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Abstract

Computing—in—-memory (CIM) is a promising approach to
reduce latency and improve the energy efficiency of
(MAC)
memory-wall constraint for artificial intelligence (AD edge

multiply—and-accumulate operation under a
processors. This design presents an energy-—efficient
static random access memory (SRAM) — CIM unit-macro
using: 1) a 10T bit-cell SRAM array stores multiple—bit
filter weight; 2) a multiple—bit MAC operation scheme with
up to 4b input, 4b weight, and 8b output precision for CNN
applications; 3) a successive approximation analog to
digital converter (SAR-ADC) within cell array to reduce
area overhead and power consumption.

[. INTRODUCTION

(DNN's)
breakthroughs in a wide variety of artificial intelligence

Deep neural networks have achieved
(AD) and machine learning (ML) applications, including
image classification [1], speech recognition [2], and facial
recognition [3]. While DNN promises significant benefits
for the “Internet of Thing” (IoT) devices, it also has
The

accelerators run the computing algorithms that must be

specific requirements. DNN  processors and
energy efficient to extend the battery life of these loT
devices.

Convolutional neural networks (CNNs) provide state of
the art results in a wide variety of AI/ML applications,
image classification [1] to speech

ranging from

recognition [2]. However, the conventional all-digital
implementation of CNNs [4]-[6] has shown that energy
consumption and delays are dominated by the frequent
movement of input data, weights, and intermediate data
between the processor and memory. This issue is referred

to as the von Neumann bottleneck or memory wall.

Multiply-and-accumulate (MAC) operations are essential
to CNN accelerators.
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Figure 1. Conceptual of SRAM-CIM for DNN processors.

Computing-in-Memory (CIM) methods [7]-[10] have
been developed to reduce the energy consumption of CNN
processors by enabling parallel data processing within
memory, as shown in Fig. 1. Rather than accessing raw
data row by row in each column (as in conventional
memory), CIM allows the execution of MAC operations in
multiple rows simultaneously. This property significantly
reduces the amount of intermediate data that is generated
and facilitates highly parallel computation. Up to this point,
some silicon verified SRAM-based CIM devices had been
reported, including an error—adaptive binarized classifier
for Mixed National Institute of Standards and Technology
(MNIST) dataset [7], a Conv—=RAM for binary weight and
6-bit input/output neural networks [8], a Xcell-RAM for
binary neural networks [9], and an XNOR-SRAM for
binary/ternary DNNs [10]. These SRAM-CIM works have
demonstrated various benefits of CIM in terms of
functionality and improved energy efficiency. However,
advanced Al edge processors require multibit input (IN),
weight (W), and output (OUT) for CNN MAC operations to
achieve an inference accuracy that is sufficient for
practical applications.
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Figure 2. The overall structure of the proposed 10T SRAM-CIM unit-macro.

In this design, we proposed a configurable 10T SRAM-
CIM unit—macro with 4-bit inputs, 4-bit weights, and 8-bit
outputs for various multibit CNN applications. A 2-Kb 10T
SRAM-CIM unit-macro was designed for prototyping.

II. DESIGN

2.1 Macro Architecture

Fig. 2 presents the structure of the proposed 10T
SRAM-CIM unit—-macro. It consists of 128 rows x 16
columns of 10T SRAM bit-cells separated into two MAC
block (MACB), column-wise digital to analog converter
(DAC), read word-line (RWL) pulse generator, two ADC
blocks (ADCB) and digital logic blocks. Each MACB is
divided into two local MAC block storing 4b-weights
Wi,j[3:0] (2b MSB Wi,j[3:2] is stored in LMAC_MSB and
2b LSB Wi,j[1:0] is stored in LMAC_LSB) in the same
row—column position. Each LMAC block comprises 16
column-wise multiplication units (CMUs). Each CMU has
16 10T pair cells and one accumulation and reference cell
(ARC), which supports two multiplication channels for 2b-
input and 2b-weight in each channel.

The 10T SRAM CIM unit-macro can be operated in two
modes: SRAM mode and CIM mode. In SRAM mode, the
stored weights are accessed using a standard read/write
peripheral circuit via a single active word-line. In CIM

mode, each CMU computes input-weight-product (IWP)
between an activated pair 2b weights and 2b inputs on two
channels simultaneously, and then 16 column-wise
multiply results are accumulated through ARC to generate
two analog voltage (VA) outputs in each LMAC block.
Consequently, VA outputs are sent to ADCB and then
digital logic block for weight combination to obtain 8b
outputs MAC. The proposed 10T SRAM-CIM unit-macro
supports two parallel multibit MAC operations on two

MACBs.

2.2 Cell Design

We use a 10T-SRAM cell as the basic memory unit. Two
10T-SRAM cells form a pair: the most-significant 10T
(M10T) and the least—significant 10T (L10T), as shown in
Fig. 3. Each 10T-SRAM cell contains the basic 6T-cell as
the storage unit, along with transistors NO-N1 and N2-N3,
forming the differential read ports, respectively. The
overhead area ratio compared with the 6T bit-cell is 1.52.
In the SRAM mode, the 10T-SRAM cell works functionally
similar to the standard 67T cell through the ports
(WWLw/WLLL, BL, BLB). In the CIM mode, a 4b-input
(IN[3:0]) is split into two groups and applied to DACs to
pre—charge RBLam (IN[3:2]) and RBLL (IN[1:0]). Each
RBLM/RBLL uses four voltage levels to represent a 2b-—
input. The read current (Irc) on two read bit-lines
(RBLM/RBLL) is proportional to the multiplication between
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the number of RWLM/RWL:. pulse and 2-bit weight
(W[1:0]) stored in 10T pair cell. As a result, the output
voltage on each RBLM/RBLL represents the IWP of 2b-
input and 2b-weight IWPreLm = IN[3:2] x W[1:0], IWPrBLL
=IN[1:0] x W[1:0D.
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Figure 3. Schematic of 10T SRAM bit-cell.

2.3 Current Steering DAC

During the first phase of the multibit MAC operation, the
4=bit inputs (IN[3:0]) are split into two groups and
converted to the analog voltage on global read bit-line
GRBLwM and GRBLL corresponding to IN[3:2] and IN[1:0]
using current steering DAC. Fig. 4 shows the schematic of
the proposed current steering DAC. It consists of two
groups of binary-weighted current sources using cascode
pMOS stack biased The
GRBLM/GRBLL voltage level is proportional to the digital
input applied to its column.

in the saturation region.

2.4 Multiply—and—-Accumulate (MAC) Scheme

Fig. 5 shows the detailed circuit for the multiplication of
4b inputs and the 4b weights stored in the array. After
completing the first phase, local RBLW/RBLL is pre-
charged through GRBLM/GRBLL to an analog voltage
proportional with 4b input. The second phase starts by
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Figure 4. Schematic of the current steering DAC.
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Figure 5. Multibit MAC Scheme.
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activating RWLM/RWLL appropriated with the selective
row. The multibit weights realized by the number of RWL
pulses. After multiplying 2b input and 2b weight on the
RBLM/RBLL, the results are accumulated and generate four
analog voltage outputs VALL, VALm, VAumL, and VA, The
output VArLL represents S(INi[1:0] x Wp,i[1:0]), VALu
represents S(Ni[1:0] x Wp,i[3:2]), VAmL represents
S(INi[3:2] x Wp,i[1:0]), and VAwm represents S(INi[3:2]
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Figure 6. Architecture for the SAR ADC for one local array of the SRAM-CIM.

x Wp,i[3:2]). These outputs are sent to ADCB and then
shift register and adder block to obtain the final 8b MAC
output representing S(Ni[3:0] x Wp,i[3:0]).

2.5 Successive Approximation ADC

The last phase of the multibit MAC operation is the
analog—to—digital conversion with 4b outputs resolution.
This phase is done in parallel for all LMAC blocks,
producing outputs corresponding to different filters
simultaneously. Fig. 6 shows the proposed SAR ADC
architecture correlated to each LMAC block. It comprises
three main parts: two comparators for two-channel
outputs from ARC block, a digital control block, and a
capacitive DAC using the inherent capacitance of 16
BL/BLB pairs in the local array. Utilizing the distributed
intrinsic BL/BLB capacitance for this architecture is the
essential technique to reduce the overhead area problem
of SAR ADR. The comparator has two standard StrongARM
latches using nMOS and pMOS devices for the input
differential pair, respectively. The digital control block
generates timing signals  (BITL[3:0], BITwm[3:0],
AVGL/AVGu, RAVGL/RAVGw) to perform the binary search
algorithm on two channels VREFm and VREFL, starting
from the MSB to the LSB. Once this is done, the conversion
is complete, and two 4-bit outputs are available for two
channels, MACum[3:0] and MACL[3:0], respectively. It
takes 4 ADC clock cycles to complete the conversion of

4-bit output resolution.

Figure 7. Test-chip layout.

[II. RESULTS

The 2-Kb 10T SRAM-CIM was implemented in a 180-
nm CMOS logic process. The chip photo and summary are
presented in Fig. 7 and Table I, respectively.

IV. CONCLUSIONS

A 10T SRAM-CIM unit—-macro to support multibit MAC
operation for CNNs has been presented. The proposed
SRAM-CIM unit-macro includes 10T SRAM array, a
current steering DAC, a multibit MAC operation scheme
with up to 4b input, 4b weight, and 8b output precision for
CNN applications, and a successive approximation ADC. A
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128x16 SRAM-CIM unit—-macro was designed and shown
a prospect result with 1.28 GOPS throughput, and energy
efficiency of 0.496 TOPS/W.

TABLE I
TEST-CHIP SUMMARY
Technology 180-nm
Unit-macro size 2Kb
Bit-cell 10T
Bit-cell size 1.48um x 7.19um
Input precision (bit) 4
Weight precision (bit) 4
Output precision (bit) 8
Main Clock 20 MHz
ADC Clock 160 MHz
Throughput (GOPS) 1.28
Energy Efficiency
(TOPS/W) 0496
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