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Abstract: UAV technology has been applied for DSM generation in open-pit mining of 

which the precision is improved by increasing the number of Ground Control Points 

(GCPs). However, DSMs are updated frequently in an open-pit mine where the surface 

is excavated continuously, making GCPs more challenged to be arranged in the field. An 

optimal number of GCPs should therefore be determined to select the locations of GCPs 

to reduce the risk of destroying them. This study investigates the influence of the numbers 

of GCPs and their network configuration in the Long Son quarry, Vietnam. The analysis 

involved DSMs generated from eight cases with a total of 18 GCPs, each has five 

configurations. The inter-case and intra-case accuracy of DSMs is assessed on RMSEXY, 

RMSEZ, and RMSEXYZ. The results show that, for a small- or medium-sized open-pit mine 

with an area of approximately 36 hectares, five GCPs are sufficient to achieve an overall 

accuracy of less than 10 cm. It is further shown that the optimal choice of the number of 

GCPs for DSM generation in such a mining site is seven due to a significant improvement 

in accuracy (<3.5 cm) and decrease in configuration dependency with respect to five 

GCPs.  
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1. Introduction 

Small and medium-sized open-pit mines such as quarries are often located in areas with 

complicated terrains and a variety of geological conditions. Many of them are high 

limestone mountains with significant changes in terrain elevation, while others are at a 

height of 100 m below the sea level. These lead to challenges for ground surveying using 

the traditional methods because of the limited accessibility in the mining area or even 

inaccessibility in some extreme cases.  

The rapid development of Unmanned Aerial Vehicle (UAV) technologies has 

brought many benefits to the mining industry in terms of safety, precision, and 

productivity. Recently, UAVs have been used extensively in open-pit mining areas for 

numerous applications such as pit and dump management (Padró et al., 2019), stockpile 

management (Raeva et al., 2016), mapping of inaccessible steep inclines and cliffs 

(Fernández-Lozano et al., 2018), monitoring the dust particles (Alvarado et al., 2015), 

assessment of slope stability and mine subsidence (Ge et al., 2016), monitoring and 

analyzing subsurface heating (Malos et al., 2013), geological modelling (Szentpeteri et 

al., 2016) along with other applications involving assets and infrastructure 

management/inspections and as-built versus as-designed comparison. A detailed 

overview of the possible applications in the open-pit mining industry using different 

sensors attached to the UAVs is well documented in Ren et al. (2017). 

Most of the applications mentioned above require a precise high-resolution DSM. 

There have been several studies on the generation of DSMs using UAVs for mining sites 

(e.g., Cryderman et al., 2014; Francioni et al., 2015; Shahbazi et al., 2015; Kršák et al., 

2016; Szentpeteri et al., 2016; Bui et al., 2017; Esposito et al., 2017; Kovanič  et al., 2017; 

Beretta et al., 2018; Forlani et al., 2018; Nguyen et al., 2019). Open-pit mining involves 

continuous excavation over time, and hence, surveying needs to be done at regular 

intervals. UAV-based surveying alone is not much advantageous until it is attached to 

precise ground control points (GCPs). This is because the in-built GNSS in low-cost and 

lightweight UAVs do not meet the accuracy requirement. Canh et al. (2020) have shown 

that with direct georeferencing of imagery data captured using light-weight UAV with 

onboard RTK positioning (DJI Phantom 4 RTK), it is not possible to obtain even the 

decimeter-level accurate DSM in complex mining terrains, such as ours. Some studies 

have also suggested the use of a few GCPs to achieve certain accuracy level as 

compared to GCP based geo-referencing or indirect geo-referencing, and more 

importantly, to prevent the biases in focal length within the self-camera-calibration 

technique (Mian et al., 2015; Hugenholtz et al., 2016; Gianfranco et al., 2018). However, 
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obtaining the vertical accuracy well within 5 cm with the direct georeferencing in light-

weight UAVs is still challenging, especially for the open-pit mines. Thus, it becomes 

inevitable for indirect georeferencing of the collected UAV data sets using precise GCPs 

acquired using a dual-frequency GNSS receiver.  

The accuracy achieved in the indirect georeferencing is dependent on the 

characteristics of GCPs, including the measurement precision and the distribution (i.e., 

the number of points and their spatial distribution) (James et al., 2017 a, b). It is a well-

established fact that a higher number of uniformly distributed GCPs will reduce the errors 

in georeferencing, and thus increase the accuracy of the generated DSM (James et al., 

2017b). However, one of the most important factors to introduce the UAV to the mining 

sector was to reduce the cost and increase the productivity and safety. This aims at 

choosing the optimal number of required GCPs, that is the minimal sufficient in number 

and also convenient to be organised in the field (their distribution), for our case an open-

pit mine. 

