
Solid State Technology 
Volume: 63 Issue: 2s 

Publication Year: 2020 

 

 

6
4
1
9

 

 

Archives Available @ www.solidstatetechnology.us 

 

Integer solutions of system of linear inequalities and 

its aplication to find the extremes of linear and 

concave functions on the set of integer points of a 

finite convex polyhedron 

Nguyen Ngoc Chu1 and Le Thanh Hue2 

1 Hanoi Institute of Mathematics, 18 Hoang Quoc Viet, Hanoi, Vietnam 

2 Faculty of Informatics Technology, University of Mining and Geology, Hanoi, Vietnam. 

 

Abstract -While the theory of system of linear inequalities has been well studied, the integer solution of 

system of linear inequalities has not been properly investigated. One of the main reasons is that this 

problem is very complicated and it is an NP-hard problem. In this paper we describe a polynomial time 

algorithm for finding the integer solutions for a system of linear inequalities Ax ≤ b, where A is (r x n) 

integer matrix of rank r. From this general case, we come to the algorithm for the paricular case, which 

is to find a general formula for the integer points in convex cones defined by n linear inequalities. We 

then propose the procedure of finding integer points in a finite convex polyhedron D, and then develop a 

method for solving linear integer programming problem over a finite convex polyhedron D. Next, we 

study the problem of minimizing a concave function on the set of integer points of a finite convex 

polyhedron D. The problem of finding the minimum of a concave function on the set of integer points of 

a finite convex polyhedron is a very difficult problem. As far as we know, there is currently no general 

method to solve this problem. The algorithm proposed here is theoretical, difficult to apply to large 

problems, except for some problems with special structures. 

Keywords: Integer programming, integer point, linear inequalities, convex polyhedron, concave 

function, global optimization  

 

1. Introduction 

The integer programming problem has many practical applications [1,2,3]. There are two traditional 

exact methods for solving integer programming problems. The first is the cutting plane method. The 

second way is the branch and bound method [1,2]. But there are also other methods to solve the integer 

programming problems. For example, the coordinate cutting method [4], or the branch and cut method 
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that combines both branch and bound and cutting plane methods. Since integer programming problem is 

NP-hard, many problem instances are intractable and so heuristic methods must be used instead [5]. 

Although the integer programming problem is NP-hard, Lenstra [6] showed that, when the number of 

variables is fixed, the feasibility integer programming problem can be solved in polynomial time. In 

practical applications, depending on the structure of the problem, specific solutions are proposed. 

Algorithms based on the specific structure of the problem are often more effective [1]. 

In another area, the problem of finding the minimum of a concave function on the set of integer points of 

a finite convex polyhedron is a very difficult problem. As far as we know, there is currently no general 

method to solve this problem. The problem of finding the minimum of a concave function on a finite 

convex polyhedron was first proposed by H. Tuy in the paper [7]. Tuy’s cut has since become the classic 

to open a field called global optimization [8]. However, the field of global optimization on a finite set of 

integers points is an area where many issues have not been thoroughly investigated. 

In present paper we describe a polynomial time algorithm for finding the integer solutions for a system 

of linear inequalities Ax≤ b, where A is (r x n) integer matrix of rank r. Basing on this algorithm we 

propose a procedure for finding integer points in polytope D, and then develop a method for solving 

integer programming problems: 

max { 𝑓0(𝑥) ∣∣ 𝑥 ∈ 𝐷, 𝑥 − 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 } 

And 

max { 𝜑0(𝑥) ∣∣ 𝑥 Є 𝐷, 𝑥 − 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 } 

Where 𝑓0(𝑥) is a linear function,  𝜑0(𝑥) is a concave function and D is a polytope. 

 

2. The integer solutions of a linear system of inequalities 

While the theory of system of linear inequalities has been well studied [9], the integer solution of system 

of linear inequalities has not been properly investigated. This is because the problem of finding the 

integer solution of any system of linear inequalities is an NP-hard problem. Below, we will refer to the 

system of linear inequalities whose number of constraints m is not greater than the number of variables 

n. And with this class of systems of linear inequalities, one can find a general formula for representing 

integer solutions. Some results on integer solutions of system of linear inequalities can be found in [10]. 

