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Abstract 
 

In this paper we introduce a new variant of station cone algorithm to solve linear programming problems. It uses 
a series of interior points Ok to determine the entering variables. The number of these interior points is finite 
and they move toward the optimal point. At each step, the calculation of new vertex is a simplex pivot. The 
proposed algorithm will be a polynomial time algorithm if the number of points Ok is limited by a polynomial 
function. The second objective of this paper is to carry out experimental calculations and compare with simplex 
methods and dual simplex method. The results show that the number of pivots of the station cone algorithm is 
less than 30 to 50 times that of the dual algorithm. And with the number of variables n and the number of 
constraints m increasing, the number of pivots of the dual algorithm is growing much faster than the number of 
pivots of the station cone algorithm. This conclusion is drawn from the computational experiments with n ≤ 500 
and m ≤ 2000. In particular we also test for cases where n = 2, m = 100 000 and n = 3, m = 200 000. For case 
where n = 2 and m = 100 000, station cone algorithm is given no more than 16 pivots. In case of n = 3, m = 200 
000, station cone algorithm has 23 pivots. The test has confirmed the trend that as the number of variables and 
constraints increases, the number of pivots of the simplex algorithm increases more rapidly than the number of 
pivots of the station cone algorithm. 
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1 Introduction 
 
Linear programming (LP) is considered as one of the greatest inventions of mathematics in the 20th century. 
And there are two mathematicians who are regarded as the founders of the LP: Soviet mathematician Leonid 
Kantorovich (19 January 1912 – 7 April 1986) and American mathematician George Dantzig (November 8, 
1914 – May 13, 2005). 
 
In 1939, for the first time, Leonid Kantorovich studied the problem of planning production. And he came up 
with a mathematical model approach. He set up the mathematical model for the production planning problem 
along with the solution. The Kantorovich work - “Mathematical methods of organizing and planning 
production” [1] is recorded as the original appearance of linear programming. 
 
But the important milestone of linear programming as a new field of mathematics was in 1947, when George 
Dantzig introduced the simplex algorithm. After its discovery by Dantzig in 1947 [2] the simplex method was 
unrivaled, until the late 1980s, for its utility in solving practical linear programming problems. The 
computational experiments show that the simplex method is efficient in practice [3,4,2,5]. Nevertheless, there 
exists a class of linear programming problems for which the simplex method takes an exponential number of 
steps [6]. 
 

In 1979 [7] Khachiyan introduced the ellipsoid method which run in polynomial time (a bound of  5( )O n L  

arithmetic operations on number with ( )O nL digits). Khachiyan's algorithm was of landmark importance for 
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establishing the polynomial time solvability of linear programs. Despite its major theoretical advance, the 
ellipsoid method had little practical impact as the simplex method is more efficient for many classes of linear 
programming problems [8,9]. 
 
In 1984 [10] Kamarkar proposed a new projective method for linear programming problems which not only 
improved Khachiyan's theoretical worst-case polynomial bound but in fact promised dramatically practical 
performance improvement over simplex method.  Karmarkar's algorithm falls within the class of interior point 
methods. In contrast to the simplex method, which finds the optimal solution among the vertices of the feasible 
set, the interior point method moves through the interior of the feasible region and reaches the optimal solution 
only asymptotically. Stimulated by Karmarkar’s algorithm a variety of interior point methods were developed 
for linear programming [11,12]. 
 
There are several important open problems in the theory of linear programming, the solution of which would 
represent fundamental breakthrough in mathematics. In the recent survey on linear programming [13] M.J. Todd 
has mentioned unsolved problems: Is there a polynomial pivot rule for the simplex method? The immense 
efficiency of the simplex method in practice, despite its exponential time theoretical performance, hints that 
there may be variations of simplex algorithm that run in polynomial time. 
 
Therefore, we set ourselves the following 3 purposes: The first purpose is to search the new algorithm more 
efficiently than the simplex algorithm; The second purpose is to find the polynomial pivot rule for the variation 
of simplex algorithm; The third purpose is to conduct experimental calculations to compare the newly found 
algorithm with the simplex algorithm. 
 
In this paper, we present an algorithm, which can be considered a variant of the dual simplex method. In the 
next section, we introduce the station cone concept, which plays a key role in our algorithm. How to select the 
leaving variable is presented in the section 3. In section 4, we show how to choose the entering variable - this is 
an important key to the efficiency of the algorithm. Section 5 devoted to algorithm description. The result of 
experimental calculation is presented in section 6. A few comments are given in section 7. 
 

