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Foreword

Remote sensing (RS) has emerged as an important technique and tool that blends
developments in computer science and Geographical Information System (GIS) for
analyzing the various dimensions of the environment and adheres to its applications in
almost every field. Remote sensing being cost and time effective is helpful in analyzing
the temporal and spatial pattern of natural resources and distribution of population. The
multispectral remote sensing datasets have provided effective assessment of natural
resources and their management. These datasets are also promising in determining the
population pattern, urban sprawl, and changes in land use/land cover. RS and GIScience
have been proved effective tools for the scientific community to analyze spatial
phenomena on Earth and consequently for policy formulation globally. However,
certain challenges in handling large datasets and complex data formats still remain.

This book provides a comprehensive compilation of the use of remote sensing and
GIS for different applications. Agriculture productivity, air pollution, habitat suitability
mapping, assessment of vegetation vigor, as well as various data sets and their applica-
tions in assessment of natural resources, mapping the population pattern, and land
use/land cover will help the readers to obtain insightful information about the complex-
ity and challenges in their assessment. This book provides imperative assessment based
on remote sensing technique for measuring the spatio-temporal variability of population,
dynamics of land use, natural resources, and their sustainable management. I believe this
work will help different stakeholders to understand different aspects of remote sensing
along with the application of GIScience for various applications.

I congratulate the editors, the contributors’ from different parts of the country,
and the publisher for bringing out a timely publication depicting challenges and
future directions in remote sensing and GIScience and hope that this important book
shall serve as a reference for different institutions working in this area.

Vice-Chancellor, Rani Lakshmi Bai
Central Agricultural University, Jhansi,
Uttar Pradesh, India

Prof. Arvind Kumar
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General



Introduction to Challenges and Future
Directions in Remote Sensing and GIScience

Raihan Ahmed, Pavan Kumar , and Meenu Rani

Abstract This book provides an overview of remote sensing and GIScience (GIS)
and their challenges and future directions. Modern technology like remote sensing
and GIS with timely and accurate information helps to monitor and analyze a wide
range of phenomena like water, vegetation, land, and human activities. Inter-
disciplinary studies are also noticed in human–environment interaction between
stakeholders and decision makers for real world applications. Remote sensing data
products and their limitations are also discussed in the book. To overcome this
situation, artificial intelligence (AI), along with cloud computing and big data
analytics, is the need of the hour. Decision support system based on the AI in remote
sensing and GIS is key to the implementation of decision-making and planning in a
sustainable manner. The book is segregated into 5 parts spreading over 15 chapters.
Part I discusses the challenges and future direction of remote sensing and GIS in
various fields. Chapters 2–5 in the second part are devoted to challenges in sustain-
able natural resources management. Various applications of remote sensing and GIS
in urban growth management are presented in Chapters 6–9 of Part III. In Part IV,
challenges and future directions in GIS have been discuss in Chapters 10–14 through
GIS modeling. Part V devoted to one chapter deals with the GIS revolution in
science and society.
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Development of remote sensing and GIScience (GIS) is crucial for scientific explo-
ration of the earth’s system, such as hydrosphere, lithosphere and biosphere. The
phenomenon of the earth’s system such as natural and human-induced has much
significance in today’s world. Remote sensing and GIS are modern technologies
with timely and accurate information. Information access through these technologies
helps to monitor and analyze a wide range of phenomena like water, vegetation,
land, and human activities. It also helps to explore the potential natural resources for
human use. Therefore, it is being used widely in various disciplines and multi-
disciplinary subject areas for decision-making and problem-solving processes.

The human–environment interaction (HEI) plays a key role in the dynamics of
global environmental system. HEI analysis uses disparate datasets for every partic-
ular study. However, there are some similarities between methods and techniques in
remote sensing and GIS practitioners. It creates an inter-disciplinary study in HEI
and collaboration between authors of various disciplines. Increased collaboration
beyond academics is also seen nowadays by stakeholders and decision makers for
real world applications. Remote sensing and GIS provide information through data
mining and processing. Therefore, ground reference data inclusion in remote sensing
and GIS are crucial for the relevance of every study.

In the era of industrialization and climate change, HEI deteriorates the earth’s
biosphere and its carbon and hydrological cycles. To overcome this problem, a large
amount of data and processing power is required along with the decision-making
system. This is the main challenge for remote sensing and GIS, which have large
spectrum of data with various limitations. Remote sensing data products are avail-
able with various spatial, spectral, and temporal resolutions. Therefore, studies use
site-specific data products to fulfill the need of the specific study. For example,
temporal changes in urban land use need high spatial, which requires large storage of
data with specific time interval. Therefore, storage as well as processing need time
for this kind of research. Some studies need spectral resolution for identifying the
objects. Hyperspectral remote sensing data products with high spectral resolution
have provided satisfactory results for this kind of research.

Promising solutions for these challenges can be obtained with the help of cloud
computing and big data analytics. It is obvious that artificial intelligence (AI), along
with cloud computing and big data analytics, is the future of remote sensing and GIS.
Decision support system based on AI in remote sensing and GIS is the key to the
implementation of decision-making and planning in a sustainable manner. Visuali-
zation of spatial data in GIS is a way forward to achieve planning and decision-
making for stakeholders. It helps decision makers to take action based on the data
visualization through GIS, e.g., natural hazards, urban planning, environmental
management, and crime. Prediction and modeling of natural hazards are extremely
difficult in the real world due to its complex nature. Till date, there is no such method
to predict the results with zero uncertainty. AI has achieved the deal with precision
modeling for complex problems of the earth’s system. It can analyze the different
aspects with sufficient detail and iteration for a complex problem.

Google Earth Engine is a platform based on cloud computing to analyze the
geospatial data. It has massive computational capabilities to analyze a large amount
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of spatial data in a short time period. The advantage of this platform is to analyze
spatial data without storing them in personal computers. Therefore, it helps to
process large scale studies such as those at regional and country levels with efficient
results. An attempt has been made in this book by the contributors to evaluate the
efficiency of remote sensing and GIS techniques through various studies. Chapters in
this volume have been grouped into five parts: General, Challenges in Sustainable
Natural Resources Management, Remote Sensing and GIScience in Urban Growth
Management, Challenges and Future Directions in GIScience, and GIScience for
Revolution in Science and Society. Part I deals with the usefulness of remote sensing
and GIS in various field of study. It covers the applicability of remote sensing and
GIS in HEI, natural hazards, and environmental management. The future of remote
sensing and GIS in the light of AI, cloud computing, and big data analytics is also
focused on in this part.

Part II deals with the Challenges in Sustainable Natural Resources Management.
It comprises four chapters concentrating on flood, vegetation, landslide, and glacier
retreat and their direct and indirect impact on natural resources. In chapter “Environ
mental and Livelihood Impact Assessment of 2013 Flash Flood in Alakananda and
Mandakini River Valley, Uttarakhand (India) Using Environmental Evaluation
System and Geospatial Techniques,” Tripathi et al. made an attempt for environ-
mental and livelihood impact assessment of 2013 disastrous flood in Mandakini
valley. They used Landsat data product for preparing land use land cover (LULC)
maps and the statistical changes were estimated in the respective LULC classes. The
results showed significant changes in terms of LULC dynamics in the whole region.
In chapter “Assessment of Vegetation Vigor Using Integrated Synthetic Aperture
Radars,” Sinha assessed the vegetation using Integrated Synthetic Aperture Radars
(SAR). In the study, the author uses SAR data to estimate forest biomass. Study
shows a suitable approach in assessing vegetation vigor from above ground biomass
through SAR. In the chapter “Landslide Susceptibility Mapping using Bivariate
Frequency Ratio Model and Geospatial Techniques: A Case from Karbi Anglong
West District in ASSAM, India,” Ahmed et al. made an attempt to prepare an
inventory map of landslide susceptibility using geospatial technology and bivariate
frequency ratio model for Karbi Anglong West district. The study revealed that
frequency ratio model along with geospatial technique helped not only in identifying
landslide prone areas but also proved to be instrumental in examining level of
susceptibility. In the chapter “Retreating Glacier Dynamics Over the Last Quarter
of a Century at Uttarakhand Region Using optical Sensors Time Series Data,” Kalita
et al. examined the retreating glacier dynamics over the last quarter of a century in
Uttarakhand. In their study, they used optical remote sensing data products for
examining the changes from 1994 to 2015 and changes detected for snow and
vegetation were 1377 km2 and 896 km2, respectively. The study results showed
the actual determination of glacier dynamics and its kinetic of change rate and how
climate is impacting over snow and ice resources.

Part III deals with the Remote Sensing and GIScience in Urban Growth Manage-
ment. It contains four chapters focusing on the impact of urbanization on agriculture,
impervious built-up, building subsidence, and LULC for land resource development.
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In the chapter “Studying the Impact of Urbanization on HYV Rice Fields at a Local
Level Using Fine Resolution Temporal RISAT-1 Datasets,” Roychowdhury and
Bhanja assessed the Impact of urbanization on High Yielding Variety (HYV) rice
fields at a local level. Their study estimates the HYV rice fields vulnerable to
conversion due to non-farm uses around sprawling urban settlements. In the chapter
“Identification of Impervious Built-Up Surface Features Using Resources at 2 LISS-
III Based Novel Optical Built-Up Index,” Santra et al. tried to identify the impervi-
ous built-up surface through built-up index. In their study, they used several built-up
indices for comparison. Their newly developed Impervious Built-up Index shows
the maximum accuracy, i.e., 92.33%. In the chapter “Subsidence Assessment of
Building Blocks in Hanoi Urban Area from 2011 to 2014 Using TerraSAR-X and
COSMO-SkyMed Images and PSInSAR,” Anh et al. assessed building subsidence
in Hanoi urban area from 2011 to 2014 by high resolution radar satellite images.
Their results revealed that high precision leveling is the key to assess the accuracy of
subsidence determination of buildings. In the chapter “Analysis of Land Use/Land
Cover Mapping for Sustainable Land Resources Development of Hisar District,
Haryana, India,” Rani et al. mapped the LULC for sustainable land resource
development in Hisar district. They used IRS/LANDSAT data products to analyze
various land resource constraints by taking collateral information on soil types,
groundwater quality, and depth along with geomorphological constraints.

Part IV deals with the challenges and future directions in GIScience. The part
consists of five chapters concentrating on solar energy potential, rice growth stage
mapping, habitat suitability mapping, air pollution modeling, and agricultural pro-
ductivity mapping. In the chapter “A Spatial Investigation of the Feasibility of Solar
Resource Energy Potential in Planning the Solar Cities of INDIA,” Roychowdhury
and Bhanja investigated the feasibility of solar resource energy potential in planning
the solar cities of India. Their study focused on identifying solar hotspots of India
and how the spatial distribution of solar energy resources accentuate or hinder the
performance of the solar cities. The study also conducted a techno-economic feasi-
bility using solar resource datasets derived from high resolution satellites. In the
chapter “Mapping Rice Growth Stages Employing MODIS NDVI and ALOS
AVNIR-2,” Panuju et al. mapped rice growth stages using MODIS NDVI and
ALOS AVNIR-2. They used time-series NDVI for growth-stage indication and
five classifiers for mapping the growth stages. The study revealed the efficiency of
neural network and support vector machine in mapping growth stages. In the chapter
“Habitat Suitability Mapping of Sloth Bear (Melursusursinus) in the Sariska Tiger
Reserve (India) Using a GIS-Based Fuzzy Analytical Hierarchy Process,” Jain et al.
mapped the habitat suitability of the sloth bear (Melursusursinus) in the Sariska
Tiger Reserve (India) using a GIS-based fuzzy analytical hierarchy process. Nine
parameters have been used for assessing sloth bear habitat suitability in the study.
Their suitability classes were validated through zonal statistics of beat wise habitat
intensity data of sloth bear in the Reserve. In the chapter “Estimation of Air Pollution
Using Regression Modelling Approach for Mumbai Region Maharashtra, India,”
Kumari et al. estimated air pollution using regression model for Mumbai. The study
was an integrated approach to attain the spatio-temporal attributes of air pollution
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index of particulate matter (PM10 and PM2.5) and trace gas (O3, NO2, and CO)
pollutants in Mumbai. They used spatial variation of API for different air pollutants
to simulate the Inverse Distance Weighted method of interpolation. In the chapter
“Mapping of Agriculture Productivity Variability for the SAARC Nations in
Response to Climate Change Scenario for the Year 2050,” Singh et al. mapped the
agriculture productivity variability for the SAARC nations in response to climate
change scenario for the year 2050. They assessed the impacts of climate change on
agriculture productivity net primary productivity using Joint UK Land Environment
Simulator. Results of the study revealed a slight decrease in productivity with spatial
variability across the SAARC nations.

Part V deals with the GIScience for Revolution in Science and Society. It
comprises one chapter focused on the revolution of GIS in science and society for
solving the future challenges in spatial information. In the chapter “Future Direction
of GIScience for Revolution in Science and Society Over the Past Twenty Years,”
Lal et al. emphasized the need of GIS in society for problem-solving with the help of
spatial data and modeling as GIS plays a vital role in monitoring the physical
characteristics of the earth’s surface over decades. The advancement of GIS tech-
nologies, specifically in GIS geomorphologic mapping, has provided us with core
data of landform development, including those due to geophysical or climatic events
such as earthquake, volcanic eruption, landslides, and cyclone.

Introduction to Challenges and Future Directions in Remote Sensing and GIScience 7



Part II
Challenges in Sustainable Natural

Resources Management



Environmental and Livelihood Impact
Assessment of 2013 Flash Flood
in Alakananda and Mandakini River
Valley, Uttarakhand (India), Using
Environmental Evaluation System
and Geospatial Techniques

Shruti Tripathi, G. Areendran, N. C. Gupta, Krishna Raj, and
Mehebub Sahana

Abstract India has been historically susceptible to natural disasters due to its
unique geo-climatic conditions in which the Himalayan ecosystem is very fragile
and a little disturbance can cause harmful effects. The present work is an attempt to
assess the environmental and livelihood impact of the 2013 flood in Mandakini
valley, Uttarakhand (India), using geospatial techniques and an environmental
evaluation system. The land use land cover (LULC) maps for the years 2011,
2014, and 2017 (Alaknanda basin) and 1997, 2011, and 2017 (Mandakini basin)
were prepared using Landsat satellite imageries, and the statistical changes were
estimated in the respective LULC classes derived. The results showed significant
changes in terms of LULC dynamics in the whole region. Further, to analyze
changes in vegetation cover in the region, Normalized Difference Vegetation
Index was calculated, depicting the overall decrease in vegetation cover. By using
Battelle Columbus method of environmental evaluation system, the impact of the
flood on ecological and cultural aesthetics and human interests, with and without the
disaster is also derived. A questionnaire-based survey was conducted in Gaurikund
and Kedarnath to assess the repercussions of the flood on the livelihoods of inhab-
itants. It showed that the stoppage of tourism-based livelihood activities, which were
critical to the local people, deems it necessary to map the footprint of the flood on
livelihood generation activities. The overall result of this study is that there are
significant impacts of flood on both the environment and people residing in the
region, and anthropogenic activities were major contributors to the catastrophe. The
major outcomes of this analysis will help in creating the baseline data for major
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disastrous studies in India and also support sustainable management strategies in
response to these extreme events.

Keywords Mandakini valley · Geospatial techniques · LULC · Livelihood
framework · NDVI · Battelle Columbus method

1 Introduction

India is highly prone to floods, droughts, cyclones, and earthquakes. The frequency
of avalanches, forest fire, and landslides is high in the Himalayan region of northern
India (Sahana and Sajjad 2017; Sahana et al. 2018; Khatun et al. 2018; Areendran
et al. 2020). In India, 25 out of 36 states/union territories are more vulnerable to
natural calamities. Around 50 million people in the country are affected by one or the
other disaster every year on an average, besides the loss of property worth several
million (Sharma 2005). The Himalayan region is seismically and tectonically active,
geologically unstable, remotely located and ecologically most fragile (Sati 2008). In
successive years, the same area encounters one or more disasters. Many people live
in these disaster-prone areas and generate a livelihood from available natural
resources (Sahana and Sajjad 2019). The World Bank has stated that a large number
of people who come under the extremely poor section live on “insubstantial” lands,
including forest ecosystems, slopes, and poor soils (World Bank 2003, p. xvi).
Around 240 million people live in forested areas, constituting 18.5% of the 1.3
billion people living in environmentally fragile lands (World Bank 2003, p. 60). If all
these natural disasters could be predicted and prevented with a state of preparedness
and ability to respond quickly to the calamity, it can considerably cut or mitigate the
loss of life and property.

In June 2013, heavy rainfall triggered flash flooding and landslides throughout
the Indian Himalayan state of Uttarakhand, which killed more than 6000 people. The
destruction and fatalities resulted directly from a lake outburst and debris flow
originating from above the village of Kedarnath (Allen et al. 2016). The heavy
downpour (>400 mm) created a huge flash flood causing damage to agricultural
fields, settlements, and infrastructure and loss of human and animal lives, and
widespread devastation of natural resources in different parts of the state
(Uttarakhand). Around 100,000 pilgrims and tourists were stuck because of the
destruction of trekking routes and roads until civic and military authorities arrived
and evacuated them (Martha et al. 2015; Sharma and Tyagi 2013). There were two
landslides that occurred in Kedarnath on the 16th of (month?), one in the North East
and the other in the North West, both originating around the glacier. Debris flow was
initiated by the landslide in the North East that ran down en-route. In the North West,
conditions are very different. Landslides and moraines left by retreating glaciers
blocked drainage and allowed the formation of a pool that overtopped the moraine
barrier and led to a catastrophic breach (Sahana and Sajjad 2017). This released high
volumes of water downstream in the low-lying area, causing a flash flood (Patley
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2013). The reason for maximum devastation in Kedarnath valley was the breach of
the moraine-dammed Chorabari Lake that was situated 1.5 km above Kedarnath
town from where the unconsolidated moraine debris was deposited and breached
down to the town. Landslides due to floods damaged several houses and killed many
people who were trapped in these structures. Entire villages and settlements such as
Gaurikund and the market town of Rambada got damaged, while the market town of
Sonprayag suffered heavy damage and loss of lives (Indian Disaster Report 2013).
The total roof area in Kedarnath before the disaster was 37,299 m2 (259 structures),
44.2% of which were completely destroyed and 26.7% were partly damaged,
representing 138 and 56 structures, respectively. Around 26.9% of the roof area of
partly destroyed structures was gone. Only the Kedarnath temple emerged as an
unharmed structure in this disaster (Das et al. 2015).

The study of the socio-economic impact of the disaster consists of both qualitative
and quantitative approaches. Quantitative household questionnaires and qualitative
key informant’s interviews were used to collect data. Among all-natural disasters,
floods are the most frequent and 33 million people were affected by floods from
1953 to 2000 (Syyed et al. 2013; Mohapatra and Singh 2003). A study was
conducted by Belaid (2003) to show urban-rural land use change using remote
sensing and GIS and concluded that these technologies together with secondary
data can be used to assist decision-makers to prepare future plans in order to find out
the appropriate solution to urbanization (Syyed et al. 2013). Four hundred and eighty
people inhabit Kedarnath during the summer months and also from neighboring
towns. People come every year in search of livelihood and leave during the winters
like the rest of the residents. Roughly, around 5000 people arrive and leave daily
during pilgrimage time. People who live in the town earn through tourist-related
activities during yatra time. This is also because of the harsh winter season (https://
www.yatra.com/india-tourism/Kedarnath/people). In 2012, the number of pilgrims
reached a high of 259,900 (by a tour of India) and they provide a variety of income-
generating sources. People have been engaged in tourism-based activities for gen-
erations. So, this flood had snatched their main income-generating source for almost
2–3 years. Many researchers tried to map the impact of the flood on livelihood in
other disasters like Pakistan which faced a tragic flood in 2010 that affected more
than 20.1 million people in the whole country (Ashraf et al. 2013). Ashraf et al. in
2013 conducted a study in southern Punjab to explore the effect of floods on food
security and the livelihood of rural communities. Results revealed that flood affected
the natural capitals (land, irrigation, orchards, and livestock) pushing the income-
generating sources into darkness. Flood becomes a hazard only where human
encroachment occurs in flood-prone areas (Smith and Ward 1998; Sahana et al.
2015; Sahana and Patel 2019). A study that was undertaken in Scotland suggests that
social impacts are linked to the level of wellbeing of individuals, communities, and
societies. It also includes aspects that are related to education and literacy, the
existence of security and peace, basic human rights, good governance, positive
traditional value, social equity, custom and ideological belief, knowledge structure,
and overall organization systems. Some groups are more vulnerable to floods than
others like the poor and under-privileged (Nott 2006). Poor people are more
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vulnerable to disasters because they lack physical, social, and knowledge-based
resources to respond to and prepare for threats. Because they are poor, they are
more vulnerable, and hence are at greater risk in the face of hazard, leading to
disasters (Das et al. 2005; Rehman et al. 2019; Bjarstig and Stens 2018). The loss in
case of flooding has many dimensions; in addition to economic loss and loss of life
or injury, there may be irreversible loss of land and of history of cultural ecological
valuables (Muis et al. 2015). Among natural hazards, flooding claimed more lives
than any other single hazard from 1986 to 1995. Flooding accounted for 31% of
global economic losses from natural catastrophes and 55% causalities (De Bruin
et al. 2014).

These conditions lead to food insecurities and food deficits as people use con-
taminated commodities, especially water (Sahana et al. 2020). So, taking all this into
consideration, this paper’s major focus is on the impact of the flood on the environ-
ment and livelihood of the people involved in Kedarnath yatra every year. Other
papers tried to discover the reason for the floods and damage caused. It is very
important to map the footprint of the flood on livelihoods. It will help policymakers
and institutions help these vulnerable people and make their livelihood sustainable.

2 Study Area

Uttarakhand is predominantly a hill state, having international boundaries with
China in the north and Nepal in the east. The Himalayan region in Uttarakhand
(~53,483 km2) lies between Kali Ganga (bordering with Nepal) and Tons-Yamuna
(bordering with Himachal Pradesh). Around 10% of the total area of Uttarakhand is
covered by snow, ice, and glaciers. These are the perennial source of water for four
major river systems, viz. Yamuna, Bhagirathi, Alaknanda, and Kali (Singh and
Rawat 2011; Dobhal et al. 2013). In Uttarakhand, 4 districts were majorly affected
by the flood in which Rudraprayag district saw greater loss in terms of lives and
property (NIDM Report 2013). Many lost their family members, houses, jobs,
shelter, and so on. In this study, Mandakini valley was selected to understand the
effects of the disaster. Figure 1 shows the study site.

Alaknanda basin is located at 30.1333� latitude and 78.6029� longitude. Its main
tributaries are Mandakini, Nandakini, and Pinder and considered to rise at the foot of
the Satopath glacier in Uttarakhand (Sati 2009). The Alaknanda river basin is
sandwiched between the crystalline? of lesser and higher Himalayas. It is character-
ized by high-grade metamorphic rocks of higher Himalayan crystalline in the north
and lesser Himalayan sequence in the south (Metcalfe 1993; Valdiya et al. 2000;
Valdiya 1995). High mountainous ranges in the northern part, particularly in the
north eastern and north western part of the watersheds, are covered with snow-fields
or glaciers. The rivers of Alaknanda basin are perennial, since runoff in these rivers
is controlled by both precipitation and glacial melt (Sati 2009).

River Mandakini, the main river of the Alaknanda basin and valley, is a major
tributary of River Alaknanda and originates from the Chorabari Glacier, situated just
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2 km above Shri Kedarnath shrine. The Shri Kedarnath town is situated in the
Central Himalayas (30� 440 6.700 N; 79� 040 100E) in the Mandakini River valley.
The catchment area is situated in the glacier-modified U-shaped valley; the altitude
ranges from 1700 m asl to 6578 m asl. Such a variation in the altitude provides
various landscapes. BhartKhunta (6578 m), Kedarnath (6940 m), Mahalaya peak
(5970 m), and Hanuman top (5320 m) are major peaks in the area. The climate of the
region largely depends on altitude as elevation ranges between 1600 m and 6500 m
asl. Winter is from mid-October to April. The slope of the study area lies between
30 and 60� and toward the South East aspect. The alpine habitat usually starts at
timberline and is characterized by the complete absence of trees. The soil in
Kedarnath valley is dark brown on the surface and yellowish-brown below (Singh
et al. 1986). Floristic composition shows mixed forests of rhododendron,
Quercusleuco trichophora (Banj), Quercus floribunda (Moru), and Quercusseme
carpifolia (Kharsu), Buxus wallichiana (papri), Acer spp. (Kaijal), Betula alnoides
(Katbhuj), and Alnus nepalensis (Utis) up to an elevation and the rest are alpine
pastures. This area has traditionally occupied an important position in the socio-
cultural, spiritual, and medicinal arena of rural and tribal lives of Uttarakhand
(Rawat 2016). According to the report of Climate Himalaya on plausible reasons
for this flood, the root of the disaster is in the Chorabari Glacier located in Mandakini
valley. This is why Mandakini valley was chosen as the study area to access
environmental damage and its impact on the livelihoods of inhabitants.

Fig. 1 Location map of Alaknanda and Mandakini basin and the GPS points collected during the
field survey

Environmental and Livelihood Impact Assessment of 2013 Flash Flood in. . . 15



3 Material and Methodology

3.1 Data Collection

Materials that were used during the study are various websites from the internet like
Earth Explorer, Bhuvan, and Diva GIS; GIS software like ERDAS Imagine and
Arcmap10; national and international journals, a questionnaire for the assessment of
damage and pre-disaster livelihood options. Satellite images used in this study are
mentioned in Table 1.

3.2 Data Collection for the Survey

Field survey was conducted to assess the impact of the flood on socio-economic
parameters of the valley’s residents. For that purpose, livelihood’s 5 capitals were
studied, i.e., physical, natural, financial, health, and social capitals. Sample data were
collected through the questionnaire-based survey in Gaurikund village, en-route to
Kedarnath temple and in Kedarnathghati. Figure 1 shows the GPS points that
were selected by random selection method to select the interviewees. It was learned
that, in Mandakini valley, en-route Kedarnath temple, many people earn their
livelihood from various food stalls or carrying people to the temple using horses
and on their back. Figure 2 shows various types of livelihoods in which inhabitants
are engaged in.

Table. 1 Satellite images
used in this study

S. no. Name of satellite Year Resolution

For Alaknanda basin
1. Landsat 5 January 2011 30 m

2. Landsat 8 January 2014 30 m

3. Landsat 8 January 2017 30 m

For Mandakini basin
1. Landsat 5 January, 1997 30 m

2. Landsat 5 January 2011 30 m

3. Landsat 8 June 2013 30 m

4. Landsat 8 January 2014 30 m

5. Landsat 8 January 2017 30 m

For rainfall
1. TRMM (Netcdf) 2001–2016 (June) 0.25�
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3.3 Analysis of the Satellite Images for Impacts of Flood

3.3.1 Image Acquisition

Satellite images that were used in this study are mentioned in Table 1. These images
were downloaded from USGS Earth Explorer official site and Bhuvan. These
imageries are freely available on the mentioned portals.

3.3.2 Georectification

The topographical maps were georectified by selecting ground control points
throughout the area projected in the projection system geographic (Lat/long) with
spheroid and datum being WGS 84. From georeferenced imageries, the study area
was obtained through a subset using the AOI boundary vector file (Hughes et al.
2006).

3.3.3 Image Extraction (Subset/Mosaicking)

Satellite images that were downloaded from the Earth Explorer website were opened
in ARC GIS, and the area of interest was extracted from that image to use for further
study. However, in our case, our area of interest was spread across two satellite

Fig. 2 Field photographs of livelihood types in the Kedarnath and Gaurikund regions
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images. So, we used the Mosaic tool in ERDAS Imagine to mosaic the images and
then extracted our study of area from it.

3.3.4 Image Classification

The purpose of image classification was to categorize all pixels in an image into
different land cover classes. Digital image classification uses the spectral informa-
tion represented by the digital numbers in one or more spectral bands to classify each
pixel. This process assigns each pixel in an image to a particular class or theme based
on the statistical characteristics of the pixel brightness values (Guo and Zhang 2009).

3.3.5 Unsupervised Classification

In unsupervised classification, outcomes are based on the software analysis of an
image without the user providing sample classes (Source Extension.org). In this type
of classification, spectral classes were grouped first into 85 classes, based solely on
the numerical information in the data. The classes that result from unsupervised
classification are spectral classes distinguishing urban from the open area, agricul-
ture from forest class, etc., and is often difficult because of similar reflectance
patterns. Therefore, for more accurate classification, the number of classes classified
initially was more. References like Google Earth maps prepared by other sources
were used to recode and clean the initially classified image. AOI tools like polygon/
polyline were used for cleaning.

3.3.6 Digitization (for Vector Layer)

Different features like roads, rivers, towns, and soil types were extracted from
scanned and georeferenced images using ArcGIS 10 digitization tools. Features
like water bodies and settlements were extracted using Google Earth. The files
obtained were in .kmz format, which were converted to shapefile using ArcGIS
10 conversion tools. Digitization was carried out manually. All the features were
digitized as point, line, or polygon. Figure 3 shows the methodological framework
used in this study.