There have been several studies to analyse the effect of the number and distribution 

of GCPs to construct a precise DSM (e.g., Mancini et al., 2013; Tahar, 2013; Tonkin and 

Midgley, 2016; Agüera-Vega et al., 2017; Conveney and Roberts, 2017; Rangel et al., 

2018). However, only a few studies have been applied to open-pit mines and relatively 

less for small to medium-sized open-pit mines. It becomes a challenging task, especially 

for small to medium-sized open-pit mines, because of the smaller site area and large 

undulations/depths. Shahbazi et al. (2015) analysed the number and distribution of GCPs 

for DSM generation in an open-pit mine using UAV. They conducted experiments with six 

different sets of which only one set consists of 22 GCPs and all the others have 3 GCPs. 

The authors recommended using a large number of well-distributed GCPs to achieve the 

highest precision. Villanueva and Blanco (2019) used four different distribution patterns 

of data sets that consist of 4, 6, 8, 12, 16, and 20 GCPs to analyse the effect of the 

number and distribution of GCPs for the stockpile measurement. No other study in the 

literature can be found by the authors discussing in detail the effect of the number and 

distribution of GCPs in DSM construction of small to medium-sized open-pit mines using 

light-weight UAVs. 

In this paper, through rigorous experiments, we focus on delivering a detailed 

discussion on the optimal choice of the number of GCPs to achieve the most precise 

DSM in small to medium-sized open-pit mines. This is optimized in such a way that, given 

fewer GPSs are required, the locations of stable GCPs’ monuments can be arranged 

more easily. This study is important because of the similar mining practiced in several 
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parts of the world, and extensively in Vietnam. The study focuses on the Long Son quarry 

that is of a typical configuration in its size, height difference, and surface roughness. 

Therefore, the results investigated from this study can be of assistance in designing 

networks of GCPs used for UAV-based topographical mapping in similar small- or 

medium-sized quarries in Vietnam. 

2. Study area and materials 

2.1. Study area 

In this study, the experiments are conducted in the Long Son limestone quarry 

located in Thanh Hoa province in northern Vietnam, between latitudes 20°04′00″N and 

20°05′30″N and longitudes 105°55′15″E and 105°56′00″E (Figure 1). The total area of this 

mine is approximate 1.0 km2 with an exploitation reserve of 4.0 million tons per year. Like 

many other quarries in Vietnam, topographical characteristics of this quarry include 

benches, the toe of the benches, and steep slopes. At the time of the study, the mine was 

at the excavating level of 110 m. The maximum terrain difference is about 112 m, the 

average height of benches is 41 m, and the steepest slope is approximately 88 degree. 

 

Figure 1. Location and Digital Elevation Model of the study site. 

2.2. Data collection 

For UAV survey, a DJI Phantom 4 Pro equipping with a 20-megapixel red, green, 

and blue camera and a GNSS/IMU is employed. The camera’s focal length is 8.8 mm, 
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and the size of the sensor is 13.2 mm width by 8.8 mm height (https://www.dxomark.com). 

The UAV is a commercial light-weight quadcopter with manual or automatic flight modes 

set in Android or IOS smartphone applications. In this study, Pix4Dcapture installed on 

an iPhone 7 plus is used for flight planning. In the automatic mode, several important 

parameters are uploaded to the UAV, including a mapping area of 36 hectares, a flight 

height of 200 m above the ground, as well as image forward and side-overlap of 80%. 

Also, a GNSS/IMU mounted on the UAV allows positioning each camera with an average 

precision of 2.5 m. The positioning information of cameras is stored in each image’s file 

and is used for processing imagery to obtain photogrammetric products. The imagery 

acquisition was completed with 80 photos and the ground sample distances (GSD) 

ranging between 4.66 and 7.58 cm/pixel. 