 

 Let us consider the system of linear inequalities 

𝑓𝑖(𝑥) =  ∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1 ≤ 𝑏𝑖,𝑖 = 1, … . , 𝑟                                               (1) 
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Where 𝑎𝑖𝑗,𝑏𝑖 are giver integers and  𝑟𝑎𝑛𝑘 (𝐴) = 𝑟. 

The following algorithm gives a general formula of integer solutions of the system (1) in polynomial 

time. 

Algorithm  

Iteration 𝑘( 𝑘 = 1, … . , 𝑟). 

Step 0. Define 

𝐴∗ = [𝑎1
∗𝑎2

∗ … 𝑎𝑛+𝑟+1
∗ ] = [

𝐴𝐼 − 𝑏
𝐸

] 

Where I and E are the identity matrix of orders respectively r and       (𝑛 + 𝑟 +  1 ), −𝑏 =

(−𝑏1, … , −𝑏𝑟)𝑇 

Step 1.  Denote the column 𝑗1(𝑗1 ≤ 𝑛 − 𝑘 + 1)  with 

|𝑎1𝑗1

∗ | =
𝑚𝑎𝑥

1 ≤ 𝑗 ≤ 𝑛 − 𝑘 + 1|𝑎1𝑗
∗ | 

As the operand column. 

Step 2.  Select the column 𝑗2(𝑗2 ≤ 𝑛 − 𝑘 + 1) with  

|𝑎1𝑗2

∗ | =
𝑚𝑎𝑥

1 ≤ 𝑗 ≤ 𝑛 − 𝑘 + 1, 𝑗 ≠ 𝑗1
|𝑎1𝑗

∗ | 

And call it the operator column. If no operator column exists, go to step 4. 

 Step 3. Add an integer multiple of the operator column to the operand column so that the module of the 

first element of the resulting column is strictly less than the module of the first element of the operator 

column.  

Return to step 1.  

 Step 4. Compute  

𝑎𝑗1
∗ = 𝑎𝑗1

∗ + 𝜆𝑗1𝑎𝑛
∗  

Where 𝑎𝑗1
∗  is the column 𝑗1 of the matrix 𝐴∗ and 𝜆𝑗1 so that. 

|𝑎1𝑗
∗ + 𝜆𝑗1𝑎1,𝑛+1

∗ | = 1 

Denote the column 𝑗1 as the operator column. 
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Step 5.  Select any column 𝑗(𝑛 − 𝑘 + 2 ≤ 𝑗 ≤ 𝑛, 𝑗 = 𝑛 + 𝑟 − 𝑘 + 2) with nonzero element 𝑎1𝑗
∗   as the 

operand column. If no operand column exists, go to step 7. 

 Step 6.  Add an integer multiple of the operator column to the operand column so that the first element 

of the resulting column is zero. Return to step 5. 

Step 7.  Compute 

𝑎𝑛+1
∗ = 𝑎𝑛+1

∗ − 𝑠𝑔𝑛(𝑎1𝑗1
∗ )𝑎𝑗1

∗  

Step 8. Expel the first row and the column j1. If k = r, stop. Otherwise, go to next iteration   k=k+1  

The set of the integer solution of the system (1) can be represent in the following form. 

𝑥𝑖 = ∑ 𝑎𝑖𝑗
∗ 𝑡𝑗 + 𝑎𝑖,𝑛+1

∗ , 𝑖 = 1, … , 𝑛,𝑛
𝑗=1                                             (2) 

𝑡𝑗 − 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝑗 = 1, … , 𝑛,                                                               (3) 

𝑡𝑛−𝑟+1 ≥  −𝑎𝑛+1,𝑛+1
∗ ⁄ 𝑎𝑟+1,𝑛−𝑟+1,

∗                                                (4) 

𝑡𝑗 ≥ − (1
𝑎𝑟+𝑗,𝑗

∗⁄ ) (∑ 𝑎𝑟+𝑗,𝑙
∗

𝑗−1

𝑙=𝑛−𝑟+1
𝑡𝑙 + 𝑎𝑟+𝑗,𝑛+1

∗ ) , 𝑗 = 𝑛 − 𝑟 + 2, … , 𝑛 

3. Generating all integer points of a polytope  

Denote by D a feasible set of the following system  

𝑓𝑖(𝑥) ≤ 𝑏𝑖 , 𝑖 = 1, … 𝑚.                                                                   (5) 

Suppose that D is bounded. Then 𝑟𝑎𝑛𝑘 (𝑓1, … , 𝑓𝑚) = 𝑛 < 𝑚. Without loss of generality, we assume that  

(𝑓1, … , 𝑓𝑛) are linear independent. Let the above algorithm be applied to the system.  