2 Station Cone 
 
Consider a linear programming problem in the matrix form 
 

 
Max  ,

: ,  0 ,

c x

x P x Ax b x   
    (2.1) 

 

where ,A R ,b R , x R .n nxm m nc R      Let 
1 2, ,..., mA A A denote the row vectors. Through this paper we suppose 

that (2.1) and its dual problem are non-degenerated. We also suggest the feasible region � of (2.1) has strict 
interior points. For simplicity of argument, we assume that the matrix A has full column rank n and n < m. 
 

Let   , ,..., 1,2,...,
1 2

I i i i mn n
 
 
 

   such that the vectors ,  
i n

A i I are linear independent. This means the vector

,  i nA i I establish a basis of ��.Therefore any vector n
lA  can be expressed as a linear combination of the 

vectors ,  
ki k nA i I .  Let 

kli be the linear coefficient of the vector lA  in the basis ,  
ki k nA i I , then 

 

1

,   1,2,..., ,  1,2,..., .
k k

n

lj li i j
k

a a j n l m


  
 

 
Consider the system of homogeneous linear inequalities 
 

0,   . 
ki k nA x i I          (2.2) 

 
Definition 1.  The linear inequality 
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0       lA x   

 
is called the consequent linear inequality of the system (2.2) if and only if all the solutions of the system (2.2) 
satisfy the linear inequality (2.3). 
 
We need the following well known result in theory of linear inequalities.
 
Theorem 2.1. The linear inequality (2.3) is a consequent linear inequality of the system (2.2) if and only if
 

1

 = ,  0,  
k k k

n

l li i li k n
k

A A i I 


 

 
Definition of station cone.   Let polyhedral cone M be defined by system of linear inequalities
 

1 1

2 2

,
 ,                       

....
,

n n

i i

i i

i i

A x b
A x b

A x b





 

 

where 
1 2
, ,...,

ni i iA A A are linear independent. Then M is called a station cone if the vector c is a nonnegative 

linear combination of the vectors 
1 2
, ,..., .i i iA A A

solution and the vectors 
1 2
, ,...,

ni i iA A A

 
Therefore, geometrically it can be seen that all the station cones lie on one side of the objective function 

their vertices (see Fig 1: 1 2 3 4 5, , , ,M M M M M
cones). In other words, the solutions of the system of linear inequalities that create the station cones satisfy the 

inequality *, ,c x c x , whereas x*

inequality *, ,c x c x  is the consequent inequality of the system of the linear inequalities, which formulate 

the station cone. This also means that the vector c is the nonnegative linear combination of the basic vectors of 
the station cone. 
 

Fig. 1. Station and non
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Let polyhedral cone M be defined by system of linear inequalities 

 ,                       

are linear independent. Then M is called a station cone if the vector c is a nonnegative 

1 2
, ,..., .

ni i iA A A  Then the vertex  x  of the station cone M is called a station 

, ,...,
ni i iA A A  is called a basis of a station cone. 

it can be seen that all the station cones lie on one side of the objective function 
1 2 3 4 5, , , ,M M M M M   are station cones and 6 7 8 9, , ,M M M M

cones). In other words, the solutions of the system of linear inequalities that create the station cones satisfy the 

x* is the vertex of the station cones. This is equal to the fact that the 

is the consequent inequality of the system of the linear inequalities, which formulate 

also means that the vector c is the nonnegative linear combination of the basic vectors of 

 
 

Fig. 1. Station and non-station cones 
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           (2.3) 

is called the consequent linear inequality of the system (2.2) if and only if all the solutions of the system (2.2) 

The linear inequality (2.3) is a consequent linear inequality of the system (2.2) if and only if 

are linear independent. Then M is called a station cone if the vector c is a nonnegative 

of the station cone M is called a station 

it can be seen that all the station cones lie on one side of the objective function (c,x) at 
6 7 8 9, , ,M M M M  are not station 

cones). In other words, the solutions of the system of linear inequalities that create the station cones satisfy the 

is the vertex of the station cones. This is equal to the fact that the 

is the consequent inequality of the system of the linear inequalities, which formulate 

also means that the vector c is the nonnegative linear combination of the basic vectors of 
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Theorem2.2.  If the station solution  x  satisfies all the constraints of the problem (2.1) then x   is an optimal 
solution. 
 

3 Leaving Variable 
 
Let 

1 2
, ,...,

ni i iA A A  be the basis of the station cone and 

 

0
1

,
k

n

k i
k

c A


 
 

 

1

,    1,2,... .
k

n

j kj i
k

A A j m


 
 

 

Then from definition 2.1 follows that: 0,   1,2,...ko k n    . 