Field reconnaissance is conducted using a handheld GPS (Mapinr v3.8 installed in 

a smartphone) to select relatively safe areas for establishing the 18 GCPs while 

maintaining a nearly uniform distribution. In order to easily detect the GCPs in the 

acquired images, they are marked with a 60 cm x 60 cm highly reflective material on the 

ground (Figure 2) for enhancing the contrast. The coordinates of the centre point of these 

GCPs are measured in the Vietnam national control network (the VN2000 coordinate 

system) using the GNSS/RTK method. The base receiver is installed at one control point 

of the national control network established in the local area. The CHC X91B receivers 

produced by CHCNAV were used for GNSS measurement. The specification of these 

receivers is shown in Table 1. 

 

 

 

 

Figure 2. GCP marks and their coordinates measured by GNSS/RTK. 

 

Table 1. The specifications of CHC X91B. 

CHC X91 GNSS Receiver 
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Signal 

GPS: L1, L2, L5;  

GLONASS: L1, L2; 

BDS: B1, B2, B3; 

SBAS: WAAS, EGNOS, 

MSAS 

Kinematic 

Horizontal:  + (10mm + 1ppm) RMS 

Vertical:  + (20mm + 1ppm) RMS 

Static 

Horizontal: + (5mm + 1ppm) RMS 

Vertical:  +(10mm + 1ppm) RMS 

 

3. Methodology 

3.1. Experiment organisation 

To analyse the effect of the number of GCPs and their distribution on the accuracy of a 

DSM, we test with five different configurations of eight sets of GCP networks, i.e., a total 

of 40 DSMs are generated. The eight sets of 18 GCPs include networks of 3-15, 4-14, 5-

13, 6-12, 7-11, 8-10, 15-3, and 16-2 points, in which the first number represents the 

number of GCPs used for calibration of the camera-lens model and the second number 

represents the total number of GCPs used for the assessment of the constructed DSM. 

The five different configurations for each of the eight cases are depicted in Section 4 (see 

Table 4 and Table 5).  

3.2. Software and image processing 

The aerial photos collected during the flights are processed using the Agisoft Metashape 

Professional software (https://www.agisoft.com/). The process includes two main stages, 

which are block orientation and DSM generation. Since the main objective of this study is 

to analyse the influence of the number of GCPs on the accuracy of the DSM, all 

parameters of the processing are kept unchanged. Specifically, both the accuracy of 

photo alignment and the quality of building dense cloud were set to medium. While the 

former controlled the accuracy of the camera position estimation, the latter specified the 

desired reconstruction quality. In addition, the higher the value of the two parameters, the 

more accurate and comparatively detailed geometry are achieved, but it requires a 

substantially longer processing time. Although the level of accuracy and detail would 

https://www.agisoft.com/
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reduce with the setting of ‘medium’, it does not make any change on the effect of GCPs. 

The processing workflow is shown in Figure 3. 

 

 

Figure 3. Data processing workflow for each case of the study by Agisoft Metashape (Forlani et al., 2018).  

 

3.3. Accuracy assessment 

The accuracy of the constructed DSMs is assessed using Root Mean Square Error 

(RMSE) in the horizontal (𝑅𝑀𝑆𝐸𝑋𝑌) (Equation (1)), vertical (𝑅𝑀𝑆𝐸𝑍) (Equation (2)), and 

overall components (𝑅𝑀𝑆𝐸𝑋𝑌𝑍) (Equation (3)), individually for all the 40 DSMs. This is a 

frequently used method for assessing multiple DSMs in the literature (e.g., Agüera-Vega 

et al., 2017). The RMSEs for the three components are computed as: 

𝑅𝑀𝑆𝐸𝑋𝑌 = √(
1

𝑛
) ∑[(XDSM−XGCP𝑖

)2 + (YDSM−YGCP𝑖
)2]

𝑛

𝑖=1

 (1)  

𝑅𝑀𝑆𝐸𝑍 = √(
1

𝑛
) ∑(ZDSM−ZGCP𝑖

)2

𝑛

𝑖=1

 (2) 

𝑅𝑀𝑆𝐸𝑋𝑌𝑍 = √(
1

𝑛
) ∑(XDSM−XGCP𝑖

)2 + (YDSM−YGCP𝑖
)2 + (ZDSM−ZGCP𝑖

)
2

𝑛

𝑖=1

 (3) 

where, 𝑛 is the total number of check points, ( ), ,GCP GCP GCPX Y Z  and ( ), ,DSM DSM DSMX Y Z  are 

the 3D coordinates of a given point obtained using GNSS survey and corresponding 
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coordinates on the generated DSM, respectively. Hereafter, this is referred as inter-case 

assessment. 