𝑓𝑖(𝑥) ≤ 𝑏𝑖,𝑖 = 1, … , 𝑛. 

Then any integer solution of the system (5) is contained in the following set  

𝑥𝑖 = ∑ 𝑎𝑖𝑗
∗𝑛

𝑗=1 𝑡𝑗 + 𝑎𝑖,𝑛+1
∗ , 𝑖 = 1, … 𝑛,                                             (6) 

𝑡𝑗 − 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝑗 = 1, … 𝑛,                                                                (7)  

𝑡1 ≥ −
𝑎𝑛+1,𝑛+1

∗

𝑎𝑛+1,1
∗⁄                                                                  (8) 

                                           𝑡𝑗 ≥ − (1
𝑎𝑛+𝑗,𝑗

∗⁄ ) (∑ 𝑎𝑛+𝑗,𝑙
∗𝑗−1

𝑙=1 𝑡𝑙 + 𝑎𝑛+𝑗,𝑛+1
∗ ), 𝑗 = 2, … , 𝑛.       
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Substituting (6) into 𝑓𝑘(𝑥) ≤ 𝑏𝑘, 𝑘 = 𝑛 + 1, … , 𝑚  yields 

𝑓𝑘
1(𝑡) = ∑ 𝑎𝑘𝑗

1 𝑡𝑗
𝑛
𝑗=1 ≤ 𝑏𝑘

1, 𝑘 = 𝑛 + 1, … , 𝑚.                                (9) 

Therefore, the conditions (6) - (9) define the set of the integer points of the polytope D.  Let 

𝑡1 = [−𝑎𝑛+1,𝑛+1
∗ ⁄ 𝑎𝑛+1,1

∗ ],                                                          (10) 

                                          𝑡𝑗 = ⌈−(1 ⁄ 𝑎𝑛+𝑗,𝑗
∗ )(∑ 𝑎𝑛+𝑗,𝑙

∗ 𝑡1 + 𝑎𝑛+𝑗,𝑛+1
∗𝑗−1

𝑙=1 )⌉, 𝑗 = 2, … , 𝑛, 

(here  ⌈𝑎⌉ represents the smallest integer which is not less than a). 

Substituting from (10) in (8), (9) gives  𝑡∗𝑛 ≤ 𝑡𝑛 ≤ 𝑡𝑛
∗ . 

Hence, any integer 𝑡𝑛 ∈ [𝑡∗𝑛, 𝑡𝑛
∗ ]  which together with (10),(6) define an integer point of D.  

If the interval [𝑡∗𝑛, 𝑡𝑛
∗ ]  is empty, then in (10) we take  

𝑡1 = 𝑡1, . . ,   𝑡𝑛−3 = 𝑡𝑛−3 , 𝑡𝑛−2 = 𝑡𝑛−2 + 1  and repeat this process, e.t.c. 

The following theorem gives a condition for stopping the process of increasing tj. 

Theorem 2.1. Suppose that 

For  𝑡1=𝑡1
∗, … ,     𝑡𝑘 = 𝑡𝑘

∗  𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡 𝑡𝑘+1 = 𝑡𝑘+1
1 , … , 𝑡𝑛 = 𝑡𝑛

1         such that (6) gives a solution to (5)                                                                               

(i) 

 

For      𝑡1=𝑡1
∗, … ,   𝑡𝑘 = 𝑡𝑘

∗ , 𝑡𝑘+1 = 𝑡𝑘+1
1 + 1    the formula does not provide a solution to (5) for any 

𝑡𝑘+2,, … , 𝑡𝑛 .                                                                  (ii) 

Then if 𝑡1=𝑡1
∗, … ,   𝑡𝑘 = 𝑡𝑘

∗ , 𝑡𝑘+1 ≥ 𝑡𝑘+1
1 + 2    the formula (6) also does not provide a solution to (5) for 

any 𝑡𝑘+2,, … , 𝑡𝑛 

Similarly, we can find the integer points of the nonconvex sat D ∩𝑔(𝑥) ≥ 0, where 𝑔(𝑥)is a convex 

function. 