3.4 Environmental Impact Assessment of Flood

Many research papers used Land Use Land Cover (LULC) analysis to assess the
impact of flood on environmental settings and on human settlements (Sinha 1998;
Ferrari et al. 2009). The method described in Fig. 4 was used to generate the LULC.
We first downloaded the satellite images that are mentioned in Table 1 study area
and then digitized and classified the post-flood-affected area in Uttarakhand. After
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Fig. 3 Methodological framework used in this study

Fig. 4 Land use land cover pattern of Alaknanda basin (a) 2011, (b) 2014, and (c) 2017
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that, we compared it with pre-disaster images to analyze the most to least affected
areas. Landsat 8 images were used to digitize the flood-affected area with the help of
data that was taken from the Bhuvan portal. Using Google Earth, roads, agricultural
land, and settlements were digitized and then compared with flood-affected areas to
analyze the damage caused by this flood in Mandakini valley.

We used the Battelle Columbus method for environmental impact assessment to
evaluate environmental settings before and after the disaster. Battelle method is a
quantitative method where 78 measurable environmental parameters are divided into
4 categories: environmental contamination, ecology, aesthetics, and human interest.
In this method, 2 steps are involved; first is to convert parametric estimates into an
environmental quality (EQ) scale that ranges between 0 and 1, where 0 denotes very
bad quality and 1 denotes good quality. The second step is the multiplication of EQ
values with the respective parameter importance unit values to obtain environmental
impact units (EIU) for each parameter. Composite score is obtained by the addition
of all EIU values. The total environmental impact is calculated by evaluating the
expected future condition of the EQ with and without the project (Syyed et al. 2013).

E1=
Xm

i¼1
Við Þ1Wi�

Xm

i¼1
Við Þ2Wi ð1Þ

Where

E1 ¼ Environmental impact
(Vi)1 ¼ Value in the EQ of parameter i with a project.
(Vi)2 ¼ Value in EQ of parameter i without a project.
Wi ¼ Relative weight (importance) of parameter i
m ¼ Total number of parameters

To do this, a checklist with all environmental parameters was made and assessed
during the field visit and compared by weightage underlined in the Battelle method.

3.5 Normalized Difference Vegetation Index (NDVI)

This is a numerical indicator that uses the red and near-infrared spectral bands.
NDVI is highly associated with vegetation content. High NDVI values correspond
to areas that reflect more in the near-infrared spectrum. Higher reflectance in the
near-infrared correspond to dense and healthy vegetation.

NDVI ¼ Band5� Band 4=Band 5þ Band4 using Landsat 8 datað Þ ð2Þ
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3.6 Livelihood Impact Assessment

To fulfill the second major objective of this study to link the impact of the flood on
the livelihood of inhabitants, we did a questionnaire survey during Kedarnath yatra
in June 2017. The random selection method was applied to select the interviewee.
The questionnaire was based on five pillars of sustainable livelihood framework
(DFID 2009). In Kedarnath yatra, we can find different types of livelihood options,
i.e., food stalls, hotels, horse sawari, pitthusawari, and so on. In this survey, we tried
to incorporate all kinds of livelihood options. Here we questioned the interviewees
who are currently engaged in some kind of work to generate income from yatra. The
questions were framed according to the five livelihood capitals (Scoones 1998).
Answer options were in the form of 1 (low intensity), 2 (medium intensity), and
3 (High intensity). Here intensity means the effect of the flood on a particular
parameter.

4 Result/Discussions

4.1 Land Use Changes in Alaknanda and Mandakini Basin

Land cover maps from Landsat images from 2011–2017 (Alaknanda basin) have
shown considerable changes in the study area (Fig. 4). The study area was divided
into 7 different classes. LULC maps were prepared for 3 time periods, i.e., January
2011, January 2014, and January 2017 and changes in these LULC classes were
analyzed in the present study. Classified images of the study area of 2011, 2014, and
2017 as well as changes in the abovementioned classes are demonstrated percentage
wise to have a clear view on this, as mentioned in Table 2.

The study area was divided into 7 different classes. LULC map was prepared for
3 time periods: January 1997, January 2011, and January 2017; changes in these
LULC classes were analyzed in the present study (Fig. 5). Classified images of the
study area of 1997, 2011, and 2017 are shown. The LULC classification is summa-
rized for the years 1997, 2011, and 2017 in Table 3. From 1997 to 2017, dense forest,
scrub forest, water bodies, and snow cover decreased. On the other hand, open forest,

Table 2 Statistical representation of area under different classes in Alaknanda basin

Classes

2011 area 2014 area 2017 area

(hectare) (%) (hectare) (%) (hectare) (%)

Dense forest 290,761 26.3097 265,584 24.079 256,577 23.2604

Open forest 178,675 16.1675 158,991 14.4148 143,966 13.0515

Scrub forest 67032.8 06.0655 92448.9 08.3818 89329.9 08.0983

Water bodies 7661.06 0.6932 7593.01 00.6884 7522.78 0.682

Snow cover 489,680 44.309 489,672 44.3958 478,228 43.3546

Rocky land 71337.8 06.455 88679.2 08.0401 127,439 11.5532
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built-up land, and rocky land cover increased. We can have a clear view of this in
Table 3. Therefore, the changes in dense forests are due to the climate change effect
over the years and some parts changed into open forest. Over 20 years’ time, there
was an increase in built-up land and agricultural land that shows high anthropogenic
activities in this fragile ecosystem.

Fig. 5 Land use land cover pattern of Mandakini basin, (a) 2011, (b) 2014, and (c) 2017
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4.2 Changes in Forest Cover

The pixel value of the NDVI data layer ranges from �1 to +1 and is scaled from 0 to
255. NDVI was used to depict healthy vegetation in the Mandakini basin. Low value
depicts no vegetation or very little, and higher value indicates a densely forested
area. By observing the entire image, we can infer that vegetation has drastically
decreased from 1997 to 2017 (Fig. 6) in the Mandakini basin.

Table 3 Statistical representation of area under diffferent classes in Alaknanda basin

Classes

1997 area 2011 area 2017area

(hectare) (%) (hectare) (%) (hectare) (%)

Dense forest 740447.7 45.44 67272.4 41.27 56464.5 34.68

Open forest 16774.6 10.29 20330.3 12.45 22285.2 13.68

Scrub forest 15625.6 9.5 10690.5 6.55 13730.5 8.43

Built-up land 574.016 0.3 2298.47 1.41 2296.13 1.43

Snow cover 35493.5 21.7 29395.6 18.03 28996.4 17.9

Rocky land 17735.4 10.8 31503.7 19.32 32284.5 19.83

Water bodies 740447.7 1.6 1497.63 0.91 1926.69 1.1

Total 162,926 162988.6 162787.9

Fig. 6 Comparative NDVI of Mandakini Basin between 1997 and 2017
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4.3 Damage Caused by the Flood

Due to cloudbursts, landslide occurred at various places in the Alaknanda basin. In
Fig. 7, we have shown the landslide areas in Mandakini basin (Source; Bhuvan). Due
to flooding and landslide, houses, roads, and agricultural land were severely affected.
The extent of the flood-affected area is shown in Fig. 8 (damage on agriculture land),
Fig. 9 (damage on villages), and Fig. 10 (roads that were affected by flood and
landslide). Affected roads, bridges, agricultural land, and village data are shown in
Tables 4 and 5 (Source: Rapid Damage Assessment for the Mandakini Valley by
Bisht).

Fig. 7 Landslide area in the month of June 2013
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4.4 Assessment of the Impact of the Flood on the Livelihood
of Inhabitants

A survey was conducted to assess the impact of the disaster on the livelihood of
people in Mandakini basin. This questionnaire-based assessment is divided among
people of three age groups who were working in Gaurikund, Kedarnath, and in the
route between Gaurikund and Kedarnath temple. Fig. 11a–e demonstrates various
capitals of livelihood framework that were damaged or impacted by the flood, and
Fig. 12 shows the final impact on the capitals, which we can construe from the
analysis that there is a deviation in the result that is derivative of flood causatum.

Fig. 8 Affected agriculture map in the month of June 2013
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4.5 Environmental Evaluation System Using the Battelle
Method

In this study, flood disaster is denoted as a project. The environmental parameter is
organized into three main categories (Dee et al. 1973).

1. Ecological
2. Physio-chemical
3. Human interest

Fig. 9 Affected village map in the month of June 2011
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These parameters that are mentioned in Table 6 are subdivided according to the
environmental settings of the area. Each sub parameter has its own weightage.

So, all the parameters that get damaged in flood can be evaluated using the
following formula:

Fig. 10 Affected road map in the month of June 2013

Table 4 Distribution of affected roads and agriculture land

Sl. no. Road type

Affected area (km2)

Crop type

Affected area (ha)

Min. Max. Min. Max.

1. National Highway 56.42 87.41 Kharif crop 2267.25 4346.14

2. District road 37.44 46.72 Rabi crop 356.15 527.44

3. Village road 134.58 269.92 Zaid crop 26.41 35.36
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Table 5 Distribution of bridges/cross drainage structures and affected bridges

S. no. Block name

Affected bridges/cross drainage structures Affected villages

Min. Min. Max. Max.

1. Agastmuni 174 100 144 347

2. Jakholi 65 34 44 100

3. Ukhimath 72 69 71 96

4. Total 311 203 259 543

Fig. 11 (a). Affected Human capitals; (b). Affected financial capitals; (c). Affected Physical
capitals; (d). Affected Social capitals; (e). Affected Natural capitals
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NET ¼ Weightage� withflood� weightage� withoutflood� 46:1 ð3Þ

Where

NET ¼ Net Environmental impact

This negative sign means that the health of the environment and other physical
assets were drastically affected. This deteriorated the living condition of the region
and also forced the people to leave their homes and migrate to safer place and start
their life from scratch.

5 Discussion and Conclusion

Over the years, development in the Himalayan region has caused many changes that
have had a deleterious effect on the environment and inhabitants in many ways. They
may be summarized as:

Ecological
Loss of approximately 10% of dense forest in the Mandakini valley causes distur-
bance in ecological cycling (Aerts and Honnay 2011) and forest plays an important
role in the social, cultural, economic, and industrial development of any country
(Bjärstig et al. 2018). Besides this, forests also maintain the moisture content in the
soil, increase soil fertility and act as a habitat for many wild species. Due to

Fig. 12 Spider gram of all five capitals of sustainable livelihood framework
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fragmentation of forests by this flash flood, the threat of local extinction of many
wild species of plant and animal has increased. Native flora and fauna are key to the
structure and function of an ecosystem and any kind of alteration in this disturbs the
basic ecological balance. By ground-truthing, we observed that dense forest pixels
have been converted into open forest pixels and open to scrub forest pixels. It is
showing how the health of the ecosystem is gradually decreasing over the decades in
this valley. Also, during field observations, we found that water resources and
springs on which native inhabitants are completely dependent, are dying, and/or

Table 6 Environmental parameters with weightage with or without project

Environmental categories PIU (EQi)1 (EQi)2 EIU

Forest 9 0.7 0.9 �1.8

Wildlife 9 0.7 0.8 �0.9

Species diversity 9 0.7 0.9 �1.8

Species diversity Aq. 9 0.5 0.9 �3.6

Rare and endangered Sp. Aq. 9 0.6 0.8 �1.8

Soil erosion 8 0.5 0.8 �2.4

Soil fertility 9 0.6 08 �1.8

Bank stability 9 0.6 0.9 �2.7

Sedimentation 9 0.7 0.9 �1.8

Seismicity 7 9 9 0

Flow variation 9 0.7 0.8 �0.9

Evaporation 9 0.7 0.8 �0.9

Temperature stratification 9 0.8 0.9 �0.9

Turbidity 9 0.6 0.8 �1.8

Parasitic disease 7 0.5 0.7 �1.4

Public sanitation 8 0.8 0.9 �0.6

Nutrition 7 0.8 0.9 �0.7

Crop production 8 0.5 0.8 �2.4

Water supply 8 0.5 0.8 �2.4

Power supply 8 0.7 0.8 �0.8

Navigation 7 0.6 0.9 �2.1

Irrigation 8 0.5 0.9 �3.2

Flood control 8 0.7 0.8 �0.8

Highway relocation 10 0.8 0.9 �1

Reservoir leakage 9 0.7 0.8 �0.9

Climatic changes 9 0.8 0.8 0

Archaeology treasure 9 0.6 0.9 �2.7

Water quality 8 0.7 0.8 �1

Transmission lines 10 0.7 0.8 �1

Recreation 10 0.8 0.9 �1

Landscape 10 0.8 0.9 �1

Total �46.1

PIU parameter importance unit
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degrading. In our study, we have also found that water resources are depleting
gradually over the decades and that springs and streams are dying. That will lead
to more soil erosion and cause a negative impact on the ecological health of the
valley area. Soil erosion has reduced the fertility of agricultural lands which forces
people either to encroach upon common lands or to migrate.

Socio-ethno Damage and Insecurity to Livelihood
This place is socio-ethnologically very rich, due to which, it is highly vulnerable to
climate change. People in this region are mainly dependent on natural resource-
based livelihood options (agriculture, fishery, tourism, livestock, etc.). So, damage
to the ecosystem causes a very severe impact on the inhabitant’s financial condition.
To estimate the causes of flash flood, LULC map of both Alaknanda and Mandakini
basin that demonstrates various changes in this fragile ecosystem was prepared. In
the Alaknanda basin, there is a diminution in dense forest, open forest, and snow
cover by 3.04%, 3.11%, and 0.9%, respectively, and expansion in built-up land. The
same scenario shows up in the land cover map of Mandakini basin, where dense
forest, scrub forest, and snow cover have decreased by 10.76%, 1.07%, and 3.85,
respectively, in the last 20 years along with inflation in built-up land. Anthropogenic
activities include urban sprawl of overall 1.43% of the total geographical area in the
Mandakini basin. But major expansion occurred around the river bed or highly
vulnerable places. Rambara is totally submerged in water and all the infrastructure
has vanished from that area. During the field survey, one person said that once he had
a big hotel in Rambara region and that after the disaster, he was left with no choice
except taking pilgrims to the Kedarnath temple with the help of horses. So, he is a
classic example of livelihoods damaged by the disaster. Dams and hotel construction
around the river bed and other developmental activities have a negative impact that
has emerged as a devastating flash flood on June 16, 2013. This natural disaster
caused havoc due to over population in the town. June is a peak month in terms of
visitors and the whole state of Uttarakhand is crowded with people. The abnormal
timing of heavy rainfall and its emanation does not allow them even to find ways to
travel. If the same mishap had happened in the winters, the loss of property and
casualties would have been less because during the summer the population is very
high in the study area.

By analyzing the impact on the livelihood of inhabitants by questionnaire-based
survey method, it was found that all the five capitals were heavily affected as mainly
they are dependent on tourism-based activities. So, these livelihood activities are not
sustainable. People were jobless for 2–3 years. Most people depend on natural
resources. So, these kinds of disasters are a nightmare to the native people.
Policymakers and government bodies should make them aware of other livelihood
generation options and train them in that particular field. By analyzing ecological
settings and other available literature, we have tried to suggest some supplementary
livelihood options for the Mandakini valley inhabitants in this paper.

Also, this study will help researchers as a baseline study for upcoming research.
Data can be used for future flood mapping and livelihood assessment studies.
Updated data on disaster and effect on natural and physical assets are essential for
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planning and prevention from these disasters. This data will also help to lower the
effect of disasters on humans and the natural environment. The baseline study is very
important for future work to compare the present scenario or to drive conclusions on
how much change has already occurred and what would be the consequences of
these changes in the natural and physical environment.
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Assessment of Vegetation Vigor Using
Integrated Synthetic Aperture Radars

Suman Sinha

Abstract Vegetation health is dependent on various biophysical, geographical, and
meteorological factors. The floral biomass can be used as the proxy for vegetation
vigor. Accurate and precise assessment of biomass is henceforth important for
specifying the health of vegetation that is indicative of a collection of several
environmental factors. Remote sensing has currently emerged to be the most impor-
tant and widely utilized tool for biomass assessment. Synthetic Aperture Radars
(SARs) offer more accurate forest biomass estimates than optical multispectral
remote sensing due to the absence of distinctive intrinsic characteristics of radars.
The capability of multi-polarized COSMO-Skymed (X-band), Radarsat-2 (C-band),
and ALOS PALSAR (L-band) was investigated for biomass retrieval in a moist
tropical virgin forest landscape of India. Backscatter values generated from the raw
SAR images were correlated with field above-ground biomass (AGB) values and
were modeled using Multiple Linear Regression analysis to generate best-fit models
for AGB estimates with single and combined frequencies of X-, C-, and L-bands.
The integrated model for AGB estimation involving X-, C-, and L-bands achieved an
accuracy of 75.3% with r2¼ 0.90 and RMSE¼ 15.29 t/ha. On validating the above-
said models, the integrated model involving X-, C-, and L-bands showed the best
results among all other models with r2 ¼ 0.95, RMSE ¼ 14.81 t/ha, and data
agreement of 0.95. Most of the biomass ranged within 125 Mg/ha in the study
site. Hence, the study presents a suitable approach in assessing vegetation vigor from
AGB from SAR, thus contributing to the ecological and forestry realms.
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1 Introduction

The health of forest is reflected by its biomass. The biomass is the most vital
ingredient in understanding the carbon cycle and conveys information related to
climate change and forest health or vigor (Sinha et al. 2018a). Vegetation with higher
biomass content is generally considered to have greater vigor than that having lower
biomass level. Biomass also serves as an indicator of carbon concentration that is
stored in floral species and released into atmosphere during forest fires (Sharma et al.
2012). The concentration of atmospheric carbon is ever-increasing and the global
carbon dioxide (CO2) level crossed the critical mark of 400 ppm during 2016, an
irreversible phenomenon called “400 ppm World” (Sinha and Santra 2019). The
Earth’s atmospheric CO2 concentration has surpassed 415 ppm ever since humans
came into existence in millions of years during the first half of May 2019 (Sinha et al.
2020). So, there exists a relationship between the carbon released, carbon/biomass
sequestered by plants, and the vigor of the forest. Forests serve a dual function in
both acting as carbon sink and source. Forests, among entire terrestrial ecosystems,
are the utmost repository of carbon under natural circumstances; however, under
stressed situations, they emit huge carbon in the atmosphere, thus regulating the
land-atmosphere CO2 exchange (Sinha et al. 2019a). Sources of atmospheric CO2

can either be natural or anthropogenic; the anthropogenic activities being more
detrimental. Reducing emissions from deforestation and forest degradation
(REDD) accounts for the enumeration of this carbon balance in the environment
that helps to maintain and monitor this atmospheric carbon balance (Sharma et al.
2013). More than one-third of the terrestrial carbon storage is concentrated in the
tropical forests that further harbor a fifth of total anthropogenic CO2 emissions to the
atmosphere on deforestation (Sinha et al. 2019b). Carbon stored in the forests can be
assessed in terms of above-ground bole biomass stored in the plants that can
ultimately result in the calculation of carbon dioxide released in atmosphere due to
forest loss (Sharma et al. 2013; Sinha et al. 2017; Waikhom et al. 2017).

Integrated geospatial techniques that incorporate remote sensing, geographic
information system (GIS), and Global Positioning System technologies provide
the best probable approach quantifying the forest AGB for precise continual mon-
itoring over large areas with varying scales (Sinha et al. 2015a), in context to REDD
(De Sy et al. 2012). AGB estimation is done with inputs from tree allometry,
combined with integrated geospatial techniques that contribute to the multi-scale
AGB estimations (Sinha et al. 2015a). Often using multispectral optical remote
sensing sensors for AGB estimation (Lu 2006; De Sy et al. 2012; Sharma et al.
2013; Kumar et al. 2013; Dube et al. 2016; Sinha 2018), however, they suffer from
less sensitivity to forest parameters and saturate early, unlike Synthetic Aperture
Radar (SAR) sensors that are currently more frequently used owing to the distinct
intrinsic characteristics of SAR that overcomes the constraints of optical remote
sensing sensors (De Sy et al. 2012; Sinha et al. 2015a; Villard et al. 2016; Sinha et al.
2016; Kumar and Mutanga 2017; Santoro and Cartus 2018).
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Frequent cloudy sky mostly in tropical regions often restrains the collection of
good quality of remote sensing data by optical sensors. In this condition, microwaves
can provide feasible option in remote acquisition of earth’s surface data. This unique
feature of microwave remote sensing widens its use in different fields of research
including flood studies, forest mapping, and biomass estimation (Lu 2006). SAR is
applied widely in assessing forest biomass because of its capability of penetrating
through forest canopies. This enables the volumetric estimation of forest. The
estimation is sensitive to microwave frequency as well as polarization. Higher
wavelengths can penetrate the canopy more. Similarly, cross-polarized waves are
more sensitive to biomass. Furthermore, microwaves are sensitive to plant moisture
content as well (Sinha et al. 2015a). These clear-cut advantages over the optical
sensors made better estimation of forest AGB by SAR with less uncertainty in
comparison with its optical sensing competitors.

SAR data is captured in K-, X-, C-, L-, and P-bands under varied polarization,
range, and azimuth resolution. Microwave sensors transmit polarized wave. Hori-
zontally polarized (H) and vertically polarized (V) wave generates when the electri-
cal field of the electromagnetic wave oscillates horizontally and vertically,
respectively. Dual-polarized sensors can transmit and receive both the polarizations.
However, fully polarimetric quad-polarized sensors can transmit and receive the
complete polarization vector of the backscatter signal. Vegetated areas produce
higher backscattered signal intensity in comparison with bare ground and calm
water due to multiple scattering of vegetation (Balzter 2001).

Variations in microwave data produce different significant forest stand charac-
teristics (Leckie 1998). X-band relates to canopy surface information as it specifi-
cally interacts with the top of the canopy cover (including leaves, small branches,
etc.) without much penetration; C-band having greater penetration interacts with the
small branches and underlying objects within the canopy; L- and P-bands infiltrate
the surface canopy layers and have high interaction with major forest parameters
including the main branches and the trunk of the trees that contributes primarily to
the biophysical parameters like AGB, DBH, stand height, and basal area (Sinha et al.
2020). Hence, for biomass studies, L-band SAR is more suitable and fitting than the
rest of the spaceborne SAR bands (Lu 2006; Le Toan et al. 1992). Longer wave-
length and lesser frequency SAR data from L- and P-bands with maximum pene-
tration capabilities are scattered and attenuated by the main woody portions of trunk
and main branches that relates maximum to the forest biophysical parameters (Sinha
et al. 2015a). Like-polarized HH and VV and shorter wavelengths or higher
frequency with less penetration are generally less sensitive to biomass than the
cross-polarized HV or VH and higher wavelength or low frequency with greater
penetration (Pandey et al. 2010; Wollersheim et al. 2011; Sinha et al. 2015a). Yet
instances are observed when like-polarized data show greater sensitivity to AGB
(Sharma et al. 2014; Sinha et al. 2016, 2017). Ratio of polarized data can be
investigated for the same as this too has great prospects (Sinha et al. 2018b). SAR
interferometry and polarimetry also have potentialities in AGB assessment (Kumar
2009; Sinha et al. 2015b; Sinha 2016; Kumar et al. 2017).
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Among the spaceborne radars till date, L-band is the most suitable for measuring
biomass, even for the complex tropical forest ecosystems (Hamdan et al. 2011).
Beaudoin et al. (1994) showed that high frequency SAR bands with VV and HV
polarization were solely linked to crown biomass, while HH data at lower frequen-
cies (P- and L-bands) were related to trunk along with crown biomass. Harrell et al.
(1997) compared several AGB estimation techniques using Shuttle Imaging Radar
(SIR) C- and L-band multi-polarized radar data for pine species and commented that
the HH polarized L-band data were the decisive components in AGB estimates.

The performance of estimation improved when HH or HV polarized C-band data
was added in the regression equations. Kuplich et al. (2000) found that the Japan
Earth Resource Satellite (JERS)-1/SAR data has the potential to estimate biomass for
young, regenerating forests. The double bouncing scattering and forest structural-
physiognomic characteristics of JERS-1/SAR data are found to be important for
AGB estimation of forest and savanna (Santos et al. 2002). In case of biomass
estimation of forest stands in mountainous regions, the multi-polarized L-band SAR
data are found to be very useful (Sun et al. 2002). Castel et al. (2002) established a
significant relationship between the backscatter coefficient of JERS-1/SAR data and
pine plantation biomass. Most of these studies applied the single polarized and low
resolution JERS-1, European Remote Sensing satellites ERS-1/2 SAR data with
mono incident angle. However, introduction of the ALOS Phased Array type L-band
Synthetic Aperture Radar (PALSAR) and C-band RADARSAT-2 data created more
opportunity to the scientific community to re-evaluate the potential of SAR data in
forest biomass estimation (Kumar et al. 2015). Le Toan et al. (2011) applied PAL
SAR data to map Amazonian and Siberian forests. However, the results exclude
most of the tropical and temperate forests. Use of texture analysis in biomass
assessment is an important aspect that needs focus. Sarker (2010) has used texture
measures for biomass estimation using optical and SAR data. Sarker et al. (2013)
inquired the utility of the C-band RADARSAT-2 fine beam dual-polarized (HH and
HV) data for AGB estimation in complex subtropical forest and found interesting
results. Despite good results from the backscatter data, there exists a saturation
problem specifically in handling complex forest stand structure. Lu (2006) enlisted
the factors that include SAR frequency, wavelengths and polarizations, and vegeta-
tion structure and ground characteristics, on which the saturation levels depend
on. However, the combined use of C- and L-bands can reduce the problem
(Hoekman and Quinones 1997). Synergistic use of multi-frequency SAR data has
enhanced potentialities in the estimates (Sinha et al. 2017). It is observed that the
ratio between SAR bands provides valuable solution to the saturation problem
(Santos et al. 2002). Spectral information from optical data, along with the multi-
frequency X-, C-, and L-SAR data integrated together can be the best solution for
biomass estimation that reduces the uncertainty and saturation problems (Sinha et al.
2020). At AGB less than 150 t/ha, models integrating forest succession and radar
information produced precise results (Ranson et al. 1997). Feasible solution can be
obtained on considering the landscape characteristics (Austin et al. 2003).

SAR interferometry (InSAR) offers valuable results in reducing the saturation
problem (Ghasemi et al. 2011). This also helps in nullifying the terrain effects
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without any extra data resulting in backscatter variations due to alterations in the
target characteristics (Balzter 2001). De Zan et al. (2013) and Treuhaft et al. (2015)
applied TanDEM-X interferometry to assess biomass of tropical forests. Semi-
empirical models like Water Cloud Model (WCM) and Interferometric WCM
(IWCM) are important in tree volume estimation for biomass (Kumar 2009; Lucas
et al. 2006).

The biomass-backscatter coefficient curve demarcates the saturation mark as the
slope tends to zero (Sinha et al. 2019a). Uncertainties arise as the saturation values
depend on the SAR and reference data (Englhart et al. 2011), along with the forest
parameters. Saturation levels of C-, L-, and P-bands were determined by Nizalapur
et al. (2010) in the tropical forests of India. Moreover, the saturation values are also
established in several other studies (Lucas et al. 2006; Nizalapur et al. 2010; Pandey
et al. 2010; Englhart et al. 2011; Ghasemi et al. 2011; Sinha et al. 2015a; Sinha et al.
2017). It is already mentioned earlier that the saturation problem creates havoc in
AGB estimation. However, InSAR can cope with this saturation problem as the
technology can enhance this limit (Fransson et al. 2001), although the accuracy relies
on certain factors that inherit dynamic vegetation including the study area’s natural
conditions. Multi-temporal SAR images under favorable conditions may enhance
the accuracy. This approach produced acceptable results in boreal forests (Fransson
et al. 2001; Pulliainen et al. 2003; Sinha et al. 2015a).

A detailed review of SAR techniques for biomass estimation is mentioned in
Sinha et al. (2015a). The combined application of optical and SAR offers better
results for biomass estimates over the single use of any sensor (Sinha et al. 2016) and
even enhance the saturation level (Sinha et al. 2019a). Sarker (2010) used multi-
sensor approach including SPOT-5, AVNIR-2, PALSAR, and Radarsat-2 for bio-
mass estimation. Sinha et al. (2016) showed an improvement in the analysis of
biomass on integrating models with Landsat TM and ALOS PALSAR data. Forest
biomass and structural parameters were analyzed by Hyde et al. (2006) using multi-
sensor synergy approach incorporating optical, SAR, interferometry, and LiDAR
technologies. SAR has an obvious upper-hand than other sensors for biomass
assessment due to their distinctive characteristics that make them superior over
others (Sinha et al. 2015a). Alappat et al. (2011), Englhart et al. (2011), and Sinha
et al. (2019b) have used integrated multi-frequency SAR for retrieval of biomass.
This approach can even improve the estimation by enhancing the saturation point
(Sinha et al. 2020). As the optical has low saturation levels, integrating multi-
frequency SAR data instead of optical and SAR can probably produce higher
saturation levels. Hence, the current study utilizes multi-frequency L-, C-, and
X-bands from band ALOS PALSAR (HH/HV dual-polarized), Radarsat-2
(HH/VV/HV full polarized), and COSMO-Skymed (HH/VV dual-polarized) data
for AGB assessment of Bhimbandh Wildlife Sanctuary in Munger (Bihar, India),
which is a tropical mixed deciduous forests.
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2 Study Area and Datasets

2.1 Study Area

Bhimbandh Wildlife Sanctuary in Munger, Bihar (India), is the selected study site,
which is a tropical deciduous mixed forest having geo-locations of 25�1903000N-
24�5605000N latitude and 86�3303300E-86�1105100E longitude, covering an area of
approximately 672.5 km2 (Fig. 1). Sinha et al. (2013) illustrated the land-use/land-
cover features of the area. The area includes reserved forests (approx. 257.50 km2)
and protected forests (approx. 424.40 km2) (Sinha and Sharma 2013). It is a virgin
patch with limited anthropogenic hindrances that make this site ideal for experimen-
tation (Sinha et al. 2016). Total area (89%) is under forest cover with open to
moderately dense forests (Sinha et al. 2013). The dominant floral species are Shorea
robusta, Acacia catechu, Madhuca longifolia, Dendrocalamus strictus, Diospyros
melanoxylon, and Terminalia tomentosa. The principal floral species found in the
area is Shorea robusta or the sal and then Acacia catechu or the khair. As per 2012
statistics, sal-mixed and khair-mixed vegetation covers 49.68% and 20.66% of the
total study area, respectively, thereby totaling to more than 70% of the area (Sinha
et al. 2013). Soil texture is medium to heavy with clay, somewhat alkaline. Soil color
is gray to dark gray. The mean annual rainfall is 1078.7 mm, the maximum
temperature is about 45 �C during summers, while minimum temperature ranges
between 3.5 �C and 9 �C during winters. Topography of the area is marked with
several peaks with heights up to approximately 450 m. It is a forested table top hill
with deep lateritic layer. The forest patch is matured with limited biomass change
and anthropogenic interventions. The forest is undisturbed patch ideal as an exper-
imental site.