An intra-case assessment is also performed for all the eight cases. To observe the 

influence of the different configurations of the same number of GCPs on the DSM 

generation, i.e. the extent and variability of errors, the range of RMSEs in all the 

components (horizontal, vertical, and overall) for five configurations of the eight cases 

each are computed using equations (4-6). 

𝑅𝑀𝑆𝐸𝑋𝑌= 𝑅𝑀𝑆𝐸𝑋𝑌_𝑚𝑎𝑥-𝑅𝑀𝑆𝐸𝑋𝑌_𝑚𝑖𝑛 (4) 

𝑅𝑀𝑆𝐸𝑍= 𝑅𝑀𝑆𝐸𝑍_𝑚𝑎𝑥-𝑅𝑀𝑆𝐸𝑍_𝑚𝑖𝑛 (5) 

𝑅𝑀𝑆𝐸𝑋𝑌𝑍= 𝑅𝑀𝑆𝐸𝑋𝑌𝑍_𝑚𝑎𝑥-𝑅𝑀𝑆𝐸𝑋𝑌𝑍_𝑚𝑖𝑛 (6) 

 

4. Results and discussions 

The result of the block orientation in terms of camera locations and image residuals 

are shown in Figures 4a and 4b, respectively. The internal and external orientation 

parameters of the camera are also determined that comprises 13 parameters. The 

definition of these 13 parameters are listed in Table 2 while Table 3 depicts their values.  

 

(a) 

 

(b) 

Figure 4 (a) Camera locations and image overlap; (b) image residuals (for Case 2 and 

produced by Agisoft Metashape). 

Table 2. Camera-lens parameters 

No Parameter Explanation 

1 f Focal length (in pixels) 

2 Cx, Cy 
Principal point offset of the image in x and y image 
coordinates (in pixels) 

3 B1, B2 Affinity and skew coefficients (in pixels) 
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4 K1, K2, K3, K4 
Radial distortion coefficient of 2nd, 4th, 6th, 8th-order, 
respectively (dimensionless) 

5 P1, P2, P3, P4 Tangential distortion coefficient (dimensionless) 

Table 3. Camera-lens calibrated coefficient (for Case 2) 

No Parameter Value Error 

1 f 3870.71 0.38 

2 Cx 5.08145 0.019 

3 Cy -1.54674 0.016 

4 B1 -12.6349 0.03 

5 B2 -17.4018 0.026 

6 K1 0.006692 0.000059 

7 K2 -0.05837 0.00031 

8 K3 0.119846 0.00065 

9 K4 -0.08103 0.00047 

10 P1 0.000889 1.4E-06 

11 P2 -0.0012 9.5E-07 

12 P3 0.652888 0.014 

13 P4 -0.43653 0.013 

 

The results of the accuracy assessment for cases one and two are depicted in Table 

4 and Figure 5, while for all the other cases, they are depicted in Table 5 and Figure 7. 

The results in Figure 5 are for the configurations with minimum  𝑅𝑀𝑆𝐸𝑋𝑌𝑍 among all the 

five configurations for cases one and two. The results in Figure 7 are for the configurations 

with maximum 𝑅𝑀𝑆𝐸𝑋𝑌𝑍 among all the five configurations for cases three to eight. 

Table 4. The accuracy of the model in case 1 and case 2. 

Case 1: (3-15) 

Control points 𝑅𝑀𝑆𝐸𝑋𝑌 (m) 𝑅𝑀𝑆𝐸𝑍 (m) 𝑅𝑀𝑆𝐸𝑋𝑌𝑍 (m) 

8; 13; 18 0.671 1.874 1.990 

8; 13; 21 0.764 2.233 2.360 

9; 16; 24 0.673 1.624 1.758 

9; 13; 23 0.809 2.204 2.348 

12; 17; 20 0.463 1.761 1.821 

Case 2: (4-14) 

Control points 𝑅𝑀𝑆𝐸𝑋𝑌 (m) 𝑅𝑀𝑆𝐸𝑍 (m) 𝑅𝑀𝑆𝐸𝑋𝑌𝑍 (m) 

8; 12; 15; 25 0.174 0.227 0.286 

9; 11; 16; 23 0.234 0.390 0.455 

9; 13; 16; 24 0.276 0.374 0.465 

11; 14; 18; 22 0.298 0.124 0.323 

12; 14; 17; 25 0.144 0.135 0.198 
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Figure 5. GCP locations and error estimates (a) – case 1 and (b) – case 2. 