 

From now on we assume that all ko are strictly positive, i.e. 0 0,  1,2,...,k k n   . 

 

It is obvious that 0 00,  1,2,..., ;  0,  1,...,k kk n k n m       is a basis solution of the dual problem of 

(2.1): 
 

Min  ,

0,

T T

b
A c








           (3.1) 

 

where mR . The assumption 0 0,  1,2,...,k k n    means that the dual problem (3.1) is non-degenerated. 

 
Remark 1. The vertex of the station cone is a basic solution of the dual problem. 
 

4 Pendulum Principle and Entering Variable 
 
We find that, if we connect the vertices of the cones to the center of a circle, the vertices will oscillate around 
the optimal point according to the pendulum principle. Then finally stop at the optimal point. That is one of the 
main ideas of the station cone algorithm. In other words, the pendulum principle is one of the spinal ideas, from 
which the station cone algorithm is formed. 
 

 
 

Fig. 2. Pendulum principle 
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Let us approximate the equator of the earth by a polygon with the edge of 1 meter long. Then this polygon has 
40 millions edges and 40 millions vertices. Suppose we have to find the maximum of a linear function 

1 2xc cx over this polygon. 

 

On Fig. 1, let A denote an optimal point, 1B denote the starting point. Suppose the distance between 1B and � is 
5 million meters. Then the simplex method will produce an optimal solution after 5 million iterations. 
 

Let 1M  be a station cone defined by 2 constraints containing points 1B  and 1D , where 1D  is on the other side 
of � with a distance, for examples, 4 million meters to � (see Fig. 2). 
 

We denote by
1x  the vertex of 1M . Since 1M is a station cone, it is clear that 1 1x ,c cx x M   . The station 

cone 1M will be our starting cone. Starting our algorithm with the operation of connecting 
1x  with O, where O 

is the center of the equator. The segment 1,0x    will intersect with the boundary of P at 2B . Replacing the 

constraint containing 1B by the constraint containing 2B  we have a new cone 2M . Repeat the above procedure 

with 2M  and we have 3M , etc. (see Fig. 1). The replacement of one constraint by another has to follow the 
restriction that the new generating cone is a station cone. We note that at each iteration, the distance between 

two points kB  and kD  defined by two edges of the station cone kM  is reduced by approximately 2 times in 
comparison with the previous iteration. Therefore the number of the iterations T can be estimated by the 
following bound 
 

2log
2

m
T             (4.1) 

 
For our example with m = 40 million the formula (4.1) gives 
 

7
2 2log log 2.10 25

2

m
T    . 

 
The above example shows that our algorithm can produce an optimal solution after around 25 iterations. 
 

4.1 Initial Station Cone 
 
We now proceed to find an initial station cone. We can find an initial station cone M by solving the following 
system 
 

,
    0,

T TA c





          (4.2) 

 

where m . We can suppose 0Tc   because, if some coefficient of 
Tc is negative then we multiply both 

sides of the corresponding equation with -1. To find a solution of (4.2), we solve the following big - M problem 
 

 1 1 2 2 ...
     ,
       0,  0,

n n
T T

Min M y M y M y
A Ey c

y




  
 

 
  (4.3) 

 

Where, , m ny    and E is the unit matrix of ( n n ) and 1 2, ,..., nM M M  are significantly large 

positive numbers. The problem (4.3) has an optimal solution 
* 0, 0.y    and  

 is a solution of (4.2). 
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We also assume that a strict interior feasible solution O of (2.1) is available. If such an initial point is not 
available then we modify the problem using the usual big – M augmentation [14] as follows: 
 

 1

1

1

Max  ,
      ,                    
            , 0.

n

n

n

c x Mx
Ax ex b

x x








 


  (4.4) 

 

Where  1,1,....,1
T me   and M is a significantly large positive number. 

 

Let  0
1 1 2max 0, , ,...,n mx b b b     .Then  0

10,...,0,
T

nx 
 is a strict interior feasible solution of (4.4) which is in 

the same form as (2.1). 
 

4.2 Initial interior point 
 
Let O be a strict interior point of P. Denoted by , 1,2,...,iO i n  the projections of � onto � facets of the station 

cone Mk. Let , 1,2,...,iH i n  be the intersection points of the boundary of 

 

P and the segments , , 1,2,...,iO O i n . Then the new point �∗ will be calculated by the following formula 

 

1

1
*

1

n

i
i

O H O
n 

   
  

                (4.5) 

 

5 Station Cone Algorithm 
 
5.1 Initialization 
 
Determine the starting station cone �. Calculate the point �∗  by formula (4.5). 
 