2.2 Datasets

False Color Composite of the ALOS PALSAR dual-polarized (HH/HV) data of
2007, 2009, and 2010; C-band RADARSAT-2 full polarized (HH/VV/HV) data of
2011 and X-band COSMO-Skymed dual-polarized (HH/VV) data of 2011 are used
(Fig. 1). Table 1 enlists the satellite data specifications.

3 Method

The methodology (Fig. 2) comprises the following sections: (a) above-ground
biomass (AGB) assessment from in-situ field measurements, (b) SAR data
processing, (c) AGB assessment from SAR backscatter measurements, and
(d) regression analysis.
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3.1 In-Situ Measurements

Field data was collected from 45 randomly selected square sample plots with area of
0.1 hectare each during 2010–2011 via random sampling method. The dimensions of

Fig. 1 Location of the study area
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the plots being 31.6 m � 31.6 m matches approximately the pixel dimensions (30 m
� 30 m) of the resampled satellite data used. The sample plots were concentrated
mostly near the periphery due to inaccessibility of the interior portions. However, it
was noted that representative samples were selected from every forest stratum, thus
addressing the variability in the area. Information regarding forest types, species
composition, stand height, and girth at breast height is collected from each such plot.
The plots were randomly segregated into 80:20 ratio (Sinha et al. 2020), wherein
80% of the total sample plots, i.e., 36, were randomly selected to be used for
establishing a relation between field AGB and SAR backscatter; while the remaining
20%, i.e., 9, for the model validation. Volumetric equations (FSI 1996) and specific
gravity (FRI 1996) of the floral species were used to calculate the plot biomass.

Table 1 Satellite data specifications

Parameters SAR Remote Sensing data

Satellite COSMO-Skymed Radarsat-2 ALOS

Sensor/
payload

SAR SAR PALSAR

Launching
country
(Organization)

Italy (ASI) Canada
(CSA)

Japan (JAXA)

Date of launch June 8, 2007, December
9, 2007, October 25, 2008,
November 5, 2010

December
14, 2007

January 24, 2006

Spatial
resolution

15 m 25 m 25 m

Swath width 30 km 25 km 70 km (34.3� incident angle),
30 km (21.5� incident angle)

Wavelengths/
bands

X-band C-band L-band

Mode and
Polarization

PINGPONG; dual
(HH/VV)

Standard
quad-pol
(HH/HV/VH/
VV)

Fine beam single (HH), fine
beam dual (HH/HV), quad
Polarimetric (HH/HV/VH/VV)

Number of
looks (azi-
muth:Range)

3:1 3:1 3:1 (FBS), 4:1 (FBD), 7:1 (PLR)

Year of data
acquisition

2011 2011 2007, 2009, 2010

Data acquiring
source

ASI (Italy) CSA
(Canada)

JAXA (Japan)
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Fig. 2 Approach of the study
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3.2 SAR Data Processing

Raw Single Look Complex (SLC) ALOSPALSAR and COSMO-Skymed data were
preprocessed in SARscape software, and Radarsat-2 SLC data was preprocessed in
Geomatica software to create the backscatter or sigma naught (σ0) image (Fig. 2).

3.2.1 Conversion from Slant to Ground Range

This step is performed to remove the impact of the slant range distortions, thus
resulting in equally spaced pixels of SLC in the range direction. If θd is the
depression angle, with pulse duration (t) and velocity of light (c), the ground range
resolution (Rr) is given by

Rr ¼ ct � 2 cos θd ð1Þ

As the radar beam is bifurcated into numerous small sub-beams with independent
look and speckles, the speckles are minimized via multi-looking, thus generating an
undistorted image with almost square pixels, but at the cost of its spatial resolution.

3.2.2 Generation of Amplitude and Power Images

SLC occurs as complex numbers, with real (x) and imaginary (y) elements that refer
to the SAR signals with magnitude and phase information. Amplitude (AMP) image
from complex SLC is converted to power image that are now floating real values.

AMP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
ð2Þ

Power ¼ AMPð Þ2 ð3Þ

3.2.3 Geocoding

The satellite data need to be georectified before further processing. The process was
done considering the satellite orbital parameters using SRTM DEM as reference
with terrain correction from Range-Doppler mechanism, thereafter resampling the
data to 25 m pixel size following the nearest neighborhood algorithm re-projected to
the UTM-WGS84 coordinate system.
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3.2.4 Radiometric Calibration

The radar equation is used for radiometric calibration. Backscatter coefficient or
sigma naught (σ0) values are generated with units in decibels (dB). The values
depend on the sensor characteristics (signal wavelength or frequency, polarization,
incidence angle) and the target properties (dielectricity, roughness, moisture content
of the scatterers). The calibration is done via the equation (Shimada et al. 2009):

σ0 ¼ 10 � a log 10 DNð Þ þ A0 ð4Þ

where DN is the Digital Number of the power (or intensity) image, A0 is the
sensor specific calibration factor. A0 ¼ �115 dB for ALOS PALSAR 1.1 product
dataset, A0 ¼ �59.62 dB and � 58.88 dB for HH and VV polarized COSMO-
Skymed respectively. The value of A0 varies for every line in Radarsat-2 that is
processed in Geomatica (Sinha et al. 2018a).

3.2.5 Speckle Filtering

Multi-looking reduces speckles; however, simultaneous use of speckle filtering can
be beneficial but at an expense of modification in the original backscatter values.
Mean filters of 3 � 3 window size was used to suppress the speckles avoiding much
alteration in the backscatter values.

3.3 Integrated Regression Model

Relationship between the σo from Eq. 4 and plot AGB is used to develop the best-fit
AGB predicting model. The σo values are statistically integrated in various combi-
nations to generate models that are again tested with the reference plot AGB to select
the most accurate and best-fit AGB predicting model.

3.4 Statistical Metrics

All the models developed are statistically evaluated and results statistically validated
with various statistical measures as mentioned and described in Sinha et al. (2016) at
95% confidence interval. The models are validated with an additional 9 random plots
that comprised 20% of the total sample plots, and finally the best-fit is adopted.
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4 Results

4.1 Model Structure

Relationship between the field generated AGB and the corresponding backscattering
coefficients was examined for each of the SAR X-, C-, and L-bands individually.
After carefully inspecting and understanding all the corresponding curve progression
for the correlation between AGB and SAR signals, the optimal log transformed least
squares linear regression equation was designed as:

y ¼ a � exp b � σoð Þ ð5Þ

where y ¼ AGB, σo ¼ backscatter coefficient, and a and b ¼ sensor coefficients.
Similar Log models have been adopted by most of the investigators for relationship
between biomass and SAR-derived information. The total 45 sample plots comprise
36 randomly selected plots (80%) for model development and the remaining 9 (20%)
for subsequent independent validation.

4.2 AGB-SAR Relationship

Datasets from multi-frequency SAR sensors, namely COSMO-Skymed (X-band,
HH/VV dual-polarized), Radarsat-2 (C-band, HH/HV/VV quad-polarized) and
ALOS PALSAR (L-band, HH/HV dual-polarized) are used in the study. Table 1
documents the data specifications. The coefficient of determination between the
backscatter and AGB values was determined and documented in Table 2. The
randomly selected plots showed 11.35 Mg/ha, 172.07 Mg/ha and 73.31 Mg/ha as
the minimum, maximum and the mean plot AGB values, respectively. The standard
deviation was 40.62 Mg/ha that signifies the wide spread of the sample data having
huge variation.

Relation between the AGB and backscatter values shows a logarithmic relation
that gets saturated at a certain point (Fig. 3a) that is radar wavelength-dependent,
since on increase of wavelength, saturation also increases. It is evident from Fig. 3
that L-band has higher saturation level than C-band, which has greater saturation
than X-band. So, lesser frequency (or greater wavelength, like L- and P-bands)
signals can be used for the detection of higher biomass levels. Table 2 and Fig. 3b
show that VV polarization interacts with the biomass more than HH polarization.
Therefore, it can be inferred that X-band retrieves information of the top canopy
biomass and generally not for the bole biomass. On the other hand, Table 2 suggests
improved correlation of biomass with the C-band, specifically with the HH polari-
zation, as it has greater penetrability than X-band, thus providing information of the
canopy biomass. The L-band shows the best relationship with the highest penetration
capability among the three bands under investigation, thus revealing the bole
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biomass of any tree. Both HH and HV polarizations show highly positive relation-
ship with the bole biomass; however, HH revealed better results in our study
(Table 2), while several other studies suggest cross-polarized data, like HV, to
give better correlation than co-polarized data for retrieving biomass (Sinha et al.

Table 2 Correlation between SAR backscatter and plot AGB

SAR datasets Polarization Date Correlation (r2)

COSMO-Skymed HH 2011 0.0123

COSMO-Skymed VV 2011 0.0201

Radarsat-2 HH 2011 0.4606

Radarsat-2 HV 2011 0.3446

Radarsat-2 VV 2011 0.4300

ALOS PALSAR (FBS) HH 2009 0.5134

ALOS PALSAR (FBD) HH 2007 0.5919

ALOS PALSAR (FBD) HV 2007 0.5369

ALOS PALSAR (FBS) HH Jan 2010 0.4796

ALOS PALSAR (FBS) HH March 2010 0.5261

ALOS PALSAR (FBD) HH July 2010 0.8490

ALOS PALSAR (FBD) HV July 2010 0.5645

ALOS PALSAR (PLR) HH 2010 0.3431

ALOS PALSAR (PLR) HV 2010 0.4442

ALOS PALSAR (PLR) VH 2010 0.4421

ALOS PALSAR (PLR) VV 2010 0.2170

Fig. 3 Variation of backscatter (in dB units) with plot AGB in (a) different wavelength SAR bands,
(b) different polarizations of X-band, (c) different polarizations of C-band and (d) different
polarizations of L-band
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2015a). Table 2 also confirms that in our study, HH is superior to HV for Fine Beam
Single (FBS) and Fine Beam Dual (FBD) products, but the reverse for full polari-
metric (PLR) product. C- and L-band HH polarization demonstrated high backscat-
tering values than other polarized data (Fig. 3c, d). However, among all the datasets,
L-band FBD HH polarized data gave the highest correlation of 0.849 with the bole
AGB. Theoretically, it is obvious for L-band HH polarized data to show the greatest
interaction with the trunk that contributes primarily for the bole biomass due to the
vertical structure of the trunk, i.e., volume scattering. X- and L-band backscatter had
the highest and least values, respectively, due to greater canopy scattering for
X-band and attenuation of the L-band signals due to canopy penetration interacting
with the trunk. Also, the backscatter is dielectricity-dependent and varies with the
moisture content of the various tree compartments. The backscatter also depends on
the target scatterers on ground, like the size, number, structure, and orientation of the
scatterers. Observations reveal that cross-polarizations, like HV/VH, have less
values of backscatter than co-polarizations, like HH/VV, and the penetration capa-
bility enhances on decreasing radar signal frequencies. Thus, L-band HH polariza-
tion gave accurate estimates of AGB.

Co-polarizations have high backscattering coefficient values (σo) than cross-
polarizations, and increase in the wavelength leads to increase in the penetration
capability of the radar signals, thus providing more accurate information related to
the bole biomass (Sinha 2017). The performance of the SAR signals in forests is
depicted in Fig. 4a that differentiates the low and high values of the respective cross
and co-polarizations conspicuously. The interrelationships between the variably
polarized multi-frequency radar signals are depicted in Fig. 4b. Equations 6, 7, and
8 are finally designed using information from X-, C-, and L-band SAR data,
respectively, that had the best correlation with the field AGB data for developing
the best-fit AGB prediction synergic model.

Fig. 4 (a) Behavior of multi-frequency multi-polarized SAR signals in the forest study site. (b)
Correlations between multi-frequency multi-polarized SAR signals in the forest study site
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AGB ¼ 94:984 � e 0:044�σoX VV

� �
ð6Þ

AGB ¼ 380:58 � e 0:187�σoC HH

� �
ð7Þ

AGB ¼ 1067:3 � e 0:276�σoL HH

� �
ð8Þ

4.3 Synergy Model

L-band backscatter is more responsive to AGB than both X- and C-bands owing to
greater backscatter range; however, due to higher variance, the accuracy in small
biomass range is low. Figure 3 depicts the relationships between AGB and radar
signals of COSMO-Skymed (X-band), Radarsat-2 (C-band), and ALOS PALSAR
(L-band) in scatterplots. With an increase in the field inventoried AGB, there is
simultaneous increase in the backscattering coefficient, which gradually attains
saturation at a certain level (Fig. 3).

Figure 3 also shows that the backscatter coefficient of L-band is lesser than the
C-band, the backscatter coefficient of which is even lesser than the X-band. This
phenomenon is attributed to the fact that X-band interacts primarily with the canopy
top structures, and hence, the scattering is highest. The C-band shows more canopy
scattering as it mainly interacts within the canopy. L-band penetrates deep,
bypassing the canopy layer causing attenuation of the backscattered waves primarily
interacting with the woody portions of the trees. In this study, X-band saturates
earlier at about 40–50 t/ha, while C-band saturates next nearly at 100 t/ha. The
saturation is highest for L-band among the three, at about 160–180 t/ha (Fig. 3). The
saturation level depends on the radar frequency, polarization, and vegetation types.
Only those sample plots common in all the datasets out of the total 36 plots were
considered for developing the synergic model. Models were developed using Mul-
tiple Linear Regression of Eqs. 6, 7, and 8 where the data were used singly as well as
in different combinations to show the accuracy in the prediction of AGB for
generating final synergic modeling for AGB assessment. The following models
developed using SAR are enlisted in Table 3. r2 values for each of the models
designed between the AGB and SAR backscatter coefficient were calculated and
summarized in Table 4 that also contains values calculated for other statistical
metrics for evaluation of the models developed, as mentioned above.

According to Table 4, models 3, 5, 6 and 7 are found to give significant r2

relationship between the predicted and estimated values that lie within the range of
0.87–0.90; model accuracy is more than 75% and show better results. Slope values
greater than 0.9 with low RMSE are observed for models 3 and 7. Models 3, 5, 6 and
7 are observed to perform well and statistically significant, considering all the
statistical metrics adopted in the study. Hence, it is evident that model 3 comprising
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L-band information is the best model among the single sensor models for biomass
estimation. However, integrating information from multiple SAR bands as in models
5, 6 and 7, the correlation between the predicted and estimated values have consid-
erably improved. Out of these synergic models, model 7, integrating all the multi-
frequency SAR data of X-, C- and L-bands, emerge as the best-fit for AGB
estimation.

4.4 Model Statistics

Twenty percent of the randomly selected sample data are used for statistical valida-
tion all the models generated in terms of the statistical measures as mentioned in
Sinha et al. (2016, 2020), and the results are documented in Table 5. The table shows

Table 3 Models for predicting AGB

Model Model
Input SAR
information

1
94:984 � e 0:0442�σoX VV

� �
X (VV)

2
380:58 � e 0:1874�σoC HH

� �
C (HH)

3
1067:3 � e 0:2765�σoL HH

� �
L (HH)

4
355:2714 � e 0:1874�σoC HH

� �
� 7:5322 � e 0:0442�σoX VV

� �
þ 22:0898

C (HH),
X (VV)

5
88:5536 � e 0:0442�σoX VV

� �
þ 988:3198 � e 0:2765�σoL HH

� �
� 53:1242

L (HH),
X (VV)

6
1029:0906 � e 0:2765�σoL HH

� �
� 46:9255 � e 0:1874�σoC HH

� �
þ 11:7315

C (HH),
L (HH)

7
103:504 � e 0:0442�σoX VV

� �
� 44:3375 � e 0:1874�σoC HH

� �
þ

1028:984 � e 0:2765�σoL HH

� �
� 58:8778

L (HH),
C (HH),
X (VV)

Table 4 Statistical metrics for model evaluation (rounded to two decimal places)

Model r2 RMSE (t/ha)
ND
RMSE MAD

ND
MAD MBE

ND
MBE Slope ς

1 0.01 46.18 1.19 34.80 0.64 �13.13 0.26 0.01 35.84

2 0.28 37.24 0.26 28.88 0.42 �6.27 0.11 0.36 58.09

3 0.87 16.06 0.07 12.45 0.19 �1.11 0.03 0.94 80.60

4 0.33 37.21 0.59 29.35 0.52 0.00 0.30 0.33 47.78

5 0.89 15.12 0.11 12.64 0.24 0.00 0.10 0.89 76.12

6 0.88 15.49 0.12 12.83 0.24 0.00 0.10 0.88 75.97

7 0.90 15.29 0.14 12.34 0.25 0.00 0.11 0.90 75.29
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that model 7 outperforms all other models (1 to 6), having the highest correlation
between the field and the modeled values, least RMSE, high accuracy of prediction,
least over- or under-estimates, and the best data agreement, which reveal its accept-
ability over other models in the study area. Among the models involving single
sensors, model 3 showed the best results (Table 5).

AGB maps (Fig. 5a, b) are prepared from the best-fit models (Models 3 and
7 respectively) and are reclassified based on biomass concentration from very low
(<25 t/ha and 25–50 t/ha), low (50-75 t/ha and 75–100 t/ha), moderate (100–125 t/ha
and 125–150 t/ha), high (150–175 t/ha and 175–200 t/ha) to very high (>250 t/ha).
Both the figures have regions, marked white within the study area boundary that
suffers from absence of SAR data. North portion of the of study site in Fig. 5b shows
erroneous results due to non-overlapping data.

Model evaluation results (Table 5) depict that L-band data (Model 3) provides the
best prediction for AGB among the models developed from single SAR sensors
(X, C, and L), based on which the AGB map is generated as shown in Fig. 5a.
Simultaneously, Table 5 reveals Model 7 to be the most accurate among all the
single SAR sensor and combined models adopted in the study.

Fig. 5b portrays the AGB map derived from ‘Model 7’, which clearly demon-
strates that the less vegetative parts with low biomass levels of <50 t/ha surrounding
the study area periphery, water bodies, and the built-up regions. The biomass range
for the maximum extent of the forested region is observed to lie within 25–100 t/ha.
High-density vegetation is observed to have 75–125 t/ha of biomass, generally in the
interior parts; however, with some scattered areas with even higher biomass values,
that too are generally restricted to the interior regions. Relative early biomass
saturation for single SAR frequency data can be neutralized with the integrated
use of multi-frequency SAR data due to the better relationship of AGB (crown,

Fig. 5 Biomass maps from (a) Model 3 (L-band data) and (b) Model 7 (X-, C- and L-band data
synergy)
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branch and stem) to each of the SAR frequency bands (Fig. 3; Tables 4 and 5).
Hence, the synergic model presented the best results for biomass assessment.

5 Discussion

Climate abnormality and related issues are the greatest nuisance that the world has to
tolerate that needs focal attention. Precise monitoring of the quality and quantity of
the world’s forest is prerequisite for accounting this change to a great extent.
Biomass or carbon accumulated in the vegetation is indicative of its health and
vigor that ultimately recount to the climate patterns.

The study undertaken aims in using multi-frequency SAR data to calculate the
biomass that has the potential to give better results in comparison to any optical data
as well as any single frequency spaceborne SAR data till date. Due to its intrinsic
capabilities, L-band gives the best results for biomass estimation among the
spaceborne SAR sensors with X-, C-, and L-bands. However, the accuracy and
precision of estimation enhances on integrating all the three SAR data. Exponential
model offered the best-fit model for estimating biomass among the regression
models tested. Most of the forested area is observed to have biomass within
25–100 t/ha, wherein high-density vegetation is mostly observed to have 75–125 t/
ha of biomass. It can be also noticed that the relatively early saturation for single
SAR frequency data can be reduced by integrating multi-frequency SAR data
because of the wholesome interaction with all the vegetation compartments.
Hence, the integrated multi-frequency SAR model produced the best results in
predicting AGB.

The synergic use of SAR X-, C- and L-bands has made this study unique by itself,
since all previous studies have either used single or double frequency SAR data for
biomass assessment. For instance, combination of X- and L-bands was used by
Englhart et al. (2011, 2012) for AGB measurements with r2 ¼ 0.53 and RMSE of
79 t/ha over tropical forests. Under Indian conditions, Alappat et al. (2011) achieved
the best correlation of r2 ¼ 0.75 for forest stand variables with SAR C- and L-bands.
The current study achieved the best r2 value of 0.90 and RMSE of 15.29 t/ha with
synergic use of spaceborne SAR X-, C- and L-bands. These results are comparable
when SAR L-band was used in synergy with optical Landsat TM data-derived
metrics that involved several indices, image transformations, and texture measures,
and hence cumbersome as compared to the current study. Likewise, a comparable
yet complex study was carried out by Sarker (2010) that integrated texture measures
from C-band RADARSAT-2, L-band PALSAR, SPOT-5 and AVNIR-2 to achieve
comparable results over subtropical forests. Thermal properties of vegetation can
also be used for retrieving biomass information as it shows unique profiling sepa-
rating different land cover features (Sinha et al. 2015c) and even observed to show
relationship with biomass (Sinha and Sharma 2013).

Saturation levels can be improved with the simultaneous use of multi-frequency
SAR (Sinha et al. 2015a, 2020). Furthermore, the use of SAR interferometry, SAR
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polarimetry, data fusion, ratioing of polarized data, texture analysis, etc. in biomass
prediction is a matter of extensive research and beyond the scope of the current
study. Wise selection of the representative plots with non-erroneous field measure-
ments is important for accurate estimates of biomass with limited field data. This
technique of combined use of multi-source data suggests a simple yet effectual
approach to augment the accurateness of AGB estimates over tropical deciduous
mixed forests that is excessively intricate otherwise. The tropical forests are impor-
tant components of REDD, carbon cycles and climate change studies.

There are numerous parameters that affect the SAR-based backscatter analysis
that need to be addressed, for instance edaphic parameters, moisture content,
dielecticity, surface roughness, etc. In spite of all these complexities in the analysis,
SAR offers immense potential for enumerating biomass with enhanced accuracies
even with limited field data. The approach can be well executed to measure and
monitor biomass and carbon stock dynamics, which act as vital components of
REDD and forest health-related issues.

6 Conclusions

In this ‘400 ppm World’, global climate change is the most alarming situation that
this world is experiencing. In this context, REDD and associated concepts are
gaining attention; henceforth, biomass/carbon assessment is becoming crucial to
address this issue. The current study assesses above-ground bole biomass and in turn
the forest carbon stock over a tropical deciduous heterogeneous virgin forest patch of
Munger in India. Synergic use of multi-frequency SAR has the potential to augment
AGB estimations in comparison to any optical data as well as any single frequency
spaceborne SAR data till date. Out of the X-, C- and L-bands, the best model
predicting AGB comprises L-band information. Subsequently, the estimation
improves on integrating all the three SAR wavelength bands. The exponential
model was observed as the best-fit model for estimating biomass on regressing
SAR backscatter values to plot estimated AGB. The validated integrated model
showed high correlation (0.95) and accuracy (79%), low RMSE (14.81 t/ha), and
Willmott’s index of data agreement of 0.95 without much over or under-estimation
as denoted by the slope value of 0.9. The consequence of the approach in resolving
the relative early saturation of biomass with optical remote sensing data or single
SAR frequency data alone is evident; thus, it can be counteracted with the integrated
use of multi-frequency SAR data due to the better relationship of AGB compart-
ments. Hence, in this study, a synergy regression model for predicting AGB was
developed with synergic use of SAR multi-frequency X-, C- and L-band
information.

Biomass has the characteristics of extensive discrete distribution with significant
relationship with multifaceted environmental and geographical factors. GIScience,
integrated with satellite information, can capture, represent, process and analyse the
geographic information to develop models that can be represented spatially as maps.
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Hence, the integrated geospatial techniques help in decision making for forest
resource management and its temporal or continuous monitoring, thus making the
cumbersome laborious process timely, easy and accurate.
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Landslide Susceptibility Mapping Using
Bivariate Frequency Ratio Model
and Geospatial Techniques: A Case from
Karbi Anglong West District in Assam,
India

Raihan Ahmed, Ravinder Singh, and Haroon Sajjad

Abstract The study attempts to prepare an inventory map of landslide susceptibility
using geospatial technology and bivariate frequency ratio model for Karbi Anglong
West district in Assam, India. Past landslide locations were extracted from the
landslide hazard zonation map of Assam for preparing landslide susceptibility. Of
the total past landslide locations, 70% locations were utilized for building the model
and 30% locations for validating landslide susceptibility map. Geology, lineament,
slope, aspect, drainage, land use/land cover, and soil conditioning parameters were
integrated through frequency ratio model to prepare the susceptibility map. High and
moderate susceptibililty areas were found in the south and south-western parts
having steep slopes, while low susceptibility areas were distributed sparsely over
areas having gentle slope in the district. Validation of landslide susceptibility map
revealed its accordance with the past landslide locations. The accuracy of the
landslide susceptibility map was assessed through receiver operating characteristics
curves. Prediction rate and success rate under curves were found to be 0.884 and
0.854, respectively. The map produced through the integration of landslide causative
factors and frequency ratio model helped not only in identifying landslide-prone
areas but also proved to be instrumental for analyzing level of susceptibility. Thus,
the methodology can be employed for monitoring and assessing landslide
susceptibility.

Keywords Landslide susceptibility · Landslide-conditioning factors · Frequency
Ratio · Geospatial techniques

R. Ahmed · R. Singh · H. Sajjad (*)
Department of Geography, Faculty of Natural Science, Jamia Millia Islamia, New Delhi, Delhi,
India

© The Editor(s) (if applicable) and The Author(s), under exclusive license to
Springer Nature Switzerland AG 2021
P. Kumar et al. (eds.), Remote Sensing and GIScience,
https://doi.org/10.1007/978-3-030-55092-9_4

59

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55092-9_4&domain=pdf
https://doi.org/10.1007/978-3-030-55092-9_4#DOI


1 Introduction

Landslides can occur in many forms including debris flows, rock falls, rockslides,
rock avalanches, soil slips, and mud-flows. Such disasters constitute about 9% of the
total natural disasters occurring globally but some frequent landslides may cause
destruction, devastation, and loss of life and property (Gokceoglu et al. 2005).
Landslide is considered as an often occurring natural hazard in the hilly regions of
India during monsoon season. These hilly tracts have been categorized into five
earthquake zones by the Indian Meteorological Department where the strongest
earthquake has also been found. One of the causes of triggering landslides particu-
larly in critically exposed areas is unstable slope. Of the total geographical area of
India, 15% of its landmass (0.49 million sq. km) is considered to be landslide-prone
(Geological Survey of India 1998). Nearly 20% area in north-eastern India experi-
ences frequent landslides. Hence, identification, monitoring, and assessment of
landslide susceptibility is essential for reducing disaster risk in such areas. Some
scholars emphasized the significance of the slope instability processes in identifying
landslide-prone areas (Dai and Lee 2002; Ercanoglu and Gokceoglu 2002; Akgun
et al. 2008). Most of earlier researches on susceptibility of landslide mapping before
the advent of geospatial techniques were solely dependent on field survey and visual
interpolation methods (Gupta and Joshi 1990; Pachauri and Pant 1992;Montgomery
and Dietrich 1994).

The years after 2000 witnessed quantitative and qualitative assessment of land-
slide susceptibility using remote sensing and geographic information system (GIS)
techniques (Ayalew and Yamagishi 2005, Shahabi et al. 2012; Chalkias et al. 2014;
Torkashvand et al. 2014; Raghuvanshi et al. 2015). Remote sensing data, GIS, and
ground-based information have been proved effective tools in identifying landslide
potential areas, susceptibility mapping, and reducing the impact of hazards through
efficient management and planning. Later, statistical and mathematical models were
also extensively used in geospatial environment for assessing landslide susceptibility
(Dhakal et al. 2000, Dai et al. 2001; Lin and Tung 2004; Süzen and Doyuran 2004;
Sahana and Sajjad 2017). Saaty (1980) introduced the concept of analytical hierar-
chy process for decision making and later was used by many scholars for deriving
weights for conditioning factors of landslides (Barredo et al. 2000; Yagi 2003;
Ayalew and Yamagishi 2005; Pourghasemi et al. 2012). Some scholars also used
artificial neural network for assigning weights to influencing factors of landslide
(Beguería and Lorente 2007; Lee et al. 2004). Thus, landslide susceptibility map can
best be utilized for assessing current and predicting future risks (Neuhäuser and
Terhorst 2007). Landslide susceptibility map can help in establishing early warning
system. It can also be utilized for constructing varied structures of houses (Hong and
Adler 2007). Many scholars used fuzzy logic, support vector machine, evidential
belief function, and decision tree model in GIS environment for landslide suscepti-
bility assessment (Ermini et al. 2005; Kanungo et al. 2006; Lee and Pradhan 2006;
Tangestani 2009; Wan 2009; Saito et al. 2009; Pradhan and Lee 2010; Pradhan
2011), while many others utilized multi criteria decision analysis for susceptibility
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assessment in different landslide-prone areas (Ayalew and Yamagishi 2005; Yalcin
2008; Akgun 2012; Demir et al. 2013).