From Table 4, the large values of RMSEs for case 1 shows that a built model using 

only 3 GCPs presents a sensitively inferior DSM in terms of reliability. Moreover, the 

larger range values for case 1 suggest that the accuracy of a DSM is significantly 

dependent on the configuration if very few GCPs are used. A drop of maximum 𝑅𝑀𝑆𝐸𝑋𝑌𝑍 

of 2.36 m for case 1 to a maximum 𝑅𝑀𝑆𝐸𝑋𝑌𝑍 of 0.46 m for case 2 is attributable to the 

addition of one more GCP for DSM construction. The dependence of errors on the 

configuration can be observed in Table 6, where we have provided the range of RMSEs 

of the five configurations in all eight cases.  

 

(a) 
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(b) 

Figure 6. Differences between DSMs generated in cases of using (a) 3 GCPs; (b) 4 

GCPs and all GCPs 

In order to illustrate the influence of GCPs on the accuracy of DSMs, the pixel-wise 

difference maps were created (Figures 6a and 6b) between the pairs of DSMs from cases 

1 and 2, and an ideal case using all 18 GCPs. Figures 6a and 6b suggests that the uniform 

distribution of the GCPs should not be done only in horizontal plane but the vertical 

uniformity is also required for GCPs placement. If the GCPs are only in low-lying areas, 

then the accuracy cannot be expected/obtained in the high-lying areas and vice-versa. 

Hence, vertical distribution must be strictly followed for a high-undulating terrain like open-

pit mines, where we have a large range of heights. The effect of considering the vertical 

distribution is exemplified in figure 6a versus 6b. Furthermore, the relatively lower error in 

interpolation as compared to larger errors in extrapolation are also observed in both 

figures 6a and 6b. 

Though an idea of the increase in accuracy by increasing GCPs is depicted from 

cases 1 and 2 in Table 4, we do not recommend the use of either three or four GCPs for 

DSM generation. This is because they do not meet the accuracy required for a mining 

project and more importantly, with the use of a fewer GCPs the DSM accuracy is highly 

susceptible to the different configurations of the GCPs even if they are distributed 

uniformly (Tables 4 and 6). Hence, DSMs generated using very few GCPs are uncertain 

and inconsistent. 

Table 5. The accuracy of the model in cases 3, 4, 5, 6, 7, and 8. 

Case 3: (5 control points and 13 check points) 

Control points 𝑅𝑀𝑆𝐸𝑋𝑌 (m) 𝑅𝑀𝑆𝐸𝑍 (m) 𝑅𝑀𝑆𝐸𝑋𝑌𝑍 (m) 
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8-12-15-22-26 0.035 0.048 0.059 

8-12-16-23-26 0.034 0.052 0.062 

8-13-15-21-25 0.051 0.075 0.090 

9-12-15-21-25 0.062 0.078 0.099 

9-12-17-23-25 0.051 0.054 0.074 

Average 0.047 0.061 0.076 

Case 4: (6 control points and 12 check points) 

Control points 𝑅𝑀𝑆𝐸𝑋𝑌 (m) 𝑅𝑀𝑆𝐸𝑍 (m) 𝑅𝑀𝑆𝐸𝑋𝑌𝑍 (m) 

8-12-14-16-22-26 0.034 0.027 0.043 

8-12-16-18-22-26 0.018 0.032 0.037 

9-11-13-15-23-25 0.025 0.060 0.065 

9-12-15-22-24-26 0.040 0.044 0.059 

13-14-16-20-21-25 0.024 0.041 0.047 

Average 0.028 0.040 0.050 

Case 5: (7 control points and 11 check points) 

Control points 𝑅𝑀𝑆𝐸𝑋𝑌 (m) 𝑅𝑀𝑆𝐸𝑍 (m) 𝑅𝑀𝑆𝐸𝑋𝑌𝑍 (m) 

8-11-13-16-18-22-26 0.019 0.014 0.024 

8-12-15-16-19-21-23 0.019 0.039 0.043 

9-12-15-16-21-24-26 0.023 0.033 0.040 

11-13-16-19-20-23-25 0.022 0.021 0.030 

12-14-15-16-20-23-25 0.029 0.027 0.040 

Average 0.022 0.026 0.035 

Case 6: (8 control points and 10 check points) 

Control points 𝑅𝑀𝑆𝐸𝑋𝑌 (m) 𝑅𝑀𝑆𝐸𝑍 (m) 𝑅𝑀𝑆𝐸𝑋𝑌𝑍 (m) 