Let  *;  kM M O O  . 

 

5.2 Step (� = �, �, … ) 
 

If the vertex  �� of the station cone kM is a feasible point of P, then �� is an optimal solution. In the contrary 

case, select the inequality s sA x b  for entering the station cone and define the inequality 
r ri iA x b  for   

leaving the station cone. Determine the new station cone  1kM 
 with the vertex �{���} . Go to next step 

� = � + 1. 
 
Remark 2. Except for the calculation for finding the entering variable, each step of algorithm 1 is a simplex 
pivot. 
 
With the assumption that the dual problem (3.1) of (2.1) is non-degenerated, we hence have the following 
 
Theorem 2.6. 
 
The above algorithm produces an optimal solution after a finite number of iterations. 
 
Proof. Follows from the theorems 2.3,2.4,2.5. 
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6 Computational Experiences 
 
The above proposed station cone algorithm has been tested, using MatLab, on a set of randomly generated linear 
problems [15] of the form 
 

Max  ,  
     ,

c x
Ax b

          (6.1) 

 

where  1,1,...,1 ,nc R  , A is the full matrix of (n x m) with ija is randomly generated from the interval [0,1), 

the vector b has been chosen such that the hyperplanes , ,  1,...,i iA x b i m   are tangent to the sphere (0, 1) 

with center at origin and radius r = 1.To ensure  that (6.1) has a finite optimal solution we add the constraints 
 

 1 ,   1,2,..., .ix i n             (6.2) 

 
The optimal solution and objective function value of ((6.1) - (6.2)) have been retested by simplex algorithm 
from MatLab. 
 
Function Data01. m randomly generates the input data for the problems and stores the matrix A and, vector b in 
the data base form Dat01. mat. Function Alg01. m solves the problem by a new proposed algorithm1 and 
function Simplex01. m itself is the simplex algorithm from the optimization toolbox of MatLab. 
 
Test results are shown in the tables below (SCA: Station Cone Algorithm). 
 

Table 1.  n = 2, 3 and 500 100000m   
 

n m Problem Pivots Ratio 

(SIMPLEX/SCA) SIMPLEX SCA 

2 

 

500 1 257 9 28.5 

1000 1 518 8 64.8 

2000 1 1000 10 100 

3000 1 1540 11 140 

5000 1 2505 13 192.6 

10000 1 4955 14 353.9 

20000 1 9967 14 711.9 

50000 1 25043 15 1669.5 

100000 1 50314 16 3144.6 

3 

 

500 1 44 12 3.6 

1000 1 60 15 4 

2000 1 98 13 7.5 

3000 1 104 18 5.7 

5000 1 149 18 8.2 

10000 1 174 18 9.7 

20000 1 284 17 16.7 

50000 1 423 21 20.1 

100000 1 626 22 28.5 

150000 1 779 18 43.2 

200000 1 912 23 39.7 
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Table 2.  150 300, 200 700n m     
 

n m Problem Pivots Ratio 
(SIMPLEX/SCA) SIMPLEX SCA 

150 200 1 13282 1385  
2 10385 1531  
3 11493 1357  
Average 11720 1424 8.230 

150 250 1 12834 1710  
2 13714 1950  
3 12672 1720  
Average 13073 1793 7.291 

200 300 1 26367 2628  
2 24800 2941  
3 27010 2813  
Average 26059 2794 9.326 

250 300 1 35942 3387  
2 36978 3434  
3 40686 3473  
Average 37869 3473 11.047 

250 500 1 66942 5751  
2 62302 5608  
3 68747 5422  
Average 66003 5593 11.801 

300 600 1 108448 7964 13.6172 
350 700 1 157099 11007 14.2726 

 
Table 3. n = 300, 400, 500; m = 1000,  2000 

 
n m Problem Pivots Ratio 

DUAL SIMPLEX SCA DUAL SIMPLEX/SCA 
300 1000 1 227 215 8 952 26.44 
400 1000 1 388 676 13 266 29.29 
500 1000 1 583 464 21 033 27.74 
100 2000 1 997 853 21 807 45.75 

 

7 Conclusions 
 
7.1 The above tested examples show that the number of pivots of the station cone algorithm is significantly 
smaller than the simplex and dual methods. 
 
7.2 The test has confirmed the trend that as the number of variables and constraints increases, the number of 
pivots of the simplex algorithm increases more rapidly than the number of pivots of the station cone algorithm. 
Therefore, it is necessary to carry out calculations with larger examples. 
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