The present study utilized bivariate frequency ratio model to assess landslide
susceptibility using site-specific landslide-conditioning factors. The model makes
landslide susceptibility analysis simpler than other models (Lee and Pradhan 2007;
Yilmaz 2009). It also helps in establishing relationship between landslide-
conditioning factors and landslide occurrence (Akgun et al. 2008). Thus, the
model can be effectively utilized for landslide susceptibility analysis in different
geographical regions at spatial scales.

2 Study Area

Karbi AnglongWest district of Assam in north-eastern India extends between 25�330

N and 26�350 N latitudes and 92�100 E and 93�500 E longitudes (Fig. 1). The study
area enjoys tropical monsoon climate and receives most of its rainfall during summer
season. The average annual rainfall of the district is about 2416 mm. The topography
of the district is characterized by undulating surface where Jhum cultivation (slash
and burn agriculture) along the slope of hills is the dominant activity. Schists,
Quartz-sericite-schist-conglomerate, undifferentiated fluvial sediments, and porphy-
ritic coarse granite are the major types of lithology in the study area. Schist is the
dominant lithology found in the central part of the district. Generally, five types of
soil covers are found in the study area viz. typichapludalfs, typicdystrochrepts,
aquicudifluvents, typicudipsamments, and mollichapludalf. The typichapludalfs
occupies the largest area of the district.

Fig. 1 Location of Karbi Anglong West District in India
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3 Database and Methodology

Landsat 8 OLI (02 November 2014), Cartosat 1 DEM (Digital Elevation Model), and
geological and soil data were utilized for preparing landslide susceptibility map. We
selected landslide-conditioning factors, namely slope, aspect, lineament, drainage,
and soil and land use/land cover and created thematic layers in GIS environment.
These factors were assigned through the frequency ratio model. Past landslide
locations (2011–2015) were extracted from the landslide hazard map of Assam.
The pixels of the thematic layers and past landslide locations were integrated and
their weights were obtained through frequency ratio model. A detail of the data base
used for landslide susceptibility mapping is presented in Table 1.

3.1 Landslide Inventory Map

Many scholars prepared landslide inventory maps based on past account of studies,
enormous ground truth of geomorphological factors, remote sensing data, and aerial
photograph interpretation (Hansen 1984; Galli et al. 2008). For this study, National
Institute of Disaster Management Landslide map of Assam was used for extracting
past landslide locations of the district (National Institute of Disaster Management
2011). Of the total past landslides locations in the study area (229), 70% locations
were used for preparing landslide susceptibility model through frequency ratio and
30% locations for validating the model (Fig. 2).

3.2 Landslide-Conditioning Parameters

Thematic layers of slope, aspect, geology, soil type, lineament density, drainage
density, and land use/land cover were integrated through frequency ratio model to
produce landslide susceptibility map. Slope is a significant factor for determination
of landslide. Higher slope angle exerts stress on the soil, leading to increase in
intensity of landslide occurrence. The slope map was derived from Cartsat-1 DEM
satellite data. Slope classes were categorized as low to high based on the steepness.
In order to understand lithology of the study area, a general geological map was
prepared with the help of Geological Survey of India (1998) map. Soil map of the
region was generated from National Bureau of Soil Survey and Land Use Planning
(1999) map for assessing influence of soil composition on landslide occurrence.
Automated DEM technique was used to extract surface streams of the study area.
Further, direction of surface flow determined through DEM surface was used to
obtain the flow accumulation dataset. The drainage of the study area was extracted
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Table 1 Frequency ratio of factors to landslide occurrence

Data layers Classes

Pixels
in
domain

Pixel
(%)a

Landslide
occurrence
points

Landslide
occurrence
points (%)b

Frequency
ratio b/a

Slope 0–15� 157,325 17.7 0 0.0 0.00

15–30� 202,487 22.8 1 0.6 0.03

30–45� 214,351 24.2 9 5.6 0.23

45–60� 79,648 9.0 23 14.4 1.60

60–75� 133,654 15.1 42 26.3 1.74

Above 75� 99,452 11.2 85 53.1 4.74

Drainage
density

High 172,216 19.4 65 40.6 2.09

Moderate 95,161 10.7 34 21.3 1.98

Low 106,994 12.1 21 13.1 1.09

Very low 512,546 57.8 40 25.0 0.43

Lineament
density

High 136,913 15.4 35 21.9 1.42

Moderate 77,948 8.8 25 15.6 1.78

Low 98,491 11.1 53 33.1 2.98

Very low 573,565 64.7 47 29.4 0.45

Geology Schist’s 218,948 24.7 65 40.6 1.65

Quartz-sericite
schist and
conglomerate

99,491 11.2 7 4.4 0.39

Porphyritic
coarse granite

398,835 45.0 86 53.8 1.20

Undifferentiated
fluvial sediments

169,643 19.1 2 1.3 0.07

Soil Typic hapludalfs 311,577 35.1 83 51.9 1.48

Typic
dystrochrepts

236,985 26.7 70 43.8 1.64

Aquic
udifluvents

86,536 9.8 0 0.0 0.00

Typic
udipsamments

132,781 15.0 0 0.0 0.00

Mollic hapludalf 119,038 13.4 7 4.4 0.33

Land
use/land
cover

Built-up 41,932 4.7 27 16.9 3.57

Paddy
cultivation

135,171 15.2 1 0.6 0.04

Jhum cultivation 20,795 2.3 16 10.0 4.27

Water body 3947 0.4 0 0.0 0.00

Vegetation 655,579 73.9 45 28.1 0.38

Barren land 29,493 3.3 71 44.4 13.34

Aspect North 104,854 11.8 19 11.9 1.00

North east 88,711 10.0 27 16.9 1.69

East 152,897 17.2 16 10.0 0.58

South east 68,965 7.8 19 11.9 1.53

South 119,789 13.5 20 12.5 0.93

South west 135,978 15.3 24 15.0 0.98

West 125,826 14.2 18 11.3 0.79

North west 89,897 10.1 17 10.6 1.05
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from flow accumulation dataset on 1:2500 scale. The drainage density was
calculated to understand the intensity of landslide zones. On screen digitization
was carried out to extract lineament from the satellite imagery using fractures and
fault lines. The lineament density map was prepared by taking 200-m radius from a
lineament. Land use/land cover has profound effects on the occurrence of landslides.
Land use/land cover map was prepared using supervised classification.

3.3 Landslide Susceptibility Model (Frequency Ratio)

Probability of future landslides occurrence is more in those areas with similar
conditions of past landslides (Lee and Talib 2005; Huang et al. 2015). Frequency
ratio model for landslides can be determined as the ratio of percentage of landslide
pixels and domain pixels of each class of causative factors (Lee and Sambath 2006;
Pradhan and Youssef 2010; Pourghasemi et al. 2013). The model can also be utilized
for establishing the relation of causal factors with the spatial distribution of landslide
occurrences and nonoccurrences (Lee and Sambath 2006; Pourghasemi et al. 2013).
Frequency ratio and landslide susceptibility index can be expressed as follows:

Fig. 2 Landslide inventory map of the study area
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Fr ¼ landslideoccuranceratio
arearatio

ð1Þ

LSI ¼
X

Fra ð2Þ

Where Fra is the frequency ratio of each causative factor type or range and landslide
susceptibility index (LSI) is the landslide susceptibility index. Frequency ratio for
each class of factors is shown in Table 1. If the value of frequency ratio is 1 or more
then the area is said to have high frequency of landslide occurrence.

3.4 Validation of the Map

The accuracy of the model was determined using receiver operating characteristics
(ROC) curves. Training dataset was used for determining success rate, while testing
dataset and susceptibility map provided prediction rate. Landslide susceptibility
assessment and frequency of future landslide occurrence were analyzed through
success rate and prediction rate curves, respectively.

4 Results

Higher susceptibility was found on hill slopes having a gradient of >60�. Steep slope
was observed in the south-western part where south facing slope had lesser vegeta-
tion density and high rate of erosion in comparison with the north-facing slope
(Fig. 3). Past landslide location map also showed similar pattern where south- and
east-facing slopes were found to have more susceptibility for landslides. Moderate
susceptibility areas were located on the slope with gradient values of 30� to 60�. Low
landslide susceptibility was found scattered in the study area due to low slope
gradients and surface materials with low tendency to cause landslide. Landslide-
free areas were found in the north-eastern part having plain surface morphology.

From the lithological perspective, high landslide susceptibility was found espe-
cially in south and south-western parts having schist lithology. Typichapludalf and
typicdystrochrept soil types covered large area and were susceptible to landslide
hazards due to their grain size. Moderate and high susceptibility areas were identified
within the vicinity of these soils (Fig. 4). Undifferentiated fluvial sediments were
found in the north, and eastern parts of the district did not experience landslides.
Aquicudifluvent and typicudipsamment soil types were found in the plain areas of
study area where flood occurred every year and thus were free from landslide
occurrence.

Distance from drainage and lineament were negatively related with landslide
occurrence. Intensity of landslide susceptibility decreased as the distance from the
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drainage and lineament increased. High and moderate susceptibility classes were
observed in those areas with high density of drainage and lineament (Fig. 5).

Vegetation cover had a significant resistance on landslide triggered by rainfall in
the study area. It covered large area due to irregular terrain and scattered settlement
(Table 2). Most of the built-up area and area under paddy cultivation were found in
the plain areas. A small proportion of built-up area is found in the hilly terrain and
was found susceptible to landslides. Barren land and Jhum cultivation along hill
slopes provide favorable conditions for landslide through the permeability of water.
These two classes of land uses were highly susceptible to landslides (Fig. 6). Marked
variations were observed in the spatial distribution of landslide susceptibility in the
study area (Fig. 7). Of the total area of the study area (2391 km2), about 4% area was
vulnerable to landslides. Of the total landslide-vulnerable area, 0.6% was found

Fig. 3 Layers of slope and aspect

Fig. 4 Layers of geology and soil

66 R. Ahmed et al.



under high susceptibility category, 1.3% under moderate, and 2.2% under low
category of landslide susceptibility (Table 3).

4.1 Validation

The accuracy of the model was assessed through the area under the ROC curves. LSI
values of all pixels were arranged in descending order to obtain the relative rank of
each predictor. The pixel values (100 classes) were plotted as cumulative percentage
on the y-axis. On the x-axis, LSI and landslide occurrence were plotted with
accumulated 1% interval. High susceptibility zones were explained by 50% in
success rate and 60% in prediction rate of all the landslides in 90%–100% (10%)
cell class. The moderate susceptibility zones were determined by 72% of the
landslides in the success rate and 80% in prediction rate in 80%–100% (20%) cell
class. Likewise, the class of 60–100% (40%) could explain 92% in success rate and
91% in prediction rate of all landslides classified as low susceptibility zones.

Fig. 5 Layers of drainage density and lineament density

Table 2 Areas under land
use/land cover classes in 2014

LU/LC Class Area (km2) Area in percentage

Built-up area 113.10 4.73

Jhum cultivation 56.60 2.37

Water body 9.68 0.40

Paddy cultivation 365.68 15.29

Barren land 79.36 3.32

Vegetation 1766.75 73.89

Total 2391.17 100

Source: Author’s calculation from Land Use Land Cover
Classification
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Nonsusceptibility zones were explained by 100% in success rate with cell class
range of 0%–100% (100%). The area under the curve was also assessed to determine
the overall efficiency of the model. The curve revealed that the prediction rate
(0.884) was found to be higher than the success rate (0.854) in the study area (Fig. 8).

5 Conclusion

The paper presented a methodology for preparing landslide susceptibility map.
Evidence was given from Karbi Anglong West district in Assam, India. Past
landslide locations were used for preparing landslide inventory map. These locations
were used for analyzing landslide susceptibility through frequency ratio model and
validating the susceptibility map. Slope, lineament, aspect, land use/land cover,
geology, soil, and drainage landslide-conditioning factors were selected to analyze
landslide susceptibility in the district. The integrated thematic layers of landslide
parameters and past landslide pixels were used to prepare landslide susceptibility
map through frequency ratio model. The susceptibility map showed high and
moderate susceptibility in areas having steep slopes. These slopes had high density
of drainage and lineament and were mainly utilized for practicing shifting

Fig. 6 Land use/land cover classes of study area in 2014
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agriculture. Low susceptibility areas were found scattered throughout the study area.
These areas possessed low slope gradient with low intensity of drainage and
lineament density. Success and prediction rates under ROC curve were found to
be 0.854 and 0.884, respectively. Thus, susceptibility map was found in tune with
past landslide events. The susceptibility map identified not only the landslide-prone
areas requiring immediate attention but also measured the susceptibility intensity
where efforts could be made to safeguard the local community from the hazard.

Fig. 7 Landslide susceptibility classes of study area

Table 3 Area under landslide
susceptibility in 2014

Susceptibility Area (km2) Percentage

Landslide-free 2290 95.79

Low 53.31 2.23

Moderate 31.89 1.33

High 15.29 0.63

Source: Authors’ calculation from susceptibility map
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The map may also help planners and decision makers in identifying housing sites
and planning of infrastructural development in the study area. Thus, the methodol-
ogy adopted in this study can help in analyzing landslide susceptibility in different
landslide-vulnerable geographical regions at various scales.
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Retreating Glacier Dynamics Over the Last
Quarter of a Century in Uttarakhand
Region Using Optical Sensor Time
Series Data

Himanshu Kalita, Tapan Ghosh, Meenu Rani, J. S. Rawat,
Ram Kumar Singh , Susheel Kumar Singh, and Pavan Kumar

Abstract The Uttarakhand glaciers have been melting over the last half of a
century. Local climatic variation has influenced the glacier retreat but these phe-
nomena do not appear to affect the glacier health over long period of time. The
increased availability of geospatial technology, global coverage and very low finan-
cial costs allows for fast, semi-automated, and cost-effective assessment of changes
in glacier parameters over large areas. Geospatial technology allow for regular
monitoring of the properties of Uttarakhand glaciers such as terminus position and
ice extent from which glacier mass balance can be inferred. Geospatial technology is
the only technique that can help to determine it using different platform like space-
borne and air-borne sensors. The basic semantic characterization of geospatial
technology is primarily used for spectral characterization in Uttarakhand glacial
and depicting snow and ice top. Semi-automated geospatial technique helps in
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processing all data collected from on-board and off-board systems. This research
analyzed the Normalized Difference Snow Index (NDSI) for showing snow cover
delineation area and Normalized Difference Vegetation Index (NDVI) for vegetation
cover delineation. The study aim to refer the changes from 1994 to 2015 and
detected for snow and vegetation changed over quarter of the century. The study
will helps to determine glacier dynamics and its kinetic change rate and also useful to
global level studies and snow change detection.

Keywords Glacier dynamics · Climate change · NDSI · NDVI

1 Introduction

One of the largest collections of glaciers of 9600 glaciers cover 33,000 km2

(Dyurgerov and Meier 1997) in the Indian Himalayas (Raina and Srivastava
2008). The Indian Himalayan mountain has experienced widespread accelerated
recession (area and length), detachment, fragmentation, and mass loss with above
average warming over the last quarter of century (Shukla and Qadir 2016;
Haritashya et al. 2006; Bhutiyani 2016; Kumar et al. 2008; Raina 2004; Ratan Kar
et al. 2002; Kulkarni and Karyakarte 2014; Schickhoff et al. 2016; Bolch et al. 2019;
Zemp et al. 2009). The rising consumption of global energy due to emission of
greenhouse gases mainly caused by anthropogenic activities (Berthier et al. 2010;
Bhambri et al. 2012). Several studies conducted in the Indian Himalayan glaciers
suggest irregular glacier response patterns and spatial variability across the
Uttarakhand Himalayan mountain (Kumar et al. 2009; Azam et al. 2018; Berthier
et al. 2007; Kääb et al. 2015).This spatially variable glacier response is associated
with the spatial variability of changing climatic circumstances such as precipitation
and temperature trends with geomorphic factors. The major spatial variabil-
ity includes thickness of debris cover, slope of glacier bed, slope aspects, glacial-
lake activities and glacier geometry (Singh et al. 2008; Khopkar et al. 2013;
Venkatesh et al. 2013; Bhambri and Bolch 2009; Nainwal et al. 2016; Lu et al.
2005; Shukla and Qadir 2016).

Several studies have also demonstrated difficulties in mapping the glacier due to
debris-covered portions and in mixed accumulation zones of glaciers. Normalized
Difference Snow Index (NDSI) (Sidjak and Wheate 1999; Andreassen et al. 2008;
Raina 2010; Hall et al. 2002; Deota et al. 2011; Tong and Velicogna 2010), object-
based classification (Gao et al. 2007; Rastner et al. 2013; Csatho et al. 1999; Robson
et al. 2015; Rastner et al. 2014), Principal Component Analysis (Dedieu et al. 2013;
Sagredo and Lowell 2012; Sidjak and Wheate 1999; Sidjak 1999; Sibandze et al.
2014), and band rationing (Pandey et al. 2011; Karimi et al. 2012a, b; Bajracharya
et al. 2014; Atif et al. 2016; Hall et al. 1987; Raj and Babu 2011; Paul and Kääb
2005; Parrot et al. 1993; Haq and Jain 2012) have been used for assessment of
Himalayan glaciers. However, procurement of suitable threshold values from several
approaches to map glaciers still remains a prominent test. Validation of assessment
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of Himalayan glaciers derived through remote sensing data was also attempted with
field-based data having utilized several automated and semi-automated method for
retrieving glaciers (Zemp et al. 2015; Racoviteanu et al. 2009; Huss et al. 2017;
Smith et al. 2015; Paul et al. 2013; Giesen and Oerlemans 2013; Bolch et al. 2007;
Marzeion et al. 2017). Many studies have shown effectiveness of vegetation indices
in analyzing relationship between vegetation and snow. Snow cover information can
be derived from optical remote sensing data. The most accurate and conventional
approach is manual delineation (on-screen digitization) based on field measurements
for glacier mapping in the deeply debris-covered ablation and various mixed accu-
mulation zones, but such methods are costly, time-consuming, and involve high man
power. Geospatial techniques have been extensively used to collective information
and to examine snow cover at large scales. Therefore, integrating remote sensing and
GIS technique can help in snow cover mapping (Fallourd et al. 2011; Parajka and
Blöschl 2008; Huang and Li 2011; Liang et al. 2008; Karimi et al. 2012a, b; Klein
and Barnett 2003; Linsbauer et al. 2012; Walker et al. 1993; Paul and Linsbauer
2012; Strozzi et al. 2002).

The emphasis of the present study is on the Uttarakhand glaciers, which has been
subjected to satellite data and field investigation-based monitoring for over the last
quarter of a century. Studies reveal that NDSI is a useful index for discriminating
snow and clouds as clouds show even high reflectance in the SWIR region. We
observed that there is a non-existence of comprehensive study, high-resolution
recent satellite images to evaluate the recession of the Uttarakhand glaciers. We
also analyzed that spectral curve plays significant roles to discriminate among snow,
vegetation, barren land, and water bodies using geospatial datasets. Therefore, in the
present study, we aimed at retreating glacier dynamics and their assessment using
time series satellite data of the Uttarakhand glaciers based on ground survey data
historical maps and optical satellite data.

2 Material and Methodology

2.1 Study Area

Uttarakhand glaciers of the Himalayas are for their beauty. Here we focused on the
Uttarakhand glacier region (Fig. 1) extending between 29�2703000N to 31�29030 00N
latitudes and 77�5304000E to 81�1105500E longitudes. The total glacier region area of
Uttarakhand is 30,636 km2. High peaks and glaciers of wide variety cover the most
northern part of Uttarakhand. The Himalayan range has a southern slope covering
the entire vegetation and very steep elevation; Uttarakhand is situated in the sub-
tropical forest zone region. The main hill combination found in Uttarakhand is the
Northern Kumaun region and Western Garhwal region. Some of the river basins that
originated from Uttarakhand are Ganga (Gangotri) and Yamuna (Yamunotri). The
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two most holy places in Hindu mythology are also to be found in Uttarakhand, i.e.,
Badrinath and Kedarnath. Glaciers are also to be found here and include Pindari,
Gangotri, Milam, and Bunderpuuch. Some other names of popular glaciers found
here are Sunderdhunga Ralam, Kaphinni, Dokhriani, Doonagiri, and Khatling.

2.2 Data Used

The Landsat satellite program, a space operation jointly done by NASA and USGS,
is the longest and most durable global dataset of Earth’s pure surface. Mostly,
Landsat is widely used to optimize spectral bands with track efficiency for land
use monitoring. The ground resolution of Landsat was documented for orthodox use
of climate change detection, monitoring wildfire, urbanization planning, drought
capture and so many man-based activities, which indicates danger for natural
surface. In this study, we used the 1994 as well as 2015 Landsat data for smoother
detection with decadal change. Landsat-5 data with Thematic Mapper (TM) sensor is
specifically used for the 1994 dataset. The TM imagery mainly consists of seven
spectral bands, with a resolution of 30 m for the specific band of bands 1–5 and band
seven. Band 6 consists of 120-m resolution resample, with 30-m pixel level data

Fig. 1 The location of the study area
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being a thermal infrared band. The main use of TM band in Landsat imagery is to
determine ice degradation due to glacier loss for temperature factor or melting. For
the 2015 dataset, we used Landsat 8 data, which is suitable for all land imager
operation and capable with two thermal infrared sensors. The Operational Land
Imager (OLI) and Thermal Infrared Sensor images consist of nine different bands
with spectral signature with 30-m resolution for all. Landsat 8 dataset is highly useful
for coastal area operation, aerosol detection, and cirrus cloud-based operation
(Table 1).

2.3 Data Calibration

Radiance, reflectance, and atmospheric conditions affect the digital number
(DN) values of Landsat satellite data. Radiometric calibration employs algorithms
that improve satellite data. This is done by converting the DN values to spectral
radiance, and then to reflectance followed by the removal of atmospheric effects.
Dataset validation is approached with this empirical system, and image processed is
washed-out to this algorithm. The main aim of this algorithm is to calibrate the
obtained product with the bottom of the atmosphere reflectance as well as aerosol
and water content in the vapor form. During the ortho-rectification process, the
topography is corrected using the empirical system and calibration over the in-orbit
phase discrepancy.

Actually, the empirical-based formula for Top of the Atmosphere (TOA), which
can be determined by ρ, is calibrated for the other parameters having spectral band
(k) and for each and every pixel image form (i, j) with the attrite of a digital counter
number. This TOA conversion is followed by an empirical formula where the
numeric equalized digital count for each pixel value (CNk,NTDI) is multiplied with
vbπ. The values for π is constant as universal constant value and other coefficient
term is numerically sustained. This multiplied value is then divided by another
empirical term. This empirical term is the multiplication of several constant values

Table 1 Specification and acquisition time of data used

Data Spatial resolution No. of bands Path/Row Date of acquisition

Landsat TM 30 m(MSS),
120 m (thermal)

6 (MSS),
1 (thermal)

144 39 October 2, 1994

145 39 October 9, 1994

146 38 September 30, 1994

146 39 September 30, 1994

Landsat-OLI 30 m (MSS),
30 m (thermal)

8(MSS)
2 (thermal)

144 39 October 2, 2015

145 39 October 20, 2015

146 38 October 10, 2015

146 39 October 10, 2015
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and some vector emption. This multiplication follows θs (the solar direction by its
zenith angle), and its cosine value multiplied by Es, i.e., solar terrestrial spectrum and
Ak [absolute calibration of instrument (sensor)]. Again, the entire term is differenti-
ated with respect to the Sun–Earth distance correction variable and d(t) with respect
to the digital pixel count.

The numeric form is captualized in equation number (1) as follows:

ρk i, jð Þ ¼ vbπ � CNk,NTDI i, jð Þ
Ak,NTDI � Es � d tð Þ � cos θs i, jð Þð Þ ð1Þ

Again, the term Sun–Earth distance correction variable, i.e., d(t) comes under a
differentiation term that undergoes inverse multiplication of the present Julian date
for image-taking sensors (t) multiplied by two another constant values: the eccen-
tricity of the Earth’s orbit (0.01673) and the angular velocity of the Earth
(Ve ¼ 0.0172).

d(t) can be presented mathematically and is shown in equation number (2) as
follows:

d tð Þ ¼ 1

1� 0:01673 � cos 0:0172 � t � 2ð Þð Þ2 ð2Þ

2.3.1 Digital Number to Radiance

The Digital Number (DN) values are converted to radiance values for the four bands
in case of Landsat TM imagery, which is used in this research paper for the 1994
dataset. The bands that had undergone DN to reflectance are Blue, Green band,
SWIR band, and thermal band of imagery. The Spectral Radiance of the sensor’s
aperture is termed as Lλ, and the unit is W/(m2. sr. μm). This Lλ is coined by the
addition of two empirical values (Paul and Linsbauer 2012). The first tem is
sophisticated by the subtraction of Maximum Spectral Radiance (Lmax) from
Minimum Spectral Radiance (Lmin), which is then multiplied by quantized cali-
brated pixel value in DNs (Qcalmin and Qcalmax). The second term is Spectral
Radiance, which is scaled toW/(m2. sr. μm), i.e., LMINλ. Then both these values are
added for resultant empirical results.

The empirical formula for the said description of the 1994 dataset to conversion
of DN to radiance is shown in Eq. (3) as follows:

Lλ ¼ LMAXλ � LMINλ

Qcal

� �
Qcal þ LMINλ ð3Þ

Again, for the 2015 dataset, we used Landsat-OLI imagery. This dataset value is
determined for radiance conversion from DN values using Blue, Green, SWIR, and
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thermal bands of master data, i.e., 2015 dataset. The Spectral Radiance Lλ for this data
is measured as the addition of two different terms (Dedieu et al. 2013; Nainwal et al.
2016). The first term is the multiplication of Multiplicative Band Index for radiance
value and pixel value in DN applause (Qcal). The second term of the addition formula
is the Additive Band of Radiance value (AL). The metadata of the master imagery
provides all these necessary information to calculate the radiance value.

The abovementioned term is numerically coined for the 2015 dataset and shown
in Eq. (4) as follows:

Lλ ¼ ML � Qcal þ AL ð4Þ

2.3.2 Radiance to Reflectance

The radiance was converted to reflectance with a unitless conversion for planetary
reflectance (pλ). This pλ is a numerical formula that is formed by the division of two
factors (Hock 2014; Smith et al. 2015; Atif et al. 2016). The numerator is the multipli-
cation product of π with Spectral Radiance of the sensor’s aperture (Lλ) and the Earth–
Sun distance (d). The denominator is again the multiplication product of the mean value
for solar exo-atmospheric aperture (ESUN) and the cosine value of the Sun Zenith Angle
in degree unit (θs).

This can be shown in Eq. (5) as follows:

pλ ¼ π � Lλ � d2=ESUNλ � cosθs ð5Þ

On the other hand, for the 2015 dataset Landsat imagery, the OLI-based reflec-
tance is used. Here, reflectance from the radiance value ( pλ) is an additional term for
two different numeric characters (Smith et al. 2015; Atif et al. 2016). The first
character is the multiplication product of reflectance multiband (Mp) with pixel
value for quantized and calibrated standard product of sensors (Qcal). The second
character is the reflectance additive band for the sensors (Ap).

This is mathematically expressed in Eq. (6) as follows:

pλ ¼ Mp � Qcalþ Ap ð6Þ

2.3.3 Radiance to Brightness

The radiance value was converted to brightness value. Brightness value (τ) is the
sum of two characters, where the first one is a variable and the second is a constant
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with a value 1. The denominator is the logarithmic value of (K1
T ) multiplied by

Spectral Radiance of satellite sensor’s aperture (Lλ), where K1 is the calibration
constant 1 and T is the effective temperature of surface reflectance (Robson et al.
2015; Kaser et al. 2006).

The above can be shown in equation (7):

τ ¼ K2=In K1=Tð ÞLλ þ 1 ð7Þ

2.4 Indices

Two indicators, namely Normalized Difference Vegetation Index (NDVI) and
NDSI, were derived to examine the relationship between biophysical characteristics
of snow and vegetation. The technique of rationing bands involves dividing the
spectral response value of a pixel in one band with the spectral value of the
corresponding pixel in another band.

2.4.1 Normalized Difference Vegetation Index

NDVI is a measure of monitoring changes in vegetation. It gives the assessment of
the healthy vegetation cover. Chlorophyll is naturally present in trees and it is a
natural sign of vegetation. NDVI is primarily analyzed for predicting vegetation
cover. The higher values of NDVI confine a larger dissimilarity in Red and NIR band
where low NDVI value indicates liss chlorophyll content in the vegetation. Water
is also very less reflecting to NIR but less absorption to Red band. So NDVI
provides details information of vegetation cover and water chlorophyll activity.
The earliest reported use of NDVI in the Great Plains was a study by Rouse et al.
1974 (Table 2).