8-11-13-14-16-18-22-26 0.018 0.022 0.028 

8-12-15-16-19-21-23-26 0.026 0.015 0.041 

9-11-13-15-16-17-23-26 0.032 0.020 0.038 

11-12-14-15-16-20-23-25 0.018 0.027 0.032 

11-13-14-16-18-20-22-25 0.020 0.023 0.029 

Average 0.023 0.021 0.033 

Case 7: (15 control points and 3 check points) 

Checked points 𝑅𝑀𝑆𝐸𝑋𝑌 (m) 𝑅𝑀𝑆𝐸𝑍 (m) 𝑅𝑀𝑆𝐸𝑋𝑌𝑍 (m) 

9-12-18 0.013 0.009 0.016 

11-15-25 0.009 0.020 0.022 

13-14-26 0.019 0.024 0.031 

14-17-20 0.020 0.019 0.028 

16-19-23 0.022 0.026 0.034 

Average 0.017 0.019 0.026 

Case 8: (16 control points and 2 check points) 

Checked points 𝑅𝑀𝑆𝐸𝑋𝑌 (m) 𝑅𝑀𝑆𝐸𝑍 (m) 𝑅𝑀𝑆𝐸𝑋𝑌𝑍 (m) 

9-21 0.015 0.015 0.022 

11-23 0.007 0.028 0.029 

16-26 0.018 0.024 0.031 
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17-20 0.011 0.018 0.022 

12-24 0.009 0.019 0.021 

Average 0.012 0.020 0.025 

 

From Table 5 and Table 6, the same set of observations is found for the other cases, 

i.e., with the GSD of images ranging from 4.66 cm/pixel to 7.58 cm/pixel the increase in 

the number of GCPs, i) the accuracy of a DSM improves and ii) the dependence on the 

configuration of GCPs decreases. The minimum 𝑅𝑀𝑆𝐸𝑋𝑌𝑍 for case 3 and case 8 are 0.059 

m and 0.021 m, respectively. It is observed from Table 5 that the average 𝑅𝑀𝑆𝐸𝑋𝑌 and 

average 𝑅𝑀𝑆𝐸𝑍 are improved from 0.047 m and 0.061 m for case 3 to 0.012 m and 0.020 

m for case 8, respectively. Considering Table 4 to Table 6, a drastic improvement is 

observed in the accuracy of a DSM when the number of GCPs increases from 3 to 4 and 

from 4 to 5, respectively. Comparatively less significant improvement occurred when 

GCPs are increased from 5 to 6 and further to 7. Although case 3 with 5 GCPs is sufficient 

for our purpose, a 2-cm improvement in the height accuracy is observed with 6 GCPs. 

So, we suggest using 6 GCPs for a DSM generation of small to medium-sized open-pit 

mines, with areas up to 36 hectares with some cautions on the configuration. However, 

as a factor of safety, 7 GCPs is highly recommended as it has sub-centimetre 

dependence on the network configuration, with the condition of uniform distribution. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

 

(e) 
 

(f) 

Figure 7. GCP locations and error estimates (a) case 3, (b) case 4, (c) case 5, (d) case 6, (e) case 7, and 

(f) case 8. 

The color of the error ellipses in Figure 5 and Figure 7 indicates the error in the Z 

component of the GCPs, while the ellipse shape represents the error in the X and Y 

components. Table 6 represents differences between the max and min RMSEs in five 

configurations for all the eight cases  hence, depicting the spread of the error for different 

configurations of a given number of GCPs. 

Table 6. Differences between the max and min RMSEs in five configurations for all the eight cases. 

Case 
∆𝑅𝑀𝑆𝐸𝑋𝑌 

(m) 

∆𝑅𝑀𝑆𝐸𝑍 

(m) 

∆𝑅𝑀𝑆𝐸𝑋𝑌𝑍 

(m) 

1 0.346 0.609 0.602 

2 0.154 0.266 0.267 

3 0.028 0.030 0.040 

4 0.022 0.033 0.028 

5 0.010 0.025 0.019 
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6 0.014 0.012 0.013 

7 0.013 0.017 0.018 

8 0.011 0.013 0.010 

5. Conclusion 

In this study, a detailed investigation has been conducted on the influence of the 

number of GCPs and their network configurations on the quality of DSM generated using 

the UAV-based method over small quarries. A lightweight DJI Phantom 4 Pro UAV was 

used to generate 40 DSMs of the Long Son quarry in Thanh Hoa province, Vietnam. The 

analysis was carried out on five configurations of each of the eight combinations of 18 

GCPs for DSM generation and accuracy assessment. 