4. Integer programming problem 

Consider the following integer programming problem   

maximize 𝑓𝑜(𝑥)                                                                                      (11) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑓𝑖(𝑥) ≤ 𝑏𝑖, 𝑖 = 1, … , 𝑚.                                                       (12) 
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𝑥 − 𝑖𝑛𝑡𝑒𝑔𝑒𝑟,                                                                                            (13)  

Where 𝑓0(𝑥),   𝑓1(𝑥),…., 𝑓𝑚(𝑥)   are linear functions and 𝑏𝑖 are giver integers. Suppose that the feasible 

set D of (12) is bounded. Then the algorithm for solving the problem (11) – (13) is constructed as 

follows.  

Algorithm 

Step 1.  Let 𝑥∗ be an optimal solution to the problem (11) – (12). If 𝑥∗satisfiles (13) then it is also an 

optimal solution to the problem (11) – (13). Otherwise, go to step 2.  

Step 2. (a) Let I1 ={𝑖
𝑓𝑖(𝑥∗)⁄ = 𝑏𝑖}. Using the algorithm in section 1, we find the set of the integer points 

of the cone 

                    𝑓0(𝑥) ≤ 𝑓0(𝑥∗), 

𝑓𝑖(𝑥) ≤ 𝑏𝑖 , 𝑖 ∈ 𝐼2                                                                                   (14) 

Where 𝐼2 = {𝑖 ∣ 𝑖 ∈ 𝐼1} such that |𝐼2| = 𝑛 − 1  and 𝑟𝑎𝑛𝑘(𝑓0(𝑥), 𝑓𝑖(𝑥), 𝑖 ∈ 𝐼2) = 𝑛. The order of 𝑓𝑖(𝑥) is 

defined so that if 𝑖 < 𝑘 then  ‖𝑓0 − 𝑓𝑖‖ ≤ ‖𝑓0 − 𝑓𝑘‖  .  

(b)  Apply the process in section 2 for finding the first integer point 𝑥0 of the system (14) which satisfies 

the following system 𝑓𝑖(𝑥) ≤ 𝑏𝑖, 𝑖 ∈ {1, … , 𝑚}\𝐼2 

If there exists such integer point 𝑥0, then 𝑥0 is an optimal solution of the problem (11) – (13). 

Otherwise, the problem (11) – (13) has no feasible solutions. 

5. Minimize the concave function on a set of integer points 

Let us now consider the problem 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝜑0(𝑥)                                                                                    (15) 

                   subject to (12), (13),   

Where 𝜑0   is a concave function. Suppose that the objective value 𝜑0(𝑥) is integer for every integer 

point 𝑥 ∈ 𝐷, then the problem (15), (12), (13) can be written as 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑡                                                                                              (16) 

                                  Subject to (12),(13), 

𝜑0(𝑥) − 𝑡 ≤ 0,                                                                                        (17) 

𝑡 − 𝑖𝑛𝑡𝑒𝑔𝑒𝑟                                                                                             (18) 
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Denote 𝑦 = (𝑥, 𝑡), 𝜑𝑖(𝑦) = 𝑓𝑖(𝑥), 𝑔(𝑦) = 𝑡 − 𝜑0(𝑥), 𝑐 = (0, … . ,0,1) we obtain from (16),(12),(13),(18) 

the following problem. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝑐, 𝑦) 

Subject to 𝜑𝑖(𝑦) ≤ 𝑏𝑖, 𝑖 = 1, … , 𝑚, 

𝑔(𝑦) ≥ 0, 

𝑦 − 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 

Which can be apply by the above algorithm. 

We have solved a number of small examples. For some special classes of the problems (11),(12),(13) 

and (15),(12),(13) more extensive testing is currently being undertaken. The field of global optimization 

is a difficult field to perform experimental calculations for large problems. Global optimization on the 

set of integer points is even more difficult. Therefore, the proposed algorithm above is theoretical, 

applicable to small problems, very difficult to apply to large problems, except for some problems with 

special structures. 
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