NDVI ¼ NIRreflectance � REDreflectance=NIRreflectance þ REDreflectanceð Þð ð8Þ

Table 2 Threshold value for
NDVI-based classification

NDVI-based classification Value of threshold

Bare area <0.1

Soil 0.1–0.2

Grass and scrubs 0.2–0.3

Vegetation >0.3
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2.4.2 Normalized Difference Snow Index

NDSI is effective in mapping snow and non-snow cover area using the reflectance
values of snow. Normally, snow shows very high reflectance in visible regions and
appears white, while in SWIR regions, it has very low reflectance and generally
appears black. The algorithm (9) uses SWIR and Green band for evaluating NDSI.
Hall et al. (2001) developed NDSI.

NDSI ¼ Greenreflectance � SWIRreflectance=Greenreflectance þ SWIRreflectanceð Þ ð9Þ

NDSI is a useful index for discriminating snow and clouds as clouds show even
higher reflectance in the SWIR region. NDSI values also have been used to identify
snow or non-snow pixels under mountain shadow regions to some extent. Threshold
values used for classifying snow are listed below (Table 3).

3 Results and Discussion

The glacier area of Uttarakhand is rapidly changing due to different atmospheric
phenomena. Mountain systems have recently attracted unprecedented global atten-
tion because of vulnerabilities highlighted by receding glacier and growing glacial
lakes, which are indicators of climate change. Climate change is producing greater
temperature changes at higher altitudes, and most glaciers in the Uttarakhand region
are shrinking and retreating rapidly.

3.1 Spectral Curve

As shown in Fig. 2, the reflectance value of snow under visible band is higher than
other wavelenghts because visible band reflect more radiation under snow and barren
land. Reflectance value of vegetation is high under visible (R) and NIR (0.6–1.5)
band because chlorophyll strongly absorbs energy.

Table 3 Threshold value for
NDSI-based classification

NDSI-based classification Threshold Value

Water body, barren land <0.4

Granular snow 0.4–0.5

Moderate snow 0.5–0.6

Clean snow >0.6
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In 2015 image, spectral reflectance of vegetation increases from 0.8 (NIR) due to
the forest fire in some of this region, which suppressed the properties of vegetation
(such as chlorophyll and water content in leaves).

3.2 Histogram

Histogram of Landsat imagery shows the number of pixels at a certain DN value. We
obtained four major peaks from the histogram (Fig.3) of two Landsat data (1994 and

Fig. 2 Spectral curve of snow, vegetation, barren land, and water body

84 H. Kalita et al.



2015). These histograms helped us in image interpretation and image classification
for choosing possible classes. After visual interpretation, we identified four major
classes: snow, vegetation, barren land, and other land.

3.3 Normalized Difference Vegetation Index

NDVI values varied from �0.600231 to 0.748215, with a standard deviation and
mean of 0.17 and 0.11, respectively (Fig. 4). Almost 97% NDVI values were

Fig. 3 Frequency Distribution Curve of 1994 and 2015 data
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positive (closer to +1), which indicated healthy vegetation in STR. The central part
of the study area was dotted with healthy vegetation. To determine the density of
greenness on a patch of land, it is important to observe the distinct colors of visible
and near-infrared sunlight by plants. If the reflectance of light in near-infrared

Fig. 4 Color-coded Normalized Difference Vegetation Index
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wavelength is more than that in the visible wavelength, vegetation in that pixel is
likely to be dense. Light green areas show dense vegetation and dark blue areas show
less/no vegetation (such as barren land, soil, water body, etc.).

We used threshold values to reclassify NDVI image, which is given below
(Table 4).

The resulted forest cover for 1994 was 10,558 km2. Here, the area is calculated by
multiplying the total histogram value under the threshold value. Similarly, the forest
cover for 2015 was 11454 km2 after applying the threshold 0.25.

3.4 Normalized Difference Snow Index

We cannot delineate glacier and non-glacier (water body, snow, etc.) areas from the
resulted NDSI image. NDSI image (Fig. 5) suggests that this index either over-
estimates the delineation of snow area or underestimates the zone.

In this case, we have applied the threshold values of snow and non-snow area for
mapping the glacier region (Table 5).

The snow cover area for 1994 data was 4717.89 km2, and for 2015, the area was
calculated to be 3340.62 km2 (Similar to NDVI).

3.5 Zonal Change

Changes to snow and vegetation from 1994 to 2015 were monitored. The changes
are highlighted (Fig. 6) and stored according to the amount of change detected,
making the result highly efficient. After calculation, we observed change in vegeta-
tion area as 896 km2 and change in snow area as 1377.27 km2 during 21 years.

Table 4 Threshold value for
timber-covered area

Year 1994 2015

Range
(NDVI)

�0.600231 to 0.748215 �0.470545 to 0.764391

Threshold
value
(NDVI)

0.5155 0.62
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Fig. 5 Color-coded Normalized Difference Snow Index
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4 Conclusion

The study was conducted in the Uttarakhand state of Central Himalaya located in the
foothill zones of the Kumauni Lesser Himalaya. NDSI and NDVI maps were
generated from optical satellite data, which can be used to extract information
about snow, vegetation, soil, and other land. NDSI value remains consistent with
discrepancies between slope and aspect. We got a drastic change in vegetation area
(1994–2015) of 896 km2 and change in snow area of 1377.27 km2.This study
indicates that the atmosphere in the Himalayas has undergone significant changes
since 1994. Vegetation ingression was noticed in higher altitudes that were previ-
ously under snow and ice. The results clearly show that the glacier area in the
Uttarakhand region is decreasing at a rapid rate and that individual glaciers are
shrinking, retreating, and fragmenting. This paper uses a technique based on NDVI

Table 5 Threshold value for
snow-covered area

Year 1994 2015

Range
(NDSI)

�0.684225 to 0.907898 �0.470545 to 0.764391

Threshold
value
(NDSI)

0.48 0.62

Fig. 6 Zonal change from 1994 to 2015
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and NDSI, which help us obtain information about the vegetation in visible and NIR
band reflectance and about snow in Green and SWIR band reflectance in the
Uttarakhand glacier region, which consists of rugged terrain, contaminated snow
and patchy snow, snow under forest, etc. Therefore, the result of this study demon-
strated the potential of optical satellite imagery to map the actual area of Uttarakhand
glaciers.
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Growth Management



Studying the Impact of Urbanization
on HYV Rice Fields at a Local Level Using
Fine Resolution Temporal RISAT-1
Datasets

Koel Roychowdhury

Abstract In 1950, there were around 740 million people living in urban areas,
which was predicted to increase to more than 2.5 billion by 2050. One of the most
pressing challenges of rapid urbanization lies in providing adequate food to inhab-
itants. The current research estimates the high-yielding variety of rice fields vulner-
able to conversion to non-farm uses around sprawling urban settlements. Rice fields
were delineated by polarimetric decomposition on RISAT-1 (FRS-1) datasets.
Overlapping the rice fields on hotspot zones, classified using Getis-Ord G statistic,
it was observed that 40% of hotspots are rice fields. More fields are vulnerable
around municipalities than those around newly declared census towns. Also, rice
fields around densely populated settlements are more prone to conversion (more than
50% of hotspots are rice fields) than those around less populated ones (around
35.5%). The research successfully proposes a method to identify areas in need of
special attention to prevent unplanned urban expansion negatively affecting rice
production and leading to a lack of food security in the region.

Keywords RISAT-1 · polarimetry · hot spot analysis · rice · urbanization ·
conversion of land

1 Introduction

Rice is the most important staple food for more than half of the global population,
90% of which are produced in Asia (Hellerstein and Vilorio 2019). India is the
second largest producer of rice (Farmers’ Portal 2015). After the green revolution
during 1960s, high-yielding variety (HYV) seeds were introduced in Indian agricul-
ture (International Rice Research Institute 2014). Use of these varieties not only
resulted in higher yields, they produced crops all-round the year with the help of
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mechanization and irrigation. However, large portions of agricultural lands have
become unusable in developed and developing countries under the adverse influence
of natural factors including climate change, soil erosion, and salinization (Amundson
et al. 2015), especially man-made factors such as urbanization (Martellozzo et al.
2015; Pandey and Seto 2015; Skog and Steinnes 2016; Achhami Abhusan et al.
2019). The impact of settlement expansion on agricultural lands has been widely
mapped and monitored using earth observation techniques (Pandey and Seto 2015;
Su et al. 2011; Zhong et al. 2014). Images captured by Landsat (Nong et al. 2015;
Tang and Di 2019) and MODIS (Pandey et al. 2013) were used to study settlement
growth processes and their impacts on farmlands at regional scales. Census data
along with night-time light images helped in identifying the effects of urbanization
on agricultural lands in India (Gibson et al. 2015; Pandey and Seto 2015). Most
recent studies have reported the fragmentation of agricultural lands due to increased
urban sprawl (Li et al. 2019a, b; Oueslati et al. 2019). However, not much informa-
tion on the types of crops affected by urban expansion has been available in previous
studies. The aim of this paper is to identify areas under HYV rice cultivation, which
are vulnerable to conversion due to expansion of neighboring settlements at a local
scale.

2 Material and Methodology

2.1 Study Area

The research was conducted in the lower alluvial plains of the Bhagirathi Hoogly
River (Fig. 1). It extends from 88.16� E, 22.96� N to 88.13� E, 22.37� N covering an
area of 93,090 hectares. The area stretches over parts of the districts of Haora, Hugli,
and South 24 Parganas of West Bengal in eastern India. Rice is the most dominant
food crop of West Bengal, covering more than 70% of the cropped area of the state
(Planning Commission 2010). Three varieties of rice are grown in this region: Aus,
Aman, and Boro. Boro rice is a HYV of rice. It is grown between November and
May. This type of rice is cultivated in low-lying areas and requires irrigation for
additional supply of water. The district of Haora is one of the largest rice-producing
districts of West Bengal, while Hugli and South 24 Parganas are medium producers
of rice (Planning Commission, 2010). There are two municipalities (Pujali and
Maheshtala) with a total population of more than 30,000 persons and nine census
towns (Jagatballavpur, Mansinhapur, Kesabpur, Ramchandrapur, Mallik Bagan,
Panchla, Tehatta, Raghudebpur, and Shyampur) with a total population of more
than 5000 persons in the study area.
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2.2 Data Used

Since 1990s, microwave remote sensing data have been introduced in rice crop
mapping. Images acquired by ERS 1 (Kurosu et al. 1997) and 2 (Liew et al. 1998),
RADARSAT 1 and 2 (Choudhury and Chakraborty 2006; Shao et al. 2001), ENV
ISAT ASAR (Chen et al. 2007), ALOS PALSAR (Zhang et al. 2009), and Sentinel
1 data (Dimov et al. 2016; Guccione et al. 2014; Nguyen et al. 2016; Torbick et al.
2017) have mostly been used for these studies. Since 2012, RISAT-1 hybrid
polarimetric data (Haldar and Gopalan 2017; Sivasankar et al. 2015a; Uppala et al.
2015) have also proved useful for identification of rice fields in India. Analyses of
temporal backscatter during the growing season and polarimetric decomposition of
radar images are useful for paddy identification.

This paper uses temporal fine resolution Single Look Complex hybrid polarimet-
ric Radar Imaging Satellite-1 (RISAT-1) data for delineating areas under HYV rice
cultivation. Fine Resolution Stripmap Mode-1 (FRS-1) data were used to identify
HYV rice fields. FRS-1 data has a swath of 25 km and a 3-m resolution (Kramer
2002). The images are recorded in C-Band of the electromagnetic spectrum with a
frequency of 5.44 GHz. A hybrid SAR transmits at circular polarizations and
receives at horizontal and vertical polarizations (RH and RV). It is a special case
of compact dual-polarization mode. The data used in this research were obtained for
the months of December and February. This is the peak HYV rice-growing season in

Fig. 1 Study area (a) India; (b) West Bengal; (c) Selected taluks with the case study
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the region. The details of the RISAT 1 datasets used for the study are presented in
Table 1.

To identify rice fields, the overlapping areas of the images were considered for
analyses in this study. In the overlapping region, all the parameters associated with
identifying the various stages of growth of paddy plants were identifiable for the
months of December and February, which helped in proper delineation of the fields.
Landsat 8 data collected during the month of December 2015 was used to delineate
the extents of settlements in the study area.

2.3 Methodology

The method undertaken in this research is broadly divided into three categories
including the Processing of RISAT-1 data and identification of rice fields,
Processing of Landsat datasets for delineating settlements in the study area, and
hotspot analyses for demarcating the most vulnerable rice fields.

2.3.1 Processing of RISAT-1 Data

Rice fields were extracted from the RISAT 1 images by means of polarimetric
decomposition. The fields were delineated by performing m-δ decomposition or
Raney decomposition on the images. This method was proposed by Raney (Raney
2006). Raney decomposition method requires Stokes’ parameters and Stokes’ child
parameters as inputs. Stokes’ parameters were calculated for all images. These
included a set of values that characterize the polarization state of the backscatter
signal from two coherent mutually perpendicular receiving signals (Sivasankar et al.
2015b). They were calculated using the formula below:

Table 1 Specifications of RISAT-1 data used

Product ID
Incidence
Angle Polarization Node

Sensor
Orientation

Date of
Capture

172,805,031 32.18 RH and
RVa

Ascending Left 24/2/2016

172,805,041 32.17

172,805,071 33.72 11/12/2015

172,585,081 33.72
aRH: Right hand circular polarization, horizontal; RV: Right hand circular polarization, vertical
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In each case, ERH represents complex voltage received by the channel with right-
circular transmit and horizontal receive, ERV represents complex voltage received by
the channel of right-circular transmit and vertical polarization receive, * indicates
complex conjugate, <. .. > denotes ensemble average, and Re and Im represent the
real or the imaginary value (respectively) of the complex image.

Stokes’ child parameters such as degree of polarization, degree of circularity, and
relative phase were calculated for this study. They were obtained using the formulas
below:

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21 þ s22 þ s23

p
s0

0 � m � 1 ð2Þ

δ ¼ tan �1 s3
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� �
� 180

� � δ � 180
� ð3Þ

sin 2χ ¼ �s3
ms0
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Stokes’ parameters and child parameters were then used for performing m-δ
decomposition on the images. In this process, the total intensity is first partitioned
into completely polarized and un-polarized parts using degree of polarization (m).
The un-polarized part is considered as volume component and the polarized part is
again divided into even and odd bounce component using δ. The following are the
equations used to estimate the scattering decompositions:

f odd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0XmX

1þ sin δð Þ
2

r
ð5Þ

f even ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0XmX

1� sin δð Þ
2

r
ð6Þ

f volume ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0X 1� mð Þ

p
ð7Þ

In the next step, degree of polarization (m); degree of circularity (χ), and relative
phase (δ) images for all the months were layer stacked and passed through red,
green, and blue channels, respectively. Similar composite images were also created
using volume, odd, and double bounce scattering information. A K-means clustering
method (Lillesand et al. 2015) was used to identify the various classes from the layer
stacked images. Forty clusters were calculated initially with a convergence threshold
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of 0.99. The clusters were grouped to four classes, namely rice, other agriculture,
settlements, and water bodies. The classification was evaluated using 100 ground
control points distributed over the study area. Measures of classification accuracy
including overall accuracy, omission, and commission errors were derived using
confusion matrices.

2.3.2 Processing of Optical Images

In order to identify the nature of settlement expansion in the area, Landsat image
captured in December 2015 over the study area was analyzed. The image was
classified using the minimum-distance-to-mean method (Lillesand et al. 2015). In
this method, the average spectral value in each band is calculated, which comprises
the mean vector for each class. Unknown pixels are classified by computing the
distance between its value and the mean of each category. Training sample datasets
were created. The images were then classified using these training samples. The
images were classified into three classes: settlements, agricultural lands, and water
bodies (including river and canals). Settlements were extracted from the image for
further investigations. The accuracies of the classification for the respective images
were tested on 100 random points from Google Earth application.

2.3.3 Hotspot Analyses

Hotspot analysis was conducted on the classified Landsat image of 2015. Areas at
greatest risk of conversion were identified with the help of this process (Getis and
Ord 1992). A nearest neighbor hierarchical clustering method is used in this analysis
to identify spatial clusters. These clusters are statistically significant and represent
areas of high values (hot spots) and low values (cold spots). The resultant Z scores
and p-values represent the areas where features with either high or low values cluster
spatially (Qiu et al. 2015). The method of ‘fixed distance’ was used to define
neighbors. Hotspots at threshold values of 250 m were modeled (approximately
the distance between two settlements in the area).The impacts of expansion of built-
up areas on nearby HYV rice fields were examined up to a distance of 2 km from
each settlement. A buffer zone was delineated at a distance of 2 km from each
settlement center. Beyond 2 km, the buffer zones of adjacent settlements were
intersecting with each other. In order to estimate the impact of individual settlement
on its neighboring rice fields, only hotspots within the 2-km buffer zones were
considered.
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3 Results and Discussion

3.1 Identification of Rice Fields from Polarimetric
Decomposition

Figures 2a, b show the fields as obtained from layer stacking of m, chi (χ), and delta
(δ) images. Volume, odd, and double bounce scattering images were also layer
stacked (Fig. 2c, d). The rice fields appear as green patches (Fig. 2a, b) and blue
patches (Fig. 2c, d) distributed over the study area. The fields are conspicuously
identifiable, especially in the month of February, when the Rabi plants are in the
mature stage. In the initial stages of growth, the degrees of polarization over rice

Fig. 2 Rice fields as identified in the study area from: (a) m-chi-delta for December; (b) m-chi-
delta for February; (c) Volume-odd-double bounce scattering for December; (d) Volume-odd-
double bounce scattering for February
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fields are more than 0.2. During this time, high volume scattering (0.3–0.5) was
noted over the fields. In February, the values of volume scattering decreased from
0.2 to 0.4. Double bounce is more in the month of February than in the month of
December over these areas.

Hundred ground control points (Fig. 3a) randomly distributed over the study area
were collected for assessing the accuracy of classification (Table 2). The results are
presented in Table 3. Producers’ accuracy indicates how well the training set pixels
of a given class is classified. Users’ accuracy, on the other hand, indicates the
probability that a pixel classified into a given class actually belongs to that class
on the ground (Bhatta et al. 2010).

Fig. 3 (a) Test sites; Rice fields as obtained from (b) classified RISAT-1 data

Table 2 Results from Accuracy Assessment of classified RISAT-1 data (2015 and 2016)

December February

Users’ Accuracy Producers’ Accuracy Users’ Accuracy Producers’ Accuracy

Non-Rice 80.65 60.98 52.17 60.00

Rice fields 76.81 89.83 89.61 86.25

Table 3 Results from
Accuracy Assessment of clas-
sified Landsat data

December 2015

Users’ accuracy Producers’ accuracy

Settlements 100 90

Agricultural lands 69 96

Water bodies 100 80

104 K. Roychowdhury



The overall accuracies of classification of RISAT-1 data for the months of
December and February are 78% and 81%, respectively. The highest users’ accuracy
for the rice fields was obtained from the classified image of the month of February.
During this time, the HYV rice is in the mature stage and the fields can be easily
identified from the images (Fig. 3b).

3.2 Identification of Settlements from Landsat Images

The accuracies of the classification of Landsat images were tested on 100 random
points using Google Earth application (Table 3).The overall accuracies, users’
accuracies, and producers’ accuracies are presented in Table 3. The overall accuracy
of classification was 84% for the image obtained from December 2015. The user’s
accuracy of settlement class was around 90% in the classified image of 2015.
However, relatively high producer’s accuracy was obtained for the settlement
class, suggesting that omission errors are not significant for this class. Comparatively
higher user’s accuracies were also noted for the water and agricultural classes. The
producer’s accuracy for the water class was 100% in the classified image of 2015.

3.3 Identifying Settlement Expansion on Adjacent Rice Fields

The impact of settlement expansion on the adjacent rice fields was studied around the
urban centers in the study area. It was also observed that the areas of vulnerable rice
fields around settlements are strongly correlated with their population density
(Table 4). Settlements with high population density (persons per square kilometer)
have more rice fields in the hotspot zones around them.

Table 4 Correlation between areas of rice fields in hotspot zones (hectares) and the areas under
hotspot zones (hectares)

Census Towns Rice in hotspots (hectares) Population density (persons/km2)

Jagatballavpur 58.92 1667

Mansinhapur 62.02 3532

Kesabpur 290.57 5051

Ramchandrapur 409.62 9784

Mallikbagan 183.6 2244

Panchla 118.73 5861

Tehatta 72.97 4916

Raghudebpur 151.79 2707

Shyampur 140.61 2172

Maheshtala 389.17 10,148

Pujali 203.44 4453
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Pujali is a small municipality with a population density of 4453 persons per km2

in 2011. The distribution of hotspots around 2 km from Pujali is shown in Fig. 4.
Intersecting the rice fields with the hotspots, it was noted that most of the rice fields
coincide with the hotspot zones with z square values between 1 and 2 standard
deviations (Fig. 4b). Any expansion of built-up areas in these zones will affect
approximately 203.44 hectares of HYV rice fields. The population density of
Maheshtala, another municipality in the area, was 10,148 persons per km2. Any
further expansion of the city in these zones will affect approximately 389.17 hectares
of the neighboring HYV rice fields (Fig. 5b).

Hotspots with GiZscore values between mean and 1–2 standard deviations
around the new census towns in the area are shown in Fig. 6. In order to identify
the vulnerable rice fields, the latter were overlaid on the hotspots around these
settlements. Areas under rice fields are least affected around Jagatballavpur
(Fig. 6a) with a population density of 1667 persons per km2. Only 58.92 hectares
of fields are in the hotspot zones within 2 km of this city. The other census towns
having less than 100 hectares of rice fields in the hotspot zones around them are
Mansinhapur (Fig. 6d) and Tehatta (Fig. 6i), respectively. About 62.02 hectares of
rice fields are in the hotspot zones around Mansinhapur and the same is approxi-
mately 72.97 hectares around Tehatta. All the other settlements have more than
100 hectares of rice fields in the hotspot zones around them. The areas of rice fields
lying in the hotspot zones around Ramchandrapur (population density of 6784

Fig. 4 (a) Hotspots around Pujali in 2015; (b) Rice fields in the hotspot zones (2015)
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persons per km2) is 409.62 hectares (Fig. 6g) and Kesabpur (population density of
5051 persons per km2) is 290.57 hectares (Fig. 6b).

The rice fields in the hotspot zones around other new census towns in the study
area range from 118.73 hectares around Panchla (Fig. 6e), 140.61 hectares around
Shyampur (Fig. 6h), 151.79 hectares around Raghudebpur (Fig. 6f), and 183.60
hectares around Mallikbagan (Fig. 6c).

In the study area, approximately 5480 hectares of land has been identified as
hotspots around urban centers. These zones indicate clusters of highest vulnerability.
Out of these hotspots, around 2081 hectares of lands (i.e., 40%) are under HYV
paddy cultivation. Around 35.5% (1489 hectares out of 4192 hectares) of hotspots
are under paddy cultivation and more prone to conversion around new and small
urban centers, with population density ranging from 1600 to 6000 persons per km2.
On the other hand, around municipalities and large urban centers in the area with
population density of more than 6000 persons per km2, 50% of the HYV rice fields
are in the hotspot zones. A correlation between areas under rice fields in hotspot
zones and the population density of settlements in these areas is shown in Fig. 7.
There is a strong positive correlation (r ¼ 0.8023, p > 0.01) between these two
variables. This indicates that with increase of urban sprawl, areas under rice fields
will be more affected.

Fig. 5 (a) Hotspot Zones around Maheshtala; (b) Rice in hotspot zones (2015)
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4 Conclusion

The current study is an attempt to use temporal fine resolution RISAT-I data to
identify HYV rice fields and assess their vulnerability around urban areas. Results
reveal that around 40% of paddy fields in the area are vulnerable to conversion to

Fig. 6 Rice fields in the hotspot zones around new census towns
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non-farm uses. Cities with high population density will affect more rice fields
compared to the sparsely populated ones. In the last decade (2001–2011), there
was an increase in the number of medium-sized towns in West Bengal. Most of these
are located away from the big cities (Guin 2016). Studies (Chadchan and Shankar
2012) have indicated that the newly included urban centers lack proper governance
and infrastructure. Thereby, it is also probable that these centers will experience
unplanned growth. If the current trend of urbanization and population concentration
continues in West Bengal, there is a probability that the agricultural lands, which are
in immediate proximity of the urban areas, will be affected and converted to
non-farm uses in the near future. Since most these agricultural lands are producing
HYV rice, the total food crop production in the state might be adversely affected,
leading to a lack of food security.

However, a few limitations were encountered in the research. Firstly, fine reso-
lution RISAT-1 data was available only for a few months of the year. This limited its
applicability for the complete growing season of HYV rice. Secondly, in order to
properly identify the paddy fields, it was necessary to consider only the overlapping
part of the images. The temporal variations in the polarimetric parameters of the
plants could only be observed in this region Therefore, the case study area was
restricted to 93,100 hectares. Nevertheless, with increased frequency of data avail-
ability, fine resolution hybrid polarimetric RISAT-1 data have immense potential in
agricultural studies.

Fig. 7 Correlation between areas of rice fields in hotspot zones (hectares) and the areas under
hotspotzones (hectares)
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The paper presented a method using satellite images that will aid in preparedness
by identification of agricultural sites at a risk of irreversible conversion to urban land
uses. The research will help in identifying the local environment and assess the land
productivity around sprawling urban settlements. In other words, the current
research is a useful input to ensure food security to an ever increasing population,
especially in third world countries. This will successfully help in future agricultural
and urban planning.
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Identification of Impervious Built-Up
Surface Features Using ResourceSat-2
LISS-III-Based Novel Optical Built-Up
Index

Abhisek Santra, Shreyashi Santra Mitra, Suman Sinha, Shidharth Routh,
and Akhilesh Kumar

Abstract In the context of urban planning, the increasing urban concentration and
growth result in changes from natural landscape to impervious surface features.
Remote sensing provides an efficient method in automated identification of land
use/cover classes. However, a common challenge is the accurate extraction of built-
up features from satellite images. The conventional Normalized Difference Built-up
Index (NDBI) has been modified by several researchers in the anticipation of
improvement of the built-up area classification. The indices adopted in the study
are Index-based Built-up Index (IBI), Built-up Index (BUI), NDBI, and the newly
developed Impervious Built-up Index (IBUI). These indices work on automated
kernel-based probabilistic thresholding algorithm to group the index values into
built-up and non-built-up areas. This study investigates the performance of the
abovementioned spectral indices on ResourceSat-2 Linear Imaging Self-Scanner-
III (LISS III) imageries of the city of Kolkata, India, and its adjoining areas in the
delineation of built-up areas and compares them based on spectral feature space
correlation and classification approach. Although all the built-up indices showed
high mutual correlation, the performance varied greatly as showed by the accuracy in
the classification. Overall accuracy values of built-up feature extraction using IBUI,
IBI, BUI, and NDBI are 92.33%, 89%, 86%, and 80.67% respectively.
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1 Introduction

The world has witnessed a few natural and anthropogenic pulverizations which had a
direct antagonistic impact on sustainable livelihood. The heinous effect of such
catastrophe profoundly affects the land cover features; however, the impact pro-
liferates more colossally on the built-up areas, causing alterations in the land cover
dynamics. This results in the essential requirement of rapid identification of urban
built-up areas, as the maximum economic loss occurs within the urban built-up areas
(Varshney and Rajesh 2014). Under such emergency scenario, remote sensing
techniques offered complex as well as diverse characteristics of data (Sajjad and
Kumar 2019). Therefore, the traditional classification systems detecting specific land
use/cover (LULC) changes may yield erroneous results sometimes. The index-based
automatic extraction of land features from satellite imagery yields quick and accurate
results and thus advantageous for disaster management and spatial mitigation
response. However, among all the land cover features, accurate extraction of built-
up features is a common challenge from the satellite imagery.