It is concluded from experiments that with the increase in the number of GCPs, the 

accuracy of DSMs increases and the dependence on the network configuration 

decreases. However, a precise DSM is required at regular intervals of time in a mining 

project for various applications and, therefore, we tried to find an optimal solution for small 

to medium-sized open-pit mines. This included finding the optimal number of GCPs to 

obtain sufficiently accurate DSMs while maintaining safety, time, and cost effectiveness. 

The results showed that to achieve an average accuracy well within 10 cm, five GCPs 

are sufficient and six GCPs to obtain the accuracy up to 5 cm. However, we strongly 

recommend using seven GCPs as it provided an average overall accuracy within 3.5 cm 

with vertical accuracy being 2.6 cm. Moreover, with a delta RMSE of all the components 

within 1.8 cm, it can be concluded that using seven GCPs decreases the dependency on 

network configuration. However, the condition of uniform distribution of the GCPs must 

be maintained. 

We acknowledge that the accuracy of DSM will also be dependent on the flight 

height of UAVs. However, it has not been involved in our analysis. With this study we tried 

to fill a possibly literature gap on the influence of the number of GCPs on DSM generation 

of the small to medium-sized open-pit mines using lightweight UAVs. Working and 

presenting the results from open-pit mines, UAV-based survey seems to be a valid and 

an efficient approach for mapping in the rugged topographies, and thus, further 

applications in the mining industry.  

Acknowledgements 

This work was financially supported by the Ministry of Education and Training (MOET) in 

Vietnam under grant number B2020-MDA-14. 



16 
 

Data Availability Statement 

Some or all data, models, or codes that support the findings of this study are available 

from the corresponding authors upon reasonable request. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. James, M.R., et al., Optimising UAV topographic surveys processed with structure-

from-motion: Ground control quality, quantity and bundle adjustment. 

Geomorphology, 2017. 280: p. 51-66. 

2. James, M.R., et al., 3‐D uncertainty‐based topographic change detection with 

structure‐from‐motion photogrammetry: precision maps for ground control and 

directly georeferenced surveys. Earth Surface Processes and Landforms, 2017. 

42(12): p. 1769-1788. 

3. Padró, J.-C., et al., Monitoring opencast mine restorations using Unmanned Aerial 

System (UAS) imagery. Science of the Total Environment, 2019. 657: p. 1602-1614. 

4. Raeva, P., S. Filipova, and D. Filipov, Volume computation of a stockpile-a study 

case comparing GPS and UAV measurements in an open pit quarry. International 

Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 

2016. 41. 

5. Fernández-Lozano, J., et al., New perspectives for UAV-based modelling the Roman 

gold mining infrastructure in NW Spain. Minerals, 2018. 8(11): p. 518. 

6. Alvarado, M., et al., Towards the development of a low cost airborne sensing system 

to monitor dust particles after blasting at open-pit mine sites. Sensors, 2015. 15(8): 

p. 19667-19687. 

7. Ge, L., X. Li, and A.H.-M. Ng. UAV for mining applications: A case study at an 

open-cut mine and a longwall mine in New South Wales, Australia. in 2016 IEEE 

International Geoscience and Remote Sensing Symposium (IGARSS). 2016. IEEE. 

8. Malos, J., et al., Remote monitoring of subsurface heatings in opencut coal mines. 

2013. 

9. Szentpeteri, K., T. Setiawan, and A. Ismanto, Drones (UAVs) in mining and 

Exploration. An application example: Pit Mapping and Geological Modelling. 

Unconventional Exploration Target & new tools in mineral and coal exploration, 

2016: p. 45-49. 

10. Ren, Z., et al., Fast 3‐D large‐scale gravity and magnetic modeling using 

unstructured grids and an adaptive multilevel fast multipole method. Journal of 

Geophysical Research: Solid Earth, 2017. 122(1): p. 79-109. 

11. Beretta, F., et al., Topographic modelling using UAVs compared with traditional 

survey methods in mining. REM-International Engineering Journal, 2018. 71(3): p. 

463-470. 

12. Bui, D.T., et al. Lightweight unmanned aerial vehicle and structure-from-motion 

photogrammetry for generating digital surface model for open-pit coal mine area 

and its accuracy assessment. in International Conference on Geo-Spatial 

Technologies and Earth Resources. 2017. Springer. 



17 
 

13. Cryderman, C., S.B. Mah, and A. Shufletoski, Evaluation of UAV photogrammetric 

accuracy for mapping and earthworks computations. Geomatica, 2014. 68(4): p. 

309-317. 

14. Esposito, G., et al., Application of UAV photogrammetry for the multi-temporal 

estimation of surface extent and volumetric excavation in the Sa Pigada Bianca 

open-pit mine, Sardinia, Italy. Environmental Earth Sciences, 2017. 76(3): p. 103. 

15. Forlani, G., et al., Quality assessment of DSMs produced from UAV flights 

georeferenced with on-board RTK positioning. Remote Sensing, 2018. 10(2): p. 

311. 

16. Francioni, M., et al., An integrated remote sensing-GIS approach for the analysis 

of an open pit in the Carrara marble district, Italy: Slope stability assessment 

through kinematic and numerical methods. Computers and Geotechnics, 2015. 67: 

p. 46-63. 

17. Kovanič, Ľ., et al., Surveying of Open Pit Mine Using Low-Cost Aerial 

Photogrammetry, in The Rise of Big Spatial Data. 2017, Springer. p. 121-129. 

18. Kršák, B., et al., Use of low-cost UAV photogrammetry to analyze the accuracy of 

a digital elevation model in a case study. Measurement, 2016. 91: p. 276-287. 

19. Nguyen, Q.L., et al., An approach of mapping quarries in Vietnam using low-cost 

Unmanned Aerial Vehicles. Inżynieria Mineralna, 2019. 21. 

20. Shahbazi, M., et al., Development and evaluation of a UAV-photogrammetry system 

for precise 3D environmental modeling. Sensors, 2015. 15(11): p. 27493-27524. 

21. Canh, L.V., et al., Experimental Investigation on the Performance of DJI Phantom 

4 RTK in the PPK Mode for 3D Mapping Open - Pit Mines. Journal of the Polish 

Mineral Engineering Society, 2020. 1(2): p. 65-74. 

22. Hugenholtz, C., et al., Spatial Accuracy of UAV-Derived Orthoimagery and 

Topography: Comparing Photogrammetric Models Processed with Direct Geo-

Referencing and Ground Control Points. Geomatica, 2016. 70(1): p. 21-30. 

23. Mian, O., et al., Direct georeferencing on small unmanned aerial platforms for 

improved reliability and accuracy of mapping without the need for ground control 

points. The International Archives of Photogrammetry, Remote Sensing and Spatial 

Information Sciences, 2015. XL(1/W4): p. 397-402. 

24. Agüera-Vega, F., F. Carvajal-Ramírez, and P. Martínez-Carricondo, Accuracy of 

digital surface models and orthophotos derived from unmanned aerial vehicle 

photogrammetry. Journal of Surveying Engineering, 2017. 143(2): p. 04016025. 

25. Coveney, S. and K. Roberts, Lightweight UAV digital elevation models and 

orthoimagery for environmental applications: data accuracy evaluation and 

potential for river flood risk modelling. International journal of remote sensing, 

2017. 38(8-10): p. 3159-3180. 

26. Mancini, F., et al., Using unmanned aerial vehicles (UAV) for high-resolution 

reconstruction of topography: The structure from motion approach on coastal 

environments. Remote sensing, 2013. 5(12): p. 6880-6898. 

27. Rangel, J.M.G., G.R. Gonçalves, and J.A. Pérez, The impact of number and spatial 

distribution of GCPs on the positional accuracy of geospatial products derived from 

low-cost UASs. International journal of remote sensing, 2018. 39(21): p. 7154-7171. 

28. Tahar, K., An evaluation on different number of ground control points in unmanned 

aerial vehicle photogrammetric block. ISPAr, 2013: p. 93-98. 

29. Tonkin, T.N. and N.G. Midgley, Ground-control networks for image based surface 

reconstruction: An investigation of optimum survey designs using UAV derived 



18 
 

imagery and structure-from-motion photogrammetry. Remote Sensing, 2016. 8(9): 

p. 786. 

30. Villanueva, J. and A. Blanco, Optimization of ground control point (GCP) 

configuration for unmanned aerial vehicle (UAV) survey using structure from 

motion (SfM). International Archives of the Photogrammetry, Remote Sensing and 

Spatial Information Sciences, 2019. 42(4/W12). 


