’
inherent random errors need to be checked whether they are
extracted from a normal distribution or not. A quantile-quantile
plot (Q-Q plot) was analyzed in Fig. 17, aiming to evaluate the
normal distribution and the models’ random errors. Accordingly,
the normality of the residuals of the models was investigated
through the Q-Q plots. The findings show that the ensemblemodels
have the normality of the residuals higher than those of the single
models. Of those, the SVM-ANNmodel is the best fit for the SEoHM
database with the highest normal distribution and the lowest
random errors inherent. Based on all the obtained results and
analysis, it is possible to see that SVM-ANN is the best model in this
study for predicting the SEoHM with outstanding accuracy and
stability.

8. Conclusions and remarks

Heavy metals in water and wastewater are dangerous compo-
nents that seriously affect human health. Applying biochar tech-
nology to adsorb heavy metals in water and wastewater has
important implications in life and brings co-benefits to the econ-
omy and the environment. However, the heavy metal adsorption
system’s effectiveness depends on many factors, such as biochar
20
characteristics, metal sources, and environmental conditions. This
study has successfully developed a series of artificial intelligence
models to predict the sorption efficiency of the heavy metal in the
biochar systemwith high reliability, including SVM, RF, M5Tree, GP,
ANN, BA-SVM, BA-RF, BA-M5Tree, BA-GP, BA-ANN, SVM-RF, SVM-
M5Tree, SVM-GP, SVM-ANN, RF-M5Tree, RF-GP, RF-ANN, M5Tree-
GP, M5Tree-ANN, GP-ANN. Of those, the SVM-ANN model was
introduced as the most accurate predictive model with the highest
reliability. The results have proved that the ensemble models have
the potential to improve the accuracy of individual prediction
models. However, the selection of training algorithms should also
be considered under the dataset used. Based on the models pro-
posed in this study, water/wastewater treatment plants can effec-
tively control the adsorption of heavy metals in water/wastewater
to ensure the quality of the outlet water. In addition, the water/
wastewater treatment capacity of the plants can also be adjusted
accordingly based on the SEoHM prediction models proposed in
this study.

Although this work’s findings are outstanding, and the obtained
results have important significance in the wastewater treatment
industry and mitigate environmental water pollution. Notably, this
study used a dataset collected from 12 previous studies with
various biochar systems and adsorbents. The results showed that
the developed models, especially the SVM-ANN model, have good
generalizability for various biochar systems and adsorbents. The
developed models’ accuracy can be improved if they are applied for
only a stand-alone biochar systemwith an adsorbent. However, this
study’s limitation is the size of a dataset for a stand-alone biochar
system with an adsorbent. It is too few samples in each previous
study to develop and validate the AI models. Therefore, increasing
the samples (datasets) of each biochar system with an adsorbent
and developing AI models for estimating the SEoHM of each bio-
char system with high accuracy should be considered and
employed in future studies.
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