Instigation of the concept began with the development of the Vegetation-
Impervious Surface-Soil (VIS) model concept of the urban setup (Ridd 1995). The
foundation stone of formulating built-up indices is the Normalized Difference Built-
up Index (NDBI) that uses three optical bands, Red (R), Near Infrared (NIR), and
Mid-Infrared.(MIR) (Zha et al. 2003), targeted in the extraction of urban features
with an accuracy of 92.6%; however, mixed with plant noise, hence requiring
Normalized Difference Vegetation Index (NDVI) corrections. Subsequently,
researchers have made valuable contribution in modifying, improving, and propos-
ing several indices and techniques in this reference. The NDBI has been modified
with a thresholding-based algorithm built on difference of continuous images of
NDBI and NDVI (HE et al. 2010). This improved the NDBI to attain the overall
classification accuracy for automatic segmentation of built-up areas up to 20%
higher than the original method. Varshney (2013) also attempted to improve
NDBI by implementing an automated kernel-based thresholding algorithm that
involved offering higher positive difference values of continuous NDBI and NDVI
to built-up regions. Jieli et al. (2010) applied the spectral response characteristics
from the red band to augment the built-up area identification, as the spectral
reflectance of barren land is more than that of the built-up areas and other land
use/cover classes. Soil Adjusted Vegetation Index (SAVI) and Modified Normalized
Difference Water Index (MNDWI) were simultaneously used along with NDBI by
Xu (2007) to outline urban features using different techniques with an overall
classification accuracy ranging from 91.5% to 98.5%. The same three indices were
once again used by Xu (2008) to derive a new urban index, Index-based Built-up
Index (IBI), to demarcate urban built-up areas by eliminating other LULC features,
with an overall classification accuracy as high as 96.7%. Bouhennache et al. (2018)
applied the conventional built-up indices and tested newly developed Built-up Land
Features Extraction Index (BLFEI), which vigorously distinguishes the built-up land
areas from the surrounding areas. Similarly Piyoosh and Ghosh (2018) developed
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Normalized Ratio Urban Index (NRUI) and got interesting results in discriminating
urban built-up area from its surroundings. Impervious Built-up Index (IBUI), pro-
posed in this study, is a slight modification of IBI, wherein, the vegetation class
using NDVI and water class using MNDWI are eliminated from built-up class
depicted by NDBI. The formulation of BUI by Lee et al. (2010) helped in the
development of a standard city classification method using significant value of the
BUI based on values obtained from selected samples to classify built-up lands from
images. Maa et al. (2010) combined four built-up indices, namely, NDBI, SAVI,
NDISI, and IBI, to formulate exponential percent impervious index on a subtropical
city of South China. The index showed positive correlation with the land surface
temperature whereas vegetated areas showed negative correlation. Zhou et al. (2014)
introduced a new Landsat-8 OLI data index based on the established NDBI. The
index initially creates a set of binary images derived from the NDBI and NDVI
images. Finally, the resultant image was generated through subtracting the NDVI
binary image from the NDBI binary image. The index was applied on Zhengzhou
city of Henan province, China, and yielded 91% accuracy in extracting urban built-
up areas. However, the index suffers from the inability of discriminating built-up
lands from the bare/open surface areas. Wang et al. (2015) proposed and applied the
NIR and visible spectral information–dependent Normalized Difference Impervious
Index (NDII). The spectral end members were selected using linear spectral mixture
analysis. Tian et al. (2018) introduced a novel spectral index Perpendicular Imper-
vious Surface Index (PISI), based on the blue and NIR bands of Landsat data. They
have developed the index through selecting the reference line on feature space. The
concept of the index development is similar to that of the Perpendicular Vegetation
Index (PVI) (Jackson and Huete 1991). The index was tested on four capital cities of
China with acceptable accuracy. Thermal Infrared (TIR) information for developing
indices has been used for improved built-up classification (Santra 2017; Sinha et al.
2015; Azmi et al. 2016; Kumari et al. 2019); however, most space-borne sensors,
specially the high-resolution ones do not have the TIR capabilities. A few thermal
image–based indices came into being to extract urban built-up areas in the context of
urban heat island. Xu (2010) introduced the concept of Normalized Difference
Impervious Surface Index (NDISI) on Landsat ETM+ and ASTER images. The
relationship with the land surface temperature was also established. Liu et al. (2013)
introduced the modified version of NDISI and gave MNDISI which is a composite
index derived from Landsat-5 TM, nighttime ISS photographs, and high-resolution
ortho photos. They applied the index over Los Angeles and Las Vegas and success-
fully extracted the residential, commercial, suburban, airport, harbor areas, and
highways. Sun et al. (2017) modified this index and proposed another version of
MNDISI, which is the Gaussian automated threshold identification method. The
index was applied on Landsat 5–8 datasets with nearly 87% accuracy. Chen et al.
(2019) with the enhanced version of NDISI were able to isolate impervious features
from bare rock and soil surfaces with almost 94% accuracy. However, the selection
criterion was similar to that of the modified version of the index. Garg et al. (2016)
compared some of the thermal and optical data–based spectral indices derived from
Landsat 8 OLI/TIRS images on Dehradun city and extracted the built-up areas on the
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basis of conventional supervised classification and Support Vector Machine (SVM)
methods. Sekertekin et al. (2018) also compared four spectral built-up indices to
identify impervious surface features in Turkey. They identified that IBI performed
best among the four applied indices, whereas Urban Index (UI) (Kawamura et al.
1996) performed least efficiently. Challenges have also been faced by different
researchers in distinguishing built-up features and bare soil areas (Benkouider
et al. 2019; Rasul et al. 2018). However, the problem is more pronounced in arid
and dry climatic areas. Performance of the index-based methods varies with the
deviation in scale, image acquisition season/date, and topography; and the
thresholding is often observed to be area specific. The present study aims to test
the performance of newly developed LISS-III-based IBUI in extraction of impervi-
ous urban built-up features. For this a comparative analysis among the indices
mentioned above is performed in automatic extraction of built-up areas based on
spectral feature space correlation approach.

2 Study Area

Kolkata, the capital of West Bengal, India is situated in the bank of the Hugli River.
Originally the city was developed on flood plains of the Hugli River. The spatial
extent of Kolkata is approximately from 22� 250 N to 22� 470 N and 88� 120 E to 88�

340 E with an area approximately 185 km2. The city is surrounded by three districts,
namely, Howrah, North 24 Parganas, and South 24 Parganas. The average elevation
is around 6 m above MSL. The climate of Kolkata can be considered as a tropical
climate with strong southwesterly monsoonal winds during summer. The monthly
temperature ranges between 19 �C and 30 �C, with a mean temperature of 27 �C.
However, seasonal variation is also striking. Temperature ranges from 25 �C to
42 �C and 8 �C to 25 �C in summer and winter months, respectively. The average
annual rainfall is 1582 mm. In course of time, the city developed and now the built-
up structures engulfed almost the administrative boundary of the city. However,
some green fields, wetlands, and barren lands are still present in the area. Therefore,
it is necessary to clearly isolate the impervious areas from the other land use/cover
surfaces for urban sprawl analysis (Fig. 1).

3 Database and Methodology

ResourceSat-2 LISS-III imagery of 2011 was considered. The sensor is offering
four-band multispectral data at 23.5 m spatial resolution. The spectral bands are
green (0.52–0.59 μm), red (0.62–0.68 μm), near infrared (0.76–0.86 μm), and
shortwave infrared (1.55–1.70 μm). The ground control points were collected with
the help of GPS survey and were tagged on the Survey of India topographical map.
The LISS-III data was co-registered with the topographical map under the RMSE
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Fig. 1 Study area

Identification of Impervious Built-Up Surface Features Using ResourceSat-2. . . 117



<0.5. The reference system was chosen as UTM Zone-45 with WGS-84 datum. As
the radiometric normalization rectify the image from possible atmospheric attenua-
tion effects and solar illumination conditions (Santra et al. 2019), the data was
calibrated radiometrically using the FLAASH module available in ENVI. The tool
is based on the radiative transfer model used in MODTRAN.

The Digital Numbers (DN) of the four spectral bands (green, red, near infrared,
shortwave infrared) of LISS-III data were investigated for each of the four different
feature classes, viz. (I) water (WATER), (II) vegetation (VEG), (III) built-up/
impervious (BU/I), and (IV) open/bare land (BARE). The variation observed max-
imum in red and near infrared bands. Three major feature classes, namely, vegeta-
tion, water, and built-up, were primarily considered while classifying the land cover
classes, using NDVI (Rouse et al. 1973), NDWI (Mcfeeters 1996), and NDBI (Zha
et al. 2003) respectively. However, SAVI (Huete 1988), with an additional soil
factor, was preferred over NDVI as open/bare land was simultaneously considered.
The widely applied spectral built-up indices produce interesting results even on the
contemporary Sentinel 2A images (Valdiviezo-n et al. 2018). The use of SWIR in
MNDWI (Xu 2006) instead of NIR in NDWI efficiently helps in the suppression and
elimination of built-up land vegetation and soil noises in water class. SAVI,
MNDWI, and NDBI images were subsequently used as three thematic bands that
were mutually negatively correlated to generate IBI that minimizes the redundancy
among the original multispectral bands. These same three thematic bands were used
to design IBUI (Eq. 8) that showed the ability to separate out the BU/I feature class
from the other feature classes. BUI (Eq. 6) was generated from subtracting NDVI
from NDBI, however, improved to develop IBUI (Eq. 8) by subtracting the sum of
SAVI and MNDWI from NDBI. SAVI identifies the open and bare soil surface,
whereas MNDWI helps in the suppression and elimination of built-up land vegeta-
tion and soil noises in water class. Therefore, the newly developed IBUI minimizes
the redundancy associated with the NDBI in classifying the urban soil, vegetation,
and water surfaces along with impervious built-up features. IBI is the normalized
form of IBUI. Table 1 documents the equations for the indices used in this study.

4 Results and Discussions

4.1 Spectral Clusters

The average brightness values of the four spectral bands mentioned above for the
major land cover classes, namely, water, vegetation, impervious built-up, and bare
land are calculated. The greater inconsistency was observed from the red and near
infrared bands. The spectral clusters (Fig. 2) in red and NIR bands for the four
classes were separated but with occurrence of spectral mixtures among the classes,
especially among the impervious built-up and bare land classes and to some extent in
the water class. The open/bare land showed no spectral independence as the class
was spectrally merged completely with the built-up class (Fig. 2).
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4.2 Spectral Index Correlation

NDBI (Zha et al. 2003), BUI (Lee et al. 2010), and IBI (Xu 2008), adapted from
previous literatures and IBUI designed in this study, are used to extract built-up
regions (Table 1). The spectral feature space of the major classes is illustrated in
Fig. 3. Coefficient of determination (R2) values for the aforesaid built-up indices is
documented in Table 2 for the study site. The table showed high positive correlation
among all the four built-up indices (Fig. 3) that indicates that the new index IBUI
follows the same trend as the other already established built-up indices used in the
study. Among all the four indices, all except BUI shows extremely high correlation.
Thereafter, all the four built-up indices are used to delineate the built-up areas.
However, IBUI shows an upper hand in built-up classification among all the built-up
indices adopted in this study. The mean values of all the indices used in the study are
plotted for the four major land cover classes and the behavior of the indices for land
cover classes is depicted in Fig. 4. The figure reveals maximum separability and
clearer discrimination of the feature classes for IBI and IBUI, while IBUI showed
even better separability than IBI. The next step is to find the accuracy of all the four
built-up indices to delineate the built-up/impervious surface features. Index maps for
all the indices under consideration are generated (Fig. 5). Classification of index
maps generated from the built-up indices is carried out (Fig. 5). The accuracy in
delineating the built-up features is documented in Table 3.

Table 1 Spectral indices used in this study

Eq. Formula References Remarks

1 Normalized difference vegetation

index NDVI ¼ NIR�Rð Þ
NIRþRð Þ

Rouse
et al.
(1973)

Surface reflectance in near-infrared
(NIR) and red (R) spectral bands

2 Soil-adjusted vegetation index

SAVI ¼ NIR�Rð Þ� 1þLð Þ
NIRþRþLð Þ

Huete
(1988)

L is a constant whose value depends on
the soil properties

3 Normalized difference water index

NDWI ¼ G�NIRð Þ
GþNIRð Þ

Mcfeeters
(1996)

Surface reflectance in near-infrared
(NIR) and green (G) spectral bands

4 Normalized difference built-up

index NDBI ¼ SWIR�NIRð Þ
SWIRþNIRð Þ

Zha et al.
(2003)

Surface reflectance in shortwave infra-
red (SWIR) or middle infrared (MIR)
and near-infrared (NIR) spectral bands

5 Modified normalized difference

water index MNDWI ¼ G�SWIRð Þ
GþSWIRð Þ

Xu (2006) Surface reflectance in shortwave infra-
red (SWIR) or middle infrared (MIR)
and green (G) spectral bands

6 Built-up index
BUI ¼ NDBI � NDVI

Lee et al.
(2010)

NDBI and NDVI from Eqs. 5 and
1, respectively

7 Index-based built-up index IBI ¼
NDBI� SAVIþMNDWIð Þ=2½ �
NDBIþ SAVIþMNDWIð Þ=2½ �

Xu (2008) NDBI, SAVI, and MNDWI from
Eqs. 5, 2, and 4, respectively; NDVI
from eq. 1 can also be used instead of
SAVI

8 Impervious built-up index (opti-
cal)
IBUI ¼ NDBI � SAVI � MNDWI

In this
study

NDBI, SAVI, and MNDWI from
Eqs. 5, 2, and 4, respectively
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Fig. 2 Spectral clusters in red (x-axis) and NIR (y-axis) bands for water (blue), vegetation (green),
built-up (red), and bare land (brown) classes

Fig. 3 Spectral feature space plots of the LISS-III-based index images showing distinctive
identification of water (blue), vegetation (green), built-up (red), and open/bare land (brown) land
cover classes: (a) IBI (x-axis)–IBUI (y-axis), (b) BUI (x-axis)–IBUI (y-axis), (c) NDBI (x-axis)–
IBUI (y-axis), (d) BUI (x-axis)–IBI (y-axis), (e) NDBI (x-axis)–IBI (y-axis), (f) NDBI (x-axis)–
BUI (y-axis)



Table 2 Correlation in terms
of coefficient of determination
(R2) among spectral indices

IBUI IBI BUI NDBI

IBUI 0.971 0.742 0.92

IBI 0.813 0.944

BUI 0.876

NDBI

Fig. 4 Spectral profile of the feature classes: water (blue), vegetation (green), built-up (red), and
open/bare land (brown) using spectral indices. (y-axis: index values)

Fig. 5 Index maps for (a) NDVI (b) SAVI (c) NDBI (d) MNDWI (e) BUI (f) IBI (g) IBUI



4.3 Accuracy Assessment

Figure 5 shows the qualitative aspect while Table 3 gives the quantitative evaluation
of the accuracy of the aforesaid built-up indices for demarcating the built-up areas.
The overall accuracy and k value in the classification shows higher values for IBUI
among all the built-up indices revealing its maximum potential for built-up area
determination. On comparing the ability of the indices in classifying the built-up
areas, IBUI shows the maximum potential, followed by IBI, BUI, and NDBI,
respectively. This is also evident from Fig. 4. Spectral feature space correlation
between IBUI and IBI in Fig. 3a. shows clear demarcation of the land cover classes;
while, in the case of spectral feature space correlation among the other indices, there
is a possibility of class overlap. The binary classified maps in Fig. 6 shows that using
NDBI as input, there are plenty of occurrences of misclassification of water bodies
and vegetation in built-up areas. When BUI is used, this misclassification is some-
what reduced, where instances of misclassification from stagnant water bodies are
observed. IBI showed further reduction in the misclassification, while, the use of
IBUI showed the maximum accuracy and minimum instances of misclassification in
clearly discriminating built-up areas from the other land use/cover, which is also
evident from the classification accuracy report mentioned in Table 3. Overall
accuracies of built-up feature extraction using IBUI, IBI, BUI, and NDBI are
92.33% (k- ¼ 0.82), 89% (k ¼ 0.75), 86% (k ¼ 0.68), and 80.67% (k ¼ 0.54),
respectively. Hence, the comparative study showed that the IBUI developed in this
study has greater potential in identifying impervious built-up land surfaces. The
study shows that in dense urban areas like Kolkata, IBUI showed greater variability
and better contrast which ultimately facilitates the feature class separability. IBI
showed almost similar output as IBUI, however, the dynamic range had been
confined. BUI suffered from spectral mixtures of impervious built-up and water
classes. Therefore, subtracting water via MNDWI showed improvement in IBUI.
Similarly, the soil and vegetation noises are avoided through subtracting SAVI from
the IBUI. It is evident from Fig. 4 that IBUI has better capability of distinguishing
impervious built-up areas from the bare lands.

Table 3 Accuracy assessment: Overall accuracy (OA) in percentage and kappa (k) values for built-
up (BU) and non-built-up (NBU) area classification

BU NBU OA K BU NBU OA k

IBUI IBI
BU 192 5 197 92.33 0.82 BU 189 8 197 89.00 0.75

NBU 18 85 103 NBU 25 78 103

Total 210 90 300 Total 214 86 300

BUI NDBI
BU 183 14 197 86.00 0.68 BU 181 16 197 80.67 0.54

NBU 28 75 103 NBU 42 61 103

Total 211 89 300 Total 223 77 300
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5 Conclusion

Studies throughout the globe showed that the intrinsic heterogeneous characteristics
of the impervious built-up lands put difficulty in extraction of impervious surface
features through image-derived spectral indices. However, the classification using
the built-up indices has varying ranges of accuracy in extracting the built-up areas.
The present study revealed the comparative performance of three widely accepted
spectral indices and a newly developed LISS-III-based spectral index over the
densely populated urban area of Kolkata, India. The work pinpoints the problem
of identifying urban impervious built-up feature and distinguishing it from the open
bare lands. It offers a plausible solution in precise spatial segregation of the built-up
lands among all other surface features. However, due to the time constraints, this
chapter only tested the performance of the indices only on ResourceSat-2 LISS-III
image and densely overpopulated urban areas. Besides, the limitations of the number
of spectral bands of the sensor, only a few indices were applied. The study may be
extended in two directions. Firstly, the performance may be tested also in semi-urban
and industrial areas. Secondly, other sensor data may be considered if the similar
temporal data is available.

Fig. 6 Classified binary images distinguishing BU (in black) from NBU (white) using (a) NDBI,
(b) BUI, (c) IBI, and (d) IBUI
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The study reveals the potential of IBUI for classifying built-up areas with the
maximum accuracy, among the rest, namely, IBI, BUI, and NDBI. However, the
findings of this study may be used further to identify the urban impervious features
of similar geoclimatic and urban setup. In the context of the present scenario of
population explosion, especially in the urban landscape, this kind of study will help
the GIScience researchers to recognize the best possible ways to identify the
impervious surface areas. This will not only increase the accuracy of urban built-
up feature extraction but also enhance the efficiency in understanding urban sprawl.
The novelty in this work will endow the GIScience community with an acceptable
spectral built-up index that may be applied to any multispectral images to categorize
the urban built-up features. Also, the community may widen their scope of research
either through applying the index developed in this study or by developing new
spectral indices based on the line of the methodology adopted here.

Acknowledgements Authors express sincere gratitude to National Remote Sensing Centre
(NRSC), Government of India for providing images and Science and Engineering Research
Board (SERB), Department of Science and Technology (DST), Government of India, for providing
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Subsidence Assessment of Building Blocks
in Hanoi Urban Area from 2011 to 2014
Using TerraSAR-X and COSMO-SkyMed
Images and PSInSAR

Van Anh Tran, Quoc Cuong Tran, Duc Anh Nguyen, Tong Minh Dinh Ho,
Anh The Hoang, Trung Khien Ha, and Dieu Tien Bui

Abstract Covering an area of 3328.9km2, Hanoi is the largest city in Vietnam, with
a total population of around 8.053 million people in 2019. Due to the economic
development, the fast urbanization process, the rapid growth of population, and
overexploitation of groundwater, the ground subsidence in the city has become a
severe issue, especially in the urban area. This study aims to assess the subsidence of
buildings from 2011 to 2014 in the two districts, Ha Dong and Hoang Mai, using the
Persistent Scatterer (PS) Interferometric Synthetic Aperture Radar (PSInSAR). For
this regard, 19 TerraSAR-X (TSX) and 27 Constellation of Small Satellites for
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Mediterranean basin Observation (COSMO-SkyMed) high-resolution radar images
were collected and used to estimate the ground subsidence at the two districts and
then infer the subsidence of buildings in the study area. Besides, the subsidence
measured by the geodetic precise leveling technique at three building blocks, CC2
and CQ01 at the Van Quan area (Ha Dong district) and CC7 at the Linh Dam area
(Hoang Mai district) were used to validate the results. The result shows that the
subsidence derived by the PSInSAR has high accuracy. For CQ01 and CC7, where
the PS points were derived from the TerraSAR-X images, the subsidence difference
between the PSInSAR method and the leveling technique is 1.6 mm and 2.5 mm,
respectively. Whereas, for CC2, where the PS points were taken from the COSMO-
SkyMed images, the difference is 5.5 mm. Therefore, it could be concluded that the
PSInSAR method and high-resolution radar images are capable of detecting subsi-
dence of building in urban areas.

Keywords Building subsidence · InSAR · TerraSAR-X · COSMO-SkyMed ·
Hanoi · Vietnam

1 Introduction

Hanoi is the capital of Vietnam, which has developed rapidly since its expansion in
2008, and now it becomes the largest city in size, 3328,9 km2 (Phi and Strokova
2015), in Vietnam. The development of Hanoi has resulted in various changes that
can be observed, such as upgraded infrastructure systems, new highways, and new
urban areas, which change the landscape of the city. However, together with the
development, the rapid growth of the population has led to overloads for the city, and
among them, housing and freshwater are urgent issues.

During the last decade, the freshwater demand has created high pressures on the
water supply of the city, leading to the overexploitation of the groundwater (Tu et al.
2013). Thus, this is the main cause of ground subsidence in the city. In Hanoi, the
groundwater resides mainly in aquifers of Quaternary; however, the degradation of
these aquifers has reached an alarming rate with the lowering of groundwater levels
is around 0.3–0.5 m annually and, consequently, the highest ground subsidence rate
can reach to 41 mm/year (Tam and Nga 2018). Among areas, ground subsidence
occurs severe in the southern part of the city, including Phap Van, Van Dien, Ha
Dong, and Linh Dam, where there is a high concentration of new infrastructure and
high buildings.

Although subsidence occurs slowly, they have caused various serious conse-
quences in Hanoi, such as deformation of engineering structures, foundation failures
of urban infrastructures, building blocks, and private houses (Dang et al. 2014).
Thus, these may generate threats to the sustainable development of the city. There-
fore, monitoring and assessing ground subsidence at Hanoi is an important task. In
this regard, the precise geodetic leveling and GPS surveys are the most accurate
methods because they can estimate the vertical displacement with accuracy from
several millimeters to 0.01 mm (Zhang et al. 2011). However, for large areas, radar
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remote sensing, that is, Interferometric Synthetic Aperture Radar (InSAR), is the
most widely used. This is because it could provide accuracy comparable to GPS
(Hu et al. 2019; Motagh et al. 2007).

Among the radar remote sensing techniques used for land subsidence, Interfero-
metric Synthetic Aperture Radar (InSAR) and Differential InSAR (DInSAR) are the
most popular used. Herein, the InSAR was first applied to the Seasat image to study
small vertical changes over a region of 50 km wide in the Imperial Valley, Califor-
nia, USA(Graham 1974). Then, DInSAR has been developed and deployed in
various interdisciplinary domains, such as, tracking the earth’s surface movement
due to earthquakes, volcano, mineral or water extraction (Peltzer and Rosen 1995;
Rott et al. 2000; Yen et al. 2005, 2008), etc. Nevertheless, DInSAR still has some
limitations, including atmospheric effects (Zebker et al. 1997), the effect of the
baseline (Yang et al. 2013), and topographic features (Anh et al. 2016). For these
reasons, new methods, including Persistent Scatterer InSAR (PSInSAR) (Ferretti
et al. 2000), which uses a series of images acquired in the same location but at
different times to estimate changes in the ground, was introduced.

The first applications of the PSInSAR for the urban subsidence at Pomona
California (USA) (Ferretti et al. 2000) and landslide at Ancona (Italy) (Ferretti
et al. 2001) showed high accuracy results. Herein, with the use of ERS images, the
effects relating to atmosphere, baseline, and topographic features can be minimized
when using a series of images at different times. Following these works, Colesanti
et al. (2003) evaluated the accuracy of the PSInSAR method for estimating land
deformations at Fremont in the Southern Bay Area and San Jose in the Santa Clara
Valley with promising results. Since then, several studies using the PSInSAR
method for landslides (Ciampalini et al. 2014), land subsidence (Solari et al.
2016), especially for urban subsidence areas (Biswas et al. 2019; Liu et al. 2020;
Zhou et al. 2020) have been very effective.

To increase the accuracy of determining land subsidence, the combination of
different images, that is, descending and ascending images or different polarizations,
that is, VV or HH has been investigated, such as assessing land subsidence in
Mexico City (Mexico) from 2002 to 2007 (López-Quiroz et al. 2009). This study
addressed the loss of coherence in interferogram pairs and enhanced the accuracy of
the subsidence monitoring results. Other studies on urban subsidence areas with
promising results include Oslo (Norway) (Dehls and Nordgulen 2003) Shanghai
(China) (Damoah-Afari et al. 2007), and Bangkok (Thailand) (Aobpaet et al. 2009).
In urban areas, to monitor the subsidence of buildings, the PSInSAR and TerraSAR-
X images have been considered to derive both the vertical and the horizontal
deformations, that is, at Berlin city (Gernhardt and Bamler 2012). Ciampalini et al.
(2014) confirmed that the deformation of human-made structures could be accurately
estimated with the use of the PSInSAR, TerraSAR-X images, and COSMO-SkyMed
images.

In this study, we aim to assess the subsidence of buildings in Hanoi city using the
PSInSAR method, TerraSAR-X images, and COSMO-SkyMed images for the
period 2011–2014. It should be noted that the study of the land subsidence in
Hanoi by the radar interferometry has been carried out for nearly 20 years ago. In
the first study, Raucoules and Carnec (1999) employed the DInSAR and Europe’s
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ERS-1/2 SAR images; however, due to the limited number of images and lousy
interferogram quality, the land subsidence was found even in stable areas. In another
study, Tran et al. (2007) used the JERS/1 L band image with the DInSAR method to
determine the land subsidence in the period 1995–1998. The land subsidence from
the geodetic leveling survey method was used to confirm the result. The result
showed that the subsidence rate was high in the southern part of the Hanoi city,
from 2 cm to 3 cm per year. However, due to the limited number of images used, the
result of this project was also affected by the systematic error. Herein, the subsidence
was observed in areas near the Red River and the north of the city, though the
geodetic leveling survey result confirmed that no subsidence existed in these areas.

In 2014, Dang et al. (2013) used the SBAS–PSInSAR method to determine the
ground subsidence inventories and assess the relationship between the subsidence
and the urbanization process for Hanoi. Herein, ALOS PALSAR images for the
period 2007–2011 were considered. In a recent study, Le et al. (2016) employed the
PSInSAR and TerraSAR-X high-resolution images to detect the land subsidence in
the Historical Center of Hanoi in the period 2012–2013. In other projects, Cuong
et al. (2015) and Van Anh Tran et al. (2016) estimated ground subsidence for Hanoi
for the period 2007–2014 using the PSInSAR. These studies have proven the
capability of using the PSInSAR method for ground subsidence at Hanoi.

Nevertheless, exploration of the PSInSAR, TerraSAR-X images, and Cosmo/
SkyMed images for determining the subsidence of building blocks in the city has not
been carried out. Therefore, in this work, we aim to partially fill this gap with a focus
on building blocks at the Ha Dong district and Hoang Mai district in the city.

2 Study Area

2.1 Description of the Study Area

Hanoi is the capital of Vietnam, located in the northwest of the Red River delta with
geographic coordinates from 20o530 to 21o230 north latitude, 105o440 to 106o020 east
longitude (Fig. 1). The topography of Hanoi is gradually lowered from north to south
and from west to east with an average height of 5 to 20 m above sea level. The hills
are concentrated in the north and west of the city. Due to the alluvium deposition,
three-quarters of the natural area of Hanoi is plain and located on the right bank of
the Da River, the two sides of the Red River, and tributaries of other rivers. The
mountainous area is mainly in Soc Son, Ba Vi, Quoc Oai, and My Duc districts, with
the mountain peaks are in Ba Vi (1281 m), Gia De (707 m), and Chan Chim (462 m).

After the expansion of administrative boundaries in August 2008, Hanoi has an
area of 3324.92 square kilometers. The highlight of the urbanization process in
Hanoi is the gathering population in urban districts. There were 2.05 million people
in 1990, but in 2000, the population increased to 2.67 million people. In 2007,
approximately 3.4 million people, and in 2016, the population reached approxi-
mately 7.6 million. According to the census of population and housing in 2019, the
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total population in the city is 8.053 million people (GSO 2019). The urban popula-
tion of Hanoi now accounts for about 60% of the city population. In contrast,
the rural population tends to decrease. This is due to the urbanization process and
the migration of young people from the rural to the urban areas. The expansion of the
population size has led to a rapid increase in population density and imbalance.

Fig. 1 Location of the Hanoi urban area. The red rectangles are the frame of TerraSAR-X images,
whereas the blue one is the frame of Cosmo/SkyMed images used in this study
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The land subsidence issue in Hanoi has been recorded since the late 1980s of the
last century, especially in areas with the old building blocks. According to the
Department of Construction of the Hanoi city, there are about 1516 old building
blocks, from two to five floors. They were mostly built between 1960 and the late
1980s; several buildings were built before 1954. Among 1516 building blocks, a
total of 935 are located in four old urban districts, Ba Dinh, Hoan Kiem, Dong Da,
and Hai Ba Trung. These building blocks can be classified into five groups:
(1) prefabricated large panels building, (2) reinforced concrete frame building,
(3) frame joints buildings, (4) mixed structures building, and (5) other structures.
Due to economic and technological conditions at that time, most of these old
building blocks were constructed on shallow foundations, which led to problems
of subsidence of building blocks in later years. The most severe subsidence were
observed at the E6/E7 QuynhMai, the A/B Ngoc Khanh, the C1 Thanh Cong, the B7
Thanh Cong, and the B Ngoc Khanh.

In some new residential areas, such as Dong Tau, although building blocks were
just used in 2006, the subsidence problem happened just after 1 year (in 2007). So
far, subsidence has become more and more serious. Many building blocks have been
subsided approximately 30 cm. The leading cause is that these blocks were
constructed on the soft soil ground areas in the south of the city. Figure 2 presents
the subsidence map (1988–1995) created by the Geological Institute, Vietnam
Academy of Science and Technology (VAST). It could be seen that the subsidence
mainly distributed in the south of the city, where the highest subsidence rate is the
Linh Dam area.

2.2 Geological and Hydrological Setting

Geologically, more than 12 formations outcrop in Hanoi, however, their distribu-
tions are very different. Quaternary sediments are mainly distributed in the urban
area. In contrast, in the northern and western suburbs districts (Dong Anh, Soc Son,
Quoc Oai, Chuong My, and My Duc), metamorphic and sedimentary rocks are
dominated (Phi and Strokova 2015; Thuan 2006), such as at Na Vang formation
(P2nv), Yen Duyet formation (P3yd), Viet Nam formation (T1vn), Tan Lac formation
(T1tl), Khon Lang Formation (T2kl), Na Khuat Formation (T2nk), Dong Giao
Formation (T2ađg), Nam Tham Formation (T2nt), Song Boi Formation (T2-3sb),
Ha Coi Formation (J1-2hc), and Tam Đảo formation (J-K1tđ).

Hydrogeologically, most of the groundwater at the Hanoi urban area resides in the
quaternary formations, which can be separated into two aquifers, Holocene aquifer
(QH) and Pleistocene aquifer (QP) (Tam and Nga 2018). The first aquifer has a mean
thickness of 18.9 m, whereas, in the second one, the average thickness is 59.5 m. The
average hydraulic conductivity is 12.5 m/day and 31.9 m/day for the QH aquifer and
the QP aquifer, respectively.
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3 Data Used

3.1 TerraSAR-X and Cosmo-SkyMed Data

In order to derive the subsidence of building blocks in this project, a total of
19 TerraSAR-X images (X-band with 3.1 cm wavelength, the StripMap mode)
and 27 Cosmo-SkyMed images (X-band with 3.1 cm wavelength, the StripMap HI
MAGE mode) for the period 2011–2014 were acquired. The reason for both the
TerraSAR-X images and the Cosmo-SkyMed images were employed is that we want
to verify the ability for the subsidence detection of the two types. The detailed
information of these images is presented in Table 1.

Fig. 2 Distribution of the subsidence at the Hanoi city derived from the geodetic leveling method
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Figure 1 show two frames of TSX and CSK. It could be seen that the Hanoi area is
fully covered by the TSX frame, but the CSK frame was slight to the left. Therefore,
a part of the Red River was stayed outside of the CSK frame. By using the PSInSAR
method, the TSX images were processed to derive 810,000 Persistent Scatterer
(PS) points and 420,000 PS points for the study area, with the LOS angle of 34.4�

and 25.2�, respectively. Figures 4 and 5 represent the result of the land subsidence
distribution using the CSK and TSX images in the study area.

Table 1 Characteristics of the SAR data used (TSX: TerraSAR-X; CSM: Cosmo-SkyMed)

TerraSAR-X (TSX)
Orbit (ascending)

COSMO SkyMed (CSK)
Orbit (ascending)

ID
Acquisition Time
(D-M-Y)

Baseline Bn
[m] ID

Acquisition Time
(D-M-Y)

Baseline Bn
[m]

1 10-04-2012 �42 1 27-05-2011 �601

2 21-04-2012 �24 2 05-07-2011 �213

3 26-06-2012 �133 3 15-08-2011 644

4 11-09-2012 �384 4 22-08-2011 1036

5 30-04-2013 5 5 23-09-2011 1083

6 05-07-2013 �138 6 10-11-2011 1283

7 20-09-2013 60 7 21-12-2011 �295

8 12-10-2013 0 8 22-01-2012 �95

9 23-10-2013 �120 9 10-03-2012 �19

10 25-11-2013 �63 10 05-06-2012 �66

11 11-06-2014 137 11 16-07-2012 810

12 22-06-2014 �89 12 24-08-2012 294

13 25-07-2014 �179 13 21-11-2012 758

14 07-09-2014 215 14 30-12-2012 �247

15 29-09-2014 45 15 20-03-2013 941

16 10-10-2014 90 16 08-06-2013 0
17 21-10-2014 10 17 27-08-2013 108

18 01-11-2014 �91 18 14-10-2013 �298

19 23-11-2014 �54 19 15-11-2013 1118

20 17-12-2013 767

21 19-02-2014 149

22 27-06-2014 �301

23 29-07-2014 �180

24 30-08-2014 846

25 01-10-2014 351

26 02-11-2014 655

27 04-12-2014 242
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3.2 Geodetic Leveling Data

To verify the detected subsidence results using the PSInSAR in the study area, the
subsidence at three building blocks, which were measured by the precise geodetic
leveling method, were used. They include two building blocks, namely CC2 and
CQ01 at the Van Quan area, Ha Dong district, and one building block of CC7 at the
Linh Dam area, Hoang Mai district. These building blocks were selected because
they have experienced a high level of subsidence. Herein, with the CC2, the
measurement was conducted in 18 months, from April 2013 to November 2014.
Whereas, for the CQ01, the survey was conducted in 30 months, from May 2012 to
November 2014. For the case of the CC7, the precise geodetic leveling task was
conducted in 41 months, from July 2011 to December 2014.

Tables 2, 3, and 4 show the displacement results of these building blocks
measured by the precise geodetic leveling method. It should be noted that the
measurement was conducted after the construction of these blocks was completed
1 year (Fig. 3).

4 Methodology

4.1 PSInSAR Method

Because the description of the PSInSAR method is well described in the literature,
such as in Ferretti et al. (2000), therefore, in this section, only salient features of this
method are provided. Herein, we focus on the distinction of different phases at a
given location of a sequence of images. Thus, all images are co-registered together

Table 2 Displacement results
(mm) of the CQ01 building
block at the Van Quan area

Time (D/M/Y) Subsidence

1/5/2012 �2.25

1/7/2012 �2.58

1/9/2012 �2.94

11/10/2012 �3.21

1/4/2013 �3.41

1/5/2013 �3.61

5/7/2013 �4.4007

20/9/2013 �4.8165

23/10/2013 �4.9947

25/11/2013 �5.1729

22/6/2014 �6.3015

25/7/2014 �6.4797

29/9/2014 �6.8361

21/10/2014 �6.9549

23/11/2014 �7.1331
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by choosing one image as the master and the other as slave images. This will result in
multiple pairs of images with different baselines. Figure 4 depicts the PSInSAR
method, and Eq. (1) represents the synthetic phase of image pairs.

As depicted in Fig. 4, the point P is observed by N times in different scanning
tracks, where N is the repetition of the same sensor. Each observation acquired an
image of the whole scene. Two complex images can be combined to calculate the
interferogram presented in Eq. (1) (Bamler and Hartl 1998).

Table 3 Displacement results
(mm) of the CC7 building
block at the Linh Dam area

Time (D/M/Y) Subsidence

30/7/2011 �0.59

30/8/2011 �1.17

30/9/2011 �1.52

23/11/2011 �2.16

21/12/2011 �3.408

22/1/2012 �3.9872

10/3/2012 �4.856

5/6/2012 �6.4307

16/7/2012 �7.1728

24/8/2012 �7.8787

21/11/2012 �9.4896

30/12/2012 �10.1955

20/3/2013 �11.6435

8/6/2013 �13.0915

27/8/2013 �14.5395

14/10/2013 �15.4083

15/11/2013 �15.9875

17/12/2013 �16.5667

19/2/2014 �17.7251

27/6/2014 �20.0419

29/7/2014 �20.6211

30/8/2014 �21.2003

1/10/2014 �21.7795

2/11/2014 �22.3587

4/12/2014 �22.9379

Table 4 Displacement results
(mm) of the CC2 building
block at the Van Quan area

Time (D/M/Y) Subsidence

10/4/2013 �2.47

2/7/2013 �4.82

8/9/2014 �6.46

14/11/2014 �7.12
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φnm ¼ φn � φm ¼ 4π
λ
Rn Pð Þ þ α nð Þ

� �
� 4π

λ
Rm Pð Þ þ α mð Þ

� �
ð1Þ

where Rn (P) and Rm (P) are the slant range from the n-th and m-th antenna to the P
point on the earth surface, and α (n) and α (m) are the phase errors due to atmospheric
propagation of the two times of acquisitions.

If there are terrain displacement, Eq. (1) can be written as follows:

Rn Pð Þ ¼ Rn0 þ v Pð Þ:tn ð2Þ

Fig. 3 Locations and photos of these building blocks, CQ01, CC7, and CC2
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where v(P) is the Linear Deformation Rate; tn is the time of the acquisition of the
n pass.

The interferometric phases will store information about the geometry of the
system, including the topographic phase and the displacement phase between the
two acquisitions of the target (Ferretti et al. 2007).

The following is the explanation of the single-target model for the determination
of deformations. First, we assume that each pixel in the SAR image is a target to be
determined so that the value of each pixel is the sum of multiple scattering responses.
The result is a realization of a stochastic process, in which the pdf conditioned on the
interferometric phases may be regarded as being a zero-mean, multivariate circular
normal distribution (Bamler and Hartl 1998). Therefore, the ensemble of the second-
order moments represents sufficient statistics to infer information from the image
data. With reference to a particular location in the slant range–azimuth plane, the
expression of the second-order moment for the nm-th interferometric pair may be
expressed, under the assumption of phase triangularity, as follows:

E yny
�
m

� � ¼ γnm exp j φn � φmð Þð Þ ð3Þ

where yn is a pixel in the n-th SAR image at the considered slant range–azimuth
location, ym is a pixel in the m-th SAR image at the considered slant range–azimuth
location, γnm is the coherence of the nm-th interferometric pair, and φn is the
interferometric phase for the n-th acquisition.

It should be noted that the images are supposed to be normalized, such that E[|
yn|

2] ¼ 1 8 n, the interferometric phases can be expressed in vectors as follows:

φ ¼ ψ θð Þ þ α ð4Þ

Fig. 4 InSAR geometry:
N sensors, the displacement
is Line of Sight direction
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where φ ¼ [φ0. . .. . .φN � 1]
T is the vector of the interferometric phases, θ is the

vector of the unknown parameters which describe the LDF and residual topography
to be estimated, ψ(θ) ¼ [ψ0(θ). . .. . .ψN � 1(θ)]

Trepresents a vector of known
functions of θ, and α ¼ [α0. . .. . .αN � 1]

T is the atmospheric field or atmospheric
phase screen (APS), affecting the N acquisitions.

APS can be modeled according to a random process, spatially correlated, and not
correlated with multiple image acquisitions with repetition intervals longer than
1 day (Guarnieri 2010). In this case, APS is modeled as a normal and zero mean
stochastic process with variance σ2α:

α � N 0,Rαð Þ;Rα ¼ σ2αIn ð5Þ

where In is the N � N identity matrix.
The full description of APS can be found in Guarnieri (2010).
The set of coherence, γnm, of each pair of the interferogram, which determines the

correlation and the lost correlation of the pixels due to different causes such as
superficial, volumetric, and temporal, is proposed by Zebker and Villasenor (1992)in
Eq. (6) below:

γnm ¼ γ0γ
sup
nm γ

vol
nmγ

temp
nm ð6Þ

From Eq. (3), we could derive the following equation:

Rdef ¼ E yyH
� � ¼ ϕΓϕH ð7Þ

where R is the data covariance matrix; y ¼ [y0 ��� ��� yN � 1]
T is the stack of the SLC

images at a given location, (r,x), in the slant range, azimuth plane; Γ represents an
N � N symmetric matrix, whose elements are given by the interferometric coher-
ences [Γ]nm ¼ γnm; and ϕ is an N � N diagonal matrix whose elements are given by
the interferometric phases:

ϕ ¼ diag exp jφ0ð Þ . . . . . . exp jφN�1ð Þf g ð8Þ

With the use of the PSInSAR method, our goal is to separate the deformation
phase from general phases. The separation of these phases requires the use of an
accurate digital topography model and selection of permanent scattering (PS) points,
which are selected based on the high scattering points above all image pairs. The
processing procedure is shown in Fig. 5, which is the implementation process to
detect the subsidence at PS scattering points with the StaMPS software (Hooper et al.
2010).

According to Ferretti et al. (2001), the selection of permanent scattering points
based on amplitude stability. As we already know, the observation signal of the SAR
image is the set: si¼ 1 + ni for i¼ 0,1, ..., N, therefore, the scattered amplitude points
are:
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DA ¼ σj s j=Mj s j ð9Þ

Stable amplitude points will be used to determine the stability phase. Determining
these permanent scattering points is relatively easy with the set of SLC images that
have been co-registration. In urban areas where there is much angular scattering,
various permanent scattering points can be derived, so this approach is well suited
for structure monitoring.

4.2 Accuracy Assessment

In this project, the accuracy assessment is carried out by comparing the subsidence
results derived from the TerraSAR-X and 27 COSMO-SkyMed images with the

Fig. 5 Flow chart of the
SAR image processing in
this research
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PSInSAR method and those from the precise geodetic leveling technique, which
described in Tables 2, 3, and 4. Herein, Root Mean Squared Error (RMSE) in
Eq. (10) was used.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dPSI � dlevð Þ2

n

r
ð10Þ

where dPSI is the subsidence derived from the PSInSAR method; dlev is the subsi-
dence obtained from the precise geodetic leveling method; and n is the number of the
measurement points used.

5 Results and Discussion

The results of the subsidence in this research are shown in Figs. 6, 7, and 8. With the
PSInSAR method, the TSX images show 810,000 PS points and the LOS angle is
34.4�, whereas with the LOS angle of 25.2� a total of 420,000 PS points is derived.

As shown in Figs. 6 and 7, it is found that the distributions of subsidence made by
these two types of images are quite similar, especially in the south of the city.
However, for the result of the Cosmo-SkyMed images, the number of the PS points
is less than that of the TerraSAR-X images. Thus, this result leads to more holes in
the subsidence image, where the coherences are low or less permanent scatters are at
these locations.

After determining the land subsidence by the two types of data, we randomly
selected 18 points spread over the entire study area to compare the subsidence values
from the TerraSAR-X images and the Cosmo-SkyMed images. The correlation of
the two subsidence results is shown in Fig. 8 with R2 of 0.91, indicating that the
subsidence values are similar in almost positions, and they can be used to comple-
ment each other in places where the image loses coherence.

In order to validate the subsidence result deriving from the TerraSAR-X images
and the Cosmo-SkyMed images, the subsidence results at the three building blocks,
CC2, CQ01, and CC7 obtained from the precise geodetic leveling method, men-
tioned in Sect. 3.2, were used. The locations of the surveyed buildings are shown
above in Fig. 3, which are marked by a red triangle. At these locations, the CC7 can
identify the PS subsidence points with the Cosmo-SkyMed images, while at the CC2
and CQ01 the PS subsidence points are from the TerraSAR-X images. These PS
points were overlaid over the 3D imagery of the study area to extract PS points on the
three building blocks above. Then, the coordinates of each PS point can be expressed
in values (x, y, z). Herein, we extract only PS points that match the time with the
precise geodetic leveling. It could be observed that each building block has different
measured values, the CC2 has the least leveling values (measured only in four
periods), whereas the CQ01 and CC7 were measured in a long time series and nearly
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coincided with the image acquisition time (see Tables 2, 3, and 4). The result is
shown in Figs. 9, 10, and 11.

For the chart in Figs. 9, 10, and 11, the x-axis represents the subsidence calculated
from the PSInSAR and the y-axis represents the subsidence measured by the leveling
method. The black line represents the linear regression line. Blue points are subsi-
dence points determined by the two methods at different times.

In the CQ01 building block, there are 15 PS points, whereas the CC7 has 24 PS
points and the CC2 has PS 4 points. The regression equation shows the degree of
coherence of these two data types. The result shows that all correlations between the
two methods are higher than 0.85, indicating that the subsidence of the building
blocks derived from the PSInSAR method is in line with those from the precise

Fig. 6 Land subsidence map for the study area in the period 2011–2014 using the Cosmo-SkyMed
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geodetic leveling. For a better understanding of the subsidence differences between
the PSInSAR and the precise geodetic leveling, diagrams of subsidence in time
series were produced, and the results are shown in Figs. 12, 13, and 14.

In Figs. 12, 13, and 14, the blue points are subsidence points from the PSInSAR
method, and the brown points are subsidence points from the leveling method. The
vertical axis is the subsidence, and the horizontal axis is the times of building
measurement. The solid black regression line is the regression line of subsidence
values from the images, and the dashed regression line is the regression line of the
subsidence values measured by the leveling method. It could be observed that the
subsidence derived from the two types of the TerraSAR-X images and the Cosmo-
SkyMed images with the PSInSAR method are higher than the values measured by

Fig. 7 Land subsidence map for the study area in the period 2012–2014 using the TerraSAR-X
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Fig. 8 Correlation between land subsidence results in the period of 2011–2014 using the
TerraSAR-X images and the Cosmo-SkyMed images

Fig. 9 Correlation between subsidence rate values by the precise geodetic leveling method at
CQ01 Van Quan and those calculated from TerraSAR-X images for the period of 2012–2014
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the leveling method. The difference between the two regression lines shows the
accuracy of the PSInSAR measurement. At the CC2 building block, the measure-
ment time for this building was just over 1 year, from 2012 to 2013; therefore, the
error at this building is quite high, RMSE is about 5.5 mm/year. For the CQ01
building block, the surveying time was longer, from 2012 to 2014; therefore, the
number of the PS points were also higher; so RMSE here is about 1.6 mm/year.

Fig. 10 Correlation between subsidence rate values by the precise geodetic leveling method at the
CC7 Linh Dam and that calculated from the Cosmo-SkyMed images for the period of 2012–2014

Fig. 11 Correlation between subsidence rate values by the precise geodetic leveling method at CC2
Van Quan and those calculated from the Cosmo-SkyMed images for the period of 2013–2014
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Regarding the CC7 building block, the survey time was the longest, from 2011 to
2014. RMSE of the subsidence between the PSInSAR and the leveling method is
about 2.5 mm/year.

Fig. 12 Validation between subsidence values by the precise geodetic leveling at the CQ01 Van
Quan and land subsidence calculated from the TerraSAR-X images by the PSInSAR method for the
period of 2012–2014

Fig. 13 Validation between subsidence values by the precise geodetic leveling at the CC7 Linh
Dam and land subsidence calculated from Cosmo-SkyMed images by the PSInSAR method for the
period of 2011–2014
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6 Conclusions

In this research, we assessed the subsidence of the building blocks in the southern
part of the Hanoi urban area using the TerraSAR-X images and the Cosmo-SkyMed
images with the PSInSAR method. The subsidence result was validated by compar-
ing it to those measured by the precise geodetic leveling method. Based on the
RMSE and R2 of the subsidence between the two methods, it could be concluded
that the PSInSAR method produced a good result. Thus, these methods can be used
to complement each other.

The limitation of this research is that only the subsidence at three building blocks
was validated; therefore, it is impossible to confirm which of the image, the
TerraSAR-X or the Cosmo-SkyMed, is better for the detection of the building
subsidence. The amount of the PS points derived from the TerraSAR-X is more
massive than those of the Cosmo-SkyMed, because the TerraSAR-X image covers a
larger area than that of the Cosmo-SkyMed.

The subsidence velocities measured from the precise geodetic leveling method
tends to be lower than those obtained from the PSInSAR. However, when the length
of the measurement time of the leveling method is longer, the subsidence difference
between the two methods is narrowed. The error is high (5.5 mm/year) at the CC2
building block with a short surveying time. Whereas with the other building blocks,
the CC7 and the CQ01, the error is less than 2.5 mm/year.

Overall, this work also showed that the PSInSAR method with the TerraSAR-X
images and the Cosmo-SkyMed images for detecting the subsidence of building
blocks in urban areas is promising, which can help in monitoring the subsidence of

Fig. 14 Validation between subsidence values by the precise geodetic leveling at the CC2 Van
Quan and land subsidence calculated from the TerraSAR-X images by the PSInSAR method for the
period of 2012–2014
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buildings in large areas. The subsidence information from the PSInSAR method is
also easily converted and integrated into GIS for further analysis.
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Analysis of Land Use/Land Cover Mapping
for Sustainable Land Resources
Development of Hisar District, Haryana,
India

B. S. Chaudhary, Reeta Rani, Sanjeev Kumar, Y. P. Sundriyal, and
Pavan Kumar

Abstract Natural resources on the earth are being continuously stressed to meet the
demands of increasing population. The increasing population requires enhanced
production of food, energy, and water. To ensure reasonable civic amenities for
quality life, there is need for the development of more infrastructure, more areas
under habitation, and enhanced per capita expenditure. Land resources, being finite,
need to be prudently used to meet the ever-increasing demand. This requires the
study of land use/land cover (LU/LC) and its monitoring to understand the changing
dynamics and optimal utilization of the resources. Geoinformation technologies are
helpful to a great extent for not only creation of baseline information but also to
monitor such changes. The present study has been carried out for Hisar district of
Haryana state, India, over a period of 10 years to understand the change in the land
use/land cover pattern. The district has a total geographical area of 4174.52 sq. km.
Digital image processing with selected ground truth has been carried out for gener-
ating the information from satellite data. IRS/LANDSAT data have been used for the
purpose. This information has been analyzed in the light of various land resources
constraints by taking collateral information on soil types, groundwater quality, and
depth along with geomorphological constraints. This information has been used for
suggesting land resources development plan for the region which will ensure
optimum and prudent use of land resources.
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1 Introduction

Land use refers to human use of an area of the earth. Generally, the land is divided
into sections, such as forest land, agricultural land, fallow land, pasture etc.,
informing the economic activity that takes place on the land. Land use and changes
in it have a very important impact on the environment and ecology of an area
(Anderson 1971; Arya et al. 1999; Chaudhary and Kumar 2017; Chaudhary et al.
2008). Among the issues related to natural resource conservation are the points
related to land use conservation: soil erosion and conservation, soil quality enhance-
ment, water quality and availability, vegetation protection, wildlife habitat, etc. Land
use and land cover have different significance in their own ways and is the basis for
Natural Resources Census. Land use is defined as a land which is used by different
human activities like farms, industry, etc., or how land is utilized; land cover is
slightly different (Xiubin 1996; Turner et al. 1994; Falcucci et al. 2007). Land cover
is that land on which physical material is present at the surface of earth, like trees,
bare land, etc. Land classification refers to different land types based on similar
character. Land can be classified based on physical determinants such as soil profile,
soil texture, and many different conditions, as well the purpose for which it is being
used. Land Cover Classification considers biophysical individuality. Land Use
Classification considers the serviceable use of land associated with human activities
(Anderson et al. 1976).

Remote sensing application technology provides reliable information on natural
resources and proper data acquisition system, both quantitative and qualitative. It is
useful for planners and natural resources persons. This technology proved to be a
boon to land use planners. Land comprises all elements of the physical environment
to the extent that these influence potential for land use. The growing pressure of
population coupled with increasing multiple requirements – environmental, social,
and land use problems – have necessitated the optimum utilization of land of an area.
Information on existing land use is essential for planning optimal utilization of land
(Chaudhary 2003; Clevers et al. 1999; Dhawan 2017; Gupta and Roy 2012; Hooda
et al. 1992; Hussin and Shaker 1995). Land use is a dynamic phenomenon and
controlled by several factors such as climate, geomorphology, soils, water availabil-
ity, socioeconomic and cultural factors, etc. The physical results of past human
activity, such as vegetation clearance, etc., are included within the concept of land
use changes. Unfavorable consequences from past use, such as eroded soils,
degraded vegetation, and salt-affected soils, must also be included.

Land and soil are precious natural resources and are nature’s gift to the human-
kind. The prosperity of a country depends on the richness of these resources. In a
country like India, where the population pressure on land is high, rational utilization
of the land resources assumes great importance for the optimal and sustained
production with minimum hazards. Essentially, this will mean proper utilization of
land and soil. These resources, however, have been most recklessly used by humans
in the past to extract more and more from them. This has caused rapid deterioration
and degradation of lands. Land is the basic and most important resource in Haryana,
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as it is true for nearly all other states of the country (Kumar 2017; Kushwaha and
Oesten 1995; Ram and Singh 1995; Rani 2017; Toleti 1995).

The land resources are limited, as the total geographical area is fixed. Land is,
therefore, scarce in supply. It is irreplaceable and not reproducible. While the land is
finite, the population dependent on land and its needs are infinite (Narumalani et al.
2004; Reid et al. 2000; Kuemmerle et al. 2006). These have been increasing with
time. Per capita availability of the resources, therefore, has been declining. One of
the prime requisites for better land use is information on existing land use and the
distribution of settlement, forest, agricultural land, barren land, etc., and they are
important to determine land use policy, planning of transportation, and communi-
cation services, etc. The present land use is the result of different causes which are
related to landforms, soil conditions, irrigation facilities, marketing, communication
and transport, and socioeconomic conditions (Yang and Liu 2005; Yonas et al. 2013;
Meyfroidt and Lambin 2008).

Remote sensing technology implies observation of an object from a distance,
without being in actual contact with it. Remote sensing of the earth or any other
planetary body involves collection of information like topography, natural resources,
and natural phenomena such as volcanic eruptions, forest fires, floods, droughts, etc.,
with the help of sensors like cameras, scanners, radiometers on board platforms like
airplanes, rockets, balloons, etc. The study reveals the land use/land cover changes
from 1988–1989 to 1999–2000.

2 Materials and Methods

2.1 Study Area

The study area which comprises of Hisar district extends from 28�5304500 to
29�4901500 N latitudes and 75�1301500 to 76�1801500 E longitudes, and covers an
area of 4174 sq. km. The district is bordered by Fatehabad district and Rajasthan
state in the west, Rohtak district in the east, Bhiwani district in the south, and Jind
district in the north. The location map of the study area is shown in Fig. 1. The
southwest monsoon season lasts from the interim week of June to the middle of
September. The weather here is almost dry from October month to the following
June. Occasionally, light disturbances occur with lightning due to western distur-
bances. Only 75–80% annual rainfall is received in the four rainy months of June to
September. Here also the average annual rainfall is 450 mm and 133.4 mm in July,
116.2 mm in August, 54.5 mm from September, and 49.8 mm average annual
rainfall since June. The average rainfall season is 354 mm. The maximum rainfall
ever measured was 793.6 mm in 1976. The minimum rainfall was recorded in the
year 2000, which is 145.2 mm. Here, 10–15% of the total rainfall is in the winter
season due to southern disturbances. The maximum days of the rainy season are in
the months of July and August and the minimum days are in November and
December. The lands in the district are Aeolian plains, older alluvial plains, and
Chautang flood plains, which further have sand dunes, plains, old channels, and
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basin as subunits. Aeolian activities are dominant in west and southwest parts of
district, having presence of sand dunes, sandy plains, and interdunal areas. As a part
of the Indo-Gangetic alluvial plain, the study area owes its genesis contemporane-
ously with the uplift of the Himalayas. This sag has since been filled up by sediments
derived from the rivers and channels of northern Himalayas and southern Aravalli
hills from Pleistocene to recent times (Rani 2017).

2.2 Data Used

The study area is covered by Survey of India Toposheet Nos.: H43P-7, 8, 10–12,
14–16 H43Q-03, 04, 08, H43V-09, 13 on 1:50,000 scales. These were used for the

Fig. 1 Location map of Hisar district, Haryana
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preparation of digital base map, demarcation of district boundary, and other collat-
eral information. Landsat TM+ data of October 1999, February 2000, October 2014,
and February 2015 (A, B, C, and D in Fig. 3) are used to prepare LU/LC maps of
study area. In the preparation of LU/LC map of area, ancillary data in the form of
topographic maps and other published relevant material were used as reference
information.

Landsat TM and ETM+ images were selected as the remotely sensed data for this
study. The Landsat’s temporal resolution is 16 days and its spatial resolution is 30 m,
meaning that images for a specific path and row are available every 16 days. Landsat
being sun-synchronous, it generates day images only (Rani et al. 2018; Kumar et al.
2014, 2018a, b; Mandal et al. 2014; Yadav et al. 2014). These images are available
for download upon request from United States Geological Survey (USGS)–specified
websites such as earthexplorer.usgs.gov and glovis.usgs.gov. For acquiring Landsat
TM and ETM+ data from its historical data archives, earthexplorer.usgs.gov was
chosen. USGS offers open access to Level 1C product to users; L1C is a radiomet-
rically and geometrically corrected. The correction algorithms used the spacecraft
model and sensor, using images generated by in-flight computers during data
acquisition events. Operational Land Imager (OLI) on board Landsat TM and
ETM+ makes available the opportunity to estimate SSC in Gaula River.
Orthorectified and terrain-corrected level-1 data that overpass on 28 October 2017
was acquired from USGS Earth Explorer site to synchronize with collected ground
truth data from three sites. Data was provided in Geo TIFF format with UTM
projection and WGS84 datum.

Landsat TM and ETM+ satellite has two main sensors. There are the Landsat TM
and ETM+ using nine spectral bands in different wavelengths of visible thermal
infrared sensor (TIRS). OLI which collects and captures visible bands, near-infrared
and shortwave light to observe a 185 km (115 mile) wide swath of the earth in 15–30
m resolution covering wide areas of earths landscape while providing sufficient
resolution to distinguish feature like urban centers, farms, forests, etc.,
corresponding image was selected by inputting Path and Row numbers of 194 and
56 respectively. This TILE covers the entire length of the Gaula River basin. After
selecting the desired date and type of product an order was placed for processed L1C
product. It is to be noted that the best monsoon seen month of October was consider
for the present study.

2.2.1 Georeferencing of Satellite Images

Satellite data of both the years were loaded through EXPORT/IMPORT function of
ERDAS/IMAGINE as generic binary file or directly in GEOMATICA. From the
original data sets Area of Interest (AOI) was extracted and subsequently mosaicking
of images was performed. Raw satellite images do not orient with respect to ground.
In order to correct them, ground coordinates of any coordinate system has to be
assigned (Bisht et al. 2014; Kumar et al. 2012, 2013; Rani et al. 2011; Sharma et al.
2011). Image rectification/georeferencing includes assigning map coordinates
to image data. Georeferencing/rectification may be carried out by two techniques.

Analysis of Land Use/Land Cover Mapping for Sustainable Land Resources. . . 155

http://earthexplorer.usgs.gov
http://glovis.usgs.gov
http://earthexplorer.usgs.gov


In forest technique, it is image-to-image registration, and this process involves
assigning coordinates of already geo-rectified image to raw image; and second
technique is assigning coordinates to known points in raw image collected from
ground by means of GPS. For this study, Landsat ETM+ satellite data, which are
freely available, were downloaded from website (GLCF data product). These satel-
lite images are already geo-referenced and used to geo-reference IRS 1D LISS III
satellite images of the study area using image-to-image georectification process in
ERDAS Imagine (Murthy et al. 2017; Kumar et al. 2016; Pandey et al. 2015).

A flowchart of the methodology used and satellite images are given in Fig. 2.
Scanning, georeferencing, and mosaicking of the toposheets were carried out for
using these as reference sources for georeferencing of different digital satellite data
of 1999–2000 and 2014–2015 after that supervised and unsupervised classification
was carried out. Also, various LU/LC categories were identified on the basis of
standard image interpretation keys like tone, texture, shape, size, pattern, and
association, etc. The built-up area gave doubtful signature in the supervised/
unsupervised classification, and hence on-screen digitization was also carried out
for removing the doubt in built-up land (Fig. 3).

3 Result and Discussion

For various land resource studies, regional planning and management, land use/land
cover mapping is very important. In case of land degradation status mapping and
monitoring, the land use/land cover study is proved to be very much helpful. In this
study, land use/land cover mapping was carried out to achieve the ultimate objective
of this research. The detailed methodology to generate land use/land cover map has
been discussed.

3.1 Land Use/Land Cover

The LU/LC map was generated using supervised classification approach using two
seasons satellite imageries, and five broad land categories were identified. These
land categories are as follows:

• Built-up (Built-up Compact, Built-up, Sparse Vegetated/Open Area, Rural,
Industrial Area, Ash/Cooling, Pond/Effluent and other Waste)

• Agricultural Land (Kharif, Rabi, Cropped in Two Seasons, Cropped in More than
Two Seasons, Fallow Land, Agriculture, Plantation)

• Forest (Open, Deciduous, Open Tree, Clad Area)
• Grass/Grazing Land (Alpine/ Sub-Alpine)
• Wastelands (Salt-Affected Land, Open Scrub Land, Desertic Sandy Area)
• Wetlands (Manmade, i.e., Water-logged, Saltpans, Inland, etc.)
• Water Bodies (Canal/Drain Permanent and Seasonal Lake/Ponds)
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The classes interpreted were subsequently verified in the field by conducting an
extensive field survey. Area statistics for different land use/land cover categories was
generated and are given in Tables 1 and 2. Characteristics and spatial distribution of
each of the land class have been discussed in the following sections. In present study,
the district divides in to 7 major categories and 21 subcategories according to world
standards (Natural Resources Information System (NRIS)), as follows.

Fig. 2 Flowchart of methodology
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3.1.1 Built-Up Land

It is characterized by intensive land use where the site has been altered by human
actions. Level-II classifications under Built-up land category are Built-up Compact,
Built-up Sparse, Vegetated/Open Area, Rural, Industrial Area, Ash/Cooling Pond,
and other Waste. Total area under this category is 127.5 sq. km in year 1999–2000,
and it increased by 28.40 sq. km in year 2014–2015.

3.1.2 Agricultural Land

The land which is used for farming and production of food and crops. In this
category, land covered under Kharif, Rabi, Cropped in 2 Seasons and Cropped in
More than 2 Seasons, Fallow Land, and Agriculture Plantation. Area covered under
this category is 3829.68 sq. km in year 1999–2000, which decreased by 8.37 sq. km
in year 2014–2015.

Fig. 3 Satellite images (a-October 1999, b-February 2000, c-October 2014, and d-February 2015
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3.1.3 Forest Land

Forest land use is a function of the social and economic purposes for which land is
managed, while forest land cover is a human definition of the biological cover
observed on the land (Watson et al. 2000). In this category, land covered under

Table 2 Showing area statistics of different land use/land cover classes of Hisar district for year
2014–15

Category Area in 1999–2000 Area in 2014–2015 Change in area

Built-up 127.52 155.93 28.40

Agricultural land 3829.68 3821.31 �8.37

Forest 28.92 39.43 10.51

Grass/grazing land 134.73 113.02 �21.71

Wasteland 24.11 15.23 �8.88

Wetland 0.66 0.40 �0.25

Water bodies 28.89 29.20 0.31

Total area 4174.52 4174.52 0.00

Table 1 Showing area statistics of different land use/land cover classes of Hisar district for year
1999–2000

Area of land use/land cover categories in year 1999–2000

Category Subcategory (level-III) Area (sq. km)

Built-up Built-up compact 21.08

Built-up sparse 5.59

Vegetated/open area 6.64

Rural 57.05

Industrial area 36.57

Ash/cooling, pond/effluent, and other wastes 0.59

Agricultural land Kharif 187.85

Rabi 189.95

Cropped in 2 seasons 3284.75

Cropped in more than 2 seasons 0.37

Fallow land 162.75

Agriculture plantation 3.79

Forest Open deciduous (dry/moist/thorn) 5.49

Open tree clad area 23.46

Grass/grazing land Alpine/sub-Alpine 134.73

Wastelands Salt-affected land 0.58

Open scrub land 18.07

Desertic sandy area 5.46

Wetlands Manmade (water logged, saltpans, etc.), inland 0.64

Water bodies Canal/drain 13.83

Permanent and seasonal lakes/ponds 15.27

Total area 4174.52
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Open Deciduous (Dry/Moist/Thorn), Open Tree Clad Area. Area covered under this
category is 28.92 sq. km in year 1999–2000, which increased by 10.51 sq. km in year
2014–2015.

3.1.4 Grass/Grazing Land

Land covered by grass/crops and suitable for grazing by animals is known as Grass/
Grazing Land. Alpine/Sub-Alpine are type of grasslands present in study area. Area
covered under this category is 134.73 sq. km in year 1999–2000, which decreased by
21.71 sq. km in year 2014–2015.

3.1.5 Wasteland

Wasteland is a barren or uncultivated land which may be barren due to flood or any
other natural activities. In this category, land covered include Salt-Affected Land,
Open Scrub Land, Desertic Sandy Area, etc. Area covered under this category is
24.11 sq. km in year 1999–2000, which decreased by 8.88 sq. km in year
2014–2015. The various wasteland categories identified in the study area are scrub-
land, land without scrub, sand (desertic and riverine) stony land, and gully or
ravine land.

3.1.6 Wetland

Wetlands are areas where water covers the soil or is present either at or near the
surface of the soil all year or for varying periods of time during the year, including
during the growing season. In this category, land covered under manmade (water-
logged, saltpans, etc.) and inland. Area covered under this category is 0.66 sq. km in
year 1999–2000, which decreased by 0.25 sq. km in year 2014–2015.

3.1.7 Water Bodies

It is an area which is covered water and by flow of water. In this category, land
covered under Canal/Drain and Permanent and Seasonal Lake/Ponds. Area covered
under this category is 28.89 sq. km in year 1999–2000 (Table 3), which increased by
0.31 sq. km in year 2014–2015. Ephemeral rivers/steams are major contributors in
this category of land. Tank or ponds are associated with settlement areas, whereas
other natural water bodies exist in east of Aravalli hills.

Land use/land cover map of study area for year 1999–2000 and 2014–15 is shown
in figures 4 and 5. Land use/land cover map of Hisar district prepared using online
digitization technique of satellite imageries Landsat 7 and Landsat 8 for year
1999–2000 and 2014–15. Area covered under different categories shown in Tables 1
and 2. Change in area is also in Table 3 (Figs. 4 and 5).
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4 Conclusions

The study indicates maximum increase of 28.40 sq. km under built-up land over last
15 years. This is due to the conversion of agriculture land and grass land to built-up
land due to increasing pressure of population and migration of the people from other
states to the area. There is negligible increase in the area under water body, which is
not commensurate with the population increase in these 15 years as the area is

Table 3 Change in area of LU/LC under different category from 1999–2000 to 2014–2015

Category Area in 1999–2000 Area in 2014–2015 Change in area

Built-up 127.52 155.93 28.40

Agricultural land 3829.68 3821.31 �8.37

Forest 28.92 39.43 10.51

Grass/grazing land 134.73 113.02 �21.71

Wasteland 24.11 15.23 �8.88

Wetland 0.66 0.40 �0.25

Water bodies 28.89 29.20 0.31

Total area 4174.52 4174.52 0.00

Fig. 4 Land use/land cover map of Hisar district for year 1999–2000
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predominantly desertic and groundwater conditions including quality and availabil-
ity are not so good. Hence there is a need of some water harvesting planning in the
district. Grass/ gazing land is increasingly being converted into forest land which is a
healthy sign. There is remarkable reduction in the area under wastelands which has
been converted to built-up and forests. The study demonstrates the subtle role of
geospatial technology in LU/LC mapping and monitoring for the use of planners/
decisions makers.
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A Spatial Investigation of the Feasibility
of Solar Resource Energy Potential
in Planning the Solar Cities of India

Koel Roychowdhury and Radhika Bhanja

Abstract India is experiencing large-scale urbanization, and the key component
leading to such demographic growth and increasing GDP in these urban spaces is an
uninterrupted energy supply. The energy generated from nonconventional energy
resources consequently leads to resource scarcity and environment pollution. The
renewable energy generation and its optimum utilization is the key to the sustainable
growth of cities and its hinterland. Although India is in the fifth position among the
leading countries to harness renewable energy, in order to suffice the growing energy
requirements, it will still require thrice the energy than the total energy consumed
today. The Ministry of New and Renewable Energy has undertaken the “Develop-
ment of Solar Cities” program to boost renewable energy usage in urban sectors.
Around 60 cities are participating in this program. However, the viability of the
program in these cities still needs to be established. The current study, therefore,
focuses on identifying solar hotspots of India and how the spatial distribution of
solar energy resources accentuates or hinders the performance of the solar cities. A
technoeconomic feasibility study has been conducted using solar resource datasets
derived from high-resolution satellites. Further, the Technique for Order of Prefer-
ence by Similarity to Ideal Solution (TOPSIS) method was applied to identify the
cities with the maximum potential to successfully fulfil the ambitious solar city
project. The statistical analysis reveals that cities lying in western India are best for
harnessing solar energy in large scale. The power will be generated through Con-
centrated Solar Power (CSP) systems or in residential and commercial sectors using
Solar Photovoltaic (SPV) systems. The study explores the feasibility of site selection
for the ambitious solar city project, focusing on existing policies, technology, and
economic capacity of the selected cities to meet the project targets.
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1 Introduction

Cities are moving forward to achieve the global goals of combating climate change
and adapting all possible measures for a sustainable low carbon future. India, too,
has undertaken a giant leap in achieving a massive project of installing 175 GW of
renewable energy by 2020, where 100 GW of power will be generated from solar
energy, 60 GW from wind energy, 10 GW from biopower, and 5 GW from small
hydropower plants (Press Information Bureau 2018). In order to accomplish such
ambitious goals, the country’s energy systems are being subjected to sustainable
transformations. Indian cities are equally participating in different renewable energy
programs, thereby substantially reducing the use of conventional sources of energy
to meet the growing energy demands. The Solar City Mission (SCM) program is
such an initiative by the Ministry of New and Renewable Energy (MNRE) to address
the energy demands of Indian cities in a holistic manner. SCM program aims to
reduce around 10% of the projected demand of conventional energy in the cities,
through its combination with renewable energy sources, thereby promoting energy
efficiency measures and energy-inclusive development of the selected cities. The
program was introduced to motivate the Urban Local Bodies (ULBs) adopting
renewable energy-based projects like solar, wind, biomass, small hydro, and waste
to energy based on the need and resource availability in the city (Ministry of New
and Renewable Energy, 2018).

India is a tropical country and its geographic location is favorable to tap solar
energy by employing large-scale solar plants and solar photovoltaic systems in
rooftops, water heating, and irrigation purposes and many more. India has already
installed 25 GW of grid-connected solar power capacity. The unplanned compact
cities of India are willing to benefit from renewable energy and therefore, a
technoeconomic feasibility assessment of potential cities is a prerequisite prior to
cost-intensive renewable energy investment in these cities. The application of
geographic information system (GIS) in the field of renewable energy planning
has been extensively used for efficient resource utilization and planned production,
generation, and storage of renewable energy(Alhamwi et al. 2017; Chow et al. 2014;
Firozjaei et al. 2019; Gastli and Charabi 2010; Piragnolo et al. 2015). Non-geospatial
methods like mathematical models (Eldin et al. 2016; Shehzad et al. 2016; Xiang
et al. 2018) and economic models (Byrne et al. 2017; Okoye et al. 2016; Wegertseder
et al. 2016) are mostly used to calculate the optimum generation of electricity from
renewables, but they lack the ability to determine the variation over space and time.
The geospatial models employ land use, buildings, rooftops, and infrastructure data
to map the potential of a region to harvest renewable energy successfully. Geospatial
awareness is crucial for sustainable energy infrastructure planning (Resch et al.
2014). This research opens up a new horizon for a national-level assessment of the
feasibility of solar energy planning by utilizing high-resolution data and geospatial
modelling tools.

Resource assessment is a fundamental approach for investors and renewable
energy planners to determine appropriate geographical locations with abundant
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and consistent resources. There are studies which spatially assess the solar energy
potential at local, regional, and global scales. Solar hotspots are regions of greater
solar energy potential than their surrounding regions, suitable for commercialization
of solar energy (Ramachandra et al. 2011). The procedure of site selection for solar
energy can be tedious at times. Large-scale solar power projects require vast land
areas to capture a large amount of solar irradiation. One of the hindrances faced in
developing such projects is the variability of solar irradiation in different geograph-
ical locations. Other factors that determine the location of solar PV plants include
identification of physical constraints like the presence of hilly areas, protected areas,
forests, and water bodies (Anwarzai and Nagasaka 2017); installation and operation
cost; incentives from the government; and the proximity to the site for energy
consumption, which may be either rural or urban. Considering the massive potential
of India to harness solar energy, determining the suitable location to develop solar
plants by investors is a challenging task. The use of remote sensing and GIS for
decision-making can improve the accuracy of site selection procedure.

Open-source data from World Bank, National Aeronautics and Space Adminis-
tration (NASA), and National Renewable Energy Laboratory (NREL) are frequently
used to assess the solar energy potential of countries (Asumadu-Sarkodie and Owusu
2016; Chandler et al. 2015; Jahangiri et al. 2016; Watson et al. 2019). GIS tools have
proven to be beneficial in assessing the solar energy potential for different cities in
India (D. Kumar 2018; K. E. Kumar and Kumari 2019; Ramachandra and Shruthi
2007). The study considers two main solar irradiation datasets: global horizontal
irradiation (GHI) to map potential areas of solar photovoltaic (SPV) and direct
normal irradiation (DNI) to identify suitable areas for large-scale solar plants like
Concentrated Solar Plants (CSP). The areas suitable for harnessing solar energy are
mainly delineated using solar irradiation datasets and then GIS is further used to
classify and segregate regions of the basis of resource availability and other socio-
economic attributes (Freitas et al. 2015). Most of the studies have not considered the
effectiveness of battery backup of solar systems, which is mainly calculated in terms
of days with no sunshine.

Numerous methodologies have been adopted in recent studies to increase the
accuracy of predicting the most feasible locations to tap solar energy resources. One
such method involves modelling the spatial feasibility of solar energy resources
using GIS-based multicriteria decision analysis (MCDA). This method uses spatial
information, decision-making attributes, and criteria weights to conduct the spatial
assessment of renewable energy resource potential (Greene et al. 2011). Site suit-
ability analysis using a weighted sum model was applied to identify consumer
suitable and economically viable regions for utility-scale solar projects in the
countries across southwestern United States (Brewer et al. 2015). A combination
of GIS and analytical hierarchical process (AHP) was used to compute a land
suitability index in Saudi Arabia and the most suitable location to construct solar
power plants were identified (Al Garni and Awasthi 2017). Wu et al. (2017)
designed a geospatial multicriteria analysis model (MapRE) to estimate the renew-
able energy potential of a specific site with the help of ArcGIS, Python, and R
programming languages. This method has also been used to locate regions with
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greater investment opportunities for renewable energy in Bangladesh (Shiraishi et al.
2019). Moreover, different levels of hindrances require flexible results, and there-
fore, GIS-based ordered weighted averaging approach can also be applied to deter-
mine the optimal location for developing solar projects in Iran (Firozjaei et al. 2019).

The solar hotspots of India were first characterized by Ramachandra et al. (2011)
using NASA SSE Global insolation datasets superimposed on agroclimatic zones of
India. The potential zones were segregated for SPV and CSP systems, and it was
observed that around 58% of the country could meet the power requirements of
large-scale solar plants in a sustainable manner. The same methodology was used to
locate renewable energy potential taluks in Karnataka, India (Ramachandra and
Shruthi 2007). The study concludes that the coastal areas of the state received
more solar irradiation than its surrounding areas and were ideal for tapping solar
energy. GIS-based MCDA are also applied to assess the feasibility of solar energy
resources in Indian context. Numerous criteria are applicable to determine the
feasible areas to tap solar energy. Reshma et al. (2018) used criteria such as distance
from road and water bodies, availability of barren lands, slope map, direction of sun
radiation, and existing built-up area to conduct the solar site assessment of the
Thiruvannamalai district, Tamil Nadu. In the same manner, AHP was used to rank
areas in Sikkim according to the technoeconomic feasibility of solar energy
resources and GIS was used to generate a technology-aided suitability map for
medium-scale solar energy plant installations in the state of Sikkim (Ghose et al.
2019).

This research attempts to identify the solar hotspots of India and how the spatial
distribution of solar energy resources accentuates or hinders the performance of the
solar cities. The study is novel as it considers different aspects of technoeconomic
feasibility, which previously had not been considered in the Indian context. In
addition to a detailed analysis of solar radiation aspect and economic feasibility of
Indian states, the study also aims to justify the viability of the Solar Cities Mission
program, for which 60 cities have been selected to encourage the renewable energy
usage in urban areas. The study explores the feasibility of site selection for the
ambitious solar city project, focusing on existing policies, technology, and economic
capacity of the selected cities to meet the project targets.

2 Material and Method

2.1 Study Area

A technoeconomic feasibility of solar energy resource potential in 60 selected solar
cities of India has been studied here. For the implementation of solar city projects, a
sum of up to Rs. 50 lakhs per city would be provided to the ULBs, depending upon
population and initiatives taken by the city council or administration body. The
program provides a framework to prepare a Master Plan of the solar city to establish
sector-wise strategies and targets for implementation of renewable energy projects in
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the city. Till date 36 solar cities have compiled their Master Plans, while only 4 cities
have received more than 50% of the allotted amount for successful implementation
of their Master Plans (MNRE 2018). SCM is mainly a capacity-building program for
the stakeholders involved in the planning and implementation of green energy
strategies in the selected solar cities of India. Therefore, a spatial investigation into
the feasibility of renewable energy resources in the remaining cities must be
conducted, prior to the dissemination of further funds to these cities.

2.2 Data Used

To identify the solar hotspots of India, three relevant solar irradiation datasets were
considered, i.e. Global horizontal irradiation (GHI), Direct normal irradiation (DNI)
and Photovoltaic power potential (PVOUT). These datasets were acquired from
Global Solar Atlas, a web platform funded by the World Bank and Energy Sector
Management Assistance Program (ESMAP) to provide quick access to solar
resource data globally. These datasets for India can be downloaded in two formats
of raster data: GeoTIFF and AAIGRID (Esri ASCII Grid). The data layers are
provided in a geographic spatial reference (EPSG:4326) and the resolution of the
pixels is adjusted to 30 arcsec (nominally 1 km) (World Bank Group 2018). The
solar irradiation datasets for India is available from 1999 to 2018, and the solar data
are available in terms of long-term yearly average of daily totals and as long-term
average of yearly summaries. Here, long-term average of yearly summaries
was used.

Solar radiation datasets consider both irradiance and irradiation values for anal-
ysis. GHI (kWh/m2) is the total amount of direct and diffuse components of
radiation from the sun falling on a flat surface. GHI is considered relevant for
generating energy from SPV and other solar heating technologies such as solar
water heaters, solar water pumps, and many more. On the other hand, DNI
(kWh/m2) is the amount of solar radiation that reaches the earth’s surface in a
straight line from the sun at a particular position in the sky. DNI is useful for tapping
solar energy by the CSPs. Both variables were processed using different solar
radiation models. GHI was derived from the SOLIS clear-sky model coupled with
the cloud index with the help of three geostationary satellites, mainly National
Oceanic and Atmospheric Administration (NOAA), European Organisation for the
Exploitation of Meteorological Satellites (EUMETSAT), and Japanese Meteorolog-
ical Agency (Cebecauer et al. 2010). DNI was calculated from DirIndex, coupled
with high-resolution DEM data, to avoid inconsistency of solar radiation and
removal of aerosol contents (Ruiz-Arias et al. 2010; Šúri et al. 2010). Moreover,
PVOUT (kWh/kWp) was also considered in this study to identify the regions with
the highest energy-capturing potential by PV technologies. It is defined as the
amount of electricity (in kWh) that can be generated by a DC power of a PV system
with 1 kW peak installed capacity. Higher values of PVOUT indicate an effective
operation of PV systems (Solargis 2019). PVOUT is a viable option for investors to
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identify locations where better-quality solar panels with high grade silicon cells and
improved temperature coefficient performance (N-type silicon cells) with slower
degradation rate can be installed. The GHI, DNI, and PVOUT data are available
worldwide between 60�N and 45�S. The datasets are available at 1-km spatial
resolution, from 1999 to 2018 for North and South America, and part of Asia
(up to 100� longitude).

The PV system penetration in the Indian market requires huge investments from
both public and private enterprises. MNRE reports that the average cost required to
install a rooftop solar system with on-grid connection is Rs 75 per watt. Renewable
energy becomes lucrative when they lower the electricity bill of consumers at a lesser
installation cost; therefore, the central government, as well as the state governments
of India have designed policies to provide different types of incentives to eligible
producers to tap solar energy through SPVs and CSPs (MNRE 2019). The policies
were examined, and the incentives were categorized and coded to determine the type
of economic benefits provided by each state government to its investors to expertly
install solar PV systems in their frontiers. The policies can be accessed from the
MNRE website.

2.3 Methodology

The solar resources distribution was depicted using GHI and DNI values and the
potential zones with high energy yield capacity were depicted through PVOUT data.
Each parameter was classified into seven groups of solar potential and the areas were
extracted and measured. The classification of the individual potential zones was
done based on natural breaks or the Jenks method. The Jenks method groups value
based on their similarity by minimizing the variance within classes and maximizing
the difference between classes (Jenks 1977). The method first generated random
classes, then the class boundaries of each class are adjusted by assigning the
boundary values of each class its next class. This iterative process halts when the
variance within classes reaches to its lowest possible value while the variance
between classes has reached its maximal limit (de Smith et al. 2018). This method
of classification has been previously used by (Prăvălie et al. (2019) to delineate solar
resource potential zones using 7-point Likert scale of significance.

To delineate the economically feasible zones, the solar energy policies for each
state were examined and required information was extracted and coded to determine
the type of economic benefits provided by each state government to its investors.
Four categories were selected to represent the economic viability of solar projects
state-wise, namely number of eligible producers, provision for land allotment,
provision for banking of power, and monetary incentives, which include interest
subsidy in the form of lower interests and fixed capital investment, waiver from
electricity duty and stamp duty, exemption or concession in land premium, project
report subsidy, and technical patent subsidy. The total number of benefits provided
by the governments determines the economic potential of each state for effective
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installation of the solar PV systems. To classify the states into economic potential
zones, the above-mentioned methodology to delineate solar resource potential zones
was applied.

Finally, after the overall feasible areas were delineated, the data from all layers of
solar resource potential zones and economic potential zones was extracted to solar
city point vector layer and a GIS-based MCDA method was applied to identify the
cities with the maximum potential to successfully fulfil the ambitious solar city
project. The detailed methodology is explained in Fig. 1. The TOPSIS method,
developed by Yoon and Hwang (1981), was used to find the solar cities with ideal
conditions to harness solar energy. The method presumes that each criterion leads
toward an increasing or decreasing utility, through which positive and negative ideal
solution are defined. The Euclidean distance approach is used to calculate the
distance between each criteria and the ideal point (Eq. 1 and 2).

Sþ ¼
Xn

c¼1

Wck �Wþcð Þ2
" #0:5

ð1Þ

S� ¼
Xn

c¼1

Wck �W�cð Þ2
" #0:5

ð2Þ

The relative closeness to the ideal point can be calculated by (Eq. 3)

CI ¼ Sk�
Skþ þ Sk�

ð3Þ

Where Wck is the weighted standardized criterion value of the kth alternative,
calculated by multiplying standardized criterion value by the corresponding weight,
and W+c is the ideal value and W-c is the negative ideal value for the kth criterion
(Malczewski 1999; Ozturk and Batuk 2011).

Fig. 1 Overview of the methodology used in the study
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3 Results and Discussion

3.1 Solar Resource Potential in India

India, on an average, receives 1500–2000 sunshine hours per year (Sunwatt-India
2013). The solar radiation maps generated from the GHI and DNI datasets (Fig. 2)
reveal a large geographical area of India is suitable top harness solar energy. The
classification of GHI data reveals that 19% of the geographical area (0.744 mil km2),
mainly Gujarat, half of Rajasthan and Karnataka, and parts of Tamil Nadu and
Andhra Pradesh receives GHI more than 1965.00 kWh/m2, and can be considered as
the ideal locations to tap solar energy with the help of SPVs in the future. Madhya
Pradesh, Maharashtra, Chhattisgarh, Andhra Pradesh, and parts of Rajasthan, Kar-
nataka, and Tamil Nadu and the eastern part of Kashmir occupy the next major class
with a higher potential area to capture solar energy (more than 1800 kWh/m2 and
less than 1965 kWh/m2). This zone covers around 1.3 mil km2 of India’s geograph-
ical area.

On the other hand, only a significant part of eastern Kashmir exhibits maximum
DNI values (> 2000 kWh/m2). Gujarat and 50% of Rajasthan’s geographical area lie
in the second belt of the very high solar potential zone and occupy a minimal area of
0.44 mil m2. Madhya Pradesh, Chhattisgarh, parts of Maharashtra and Karnataka,
western Andhra Pradesh, and the remaining area of Rajasthan receive DNI ranging
between 1470.00 kWh/m2 and 1660.00 kWh/m2 and are also suitable to harness
solar energy in large quantities. These three regions, covering around 1.6 mil km2 of

Fig. 2 Spatial representation of GHI (a) and DNI (b) values in the states of India
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India’s geographical area, are most favorable for CSP systems. Although the distri-
bution of DNI and GHI in India show vast difference, the homogeneous distribution
of the high, very high, and maximum solar potential zones, except that of Kashmir,
may enable them to conduct interstate electricity distribution from solar power plants
installed in the neighboring states.

The distribution of GHI and DNI values for regions with lesser potential to tap
solar energy were almost similar. The states of Himachal Pradesh, Haryana, Punjab,
Mizoram, northern parts of Uttar Pradesh and Bihar, and the alluvial plain and
deltaic region of West Bengal receive average solar radiation when compared to
the remaining states of India. These regions cannot solely depend on solar energy
power plants as their future electricity suppliers. Here, a combination of thermal and
solar power plants may suffice the need to generate electricity from renewable
energy resources, without jeopardizing the electricity demand of the growing pop-
ulation and urban infrastructure. The remaining state of northeast India and western
and central part of Jammu and Kashmir have poor ability to tap solar energy, and
therefore these states can consider different renewable energy options to meet their
energy needs sustainably.

3.2 Technological Advantage in Solar Sites

The photovoltaic power potential (PVOUT) of solar sites combines solar irradiation
and air temperature datasets to obtain the maximum power out when the input power
adheres to the Standard Test Conditions (STC) of 1000 W/m2 global insolation, 25�

C module temperature, and 1.5 air-mass (AM). The SPVs are an array of photovol-
taic cells which convert solar energy to direct current (DC) electricity. These solar
cells are composed of a thin layer of N-type silicon above a thick layer of P-type
silicon. When the sunrays fall on the cells, the light simulated electrons gain
momentum and electricity is generated at the P–N junction. The efficiency of the
SPVs varies with the purity of silicon used in the solar cells. Around 90% of the
world’s SPVs use either monocrystalline or polycrystalline silicon cells to achieve
12–20% cell efficiencies. The purity level of monocrystalline silicon cells is higher
than polycrystalline silicon cells, and therefore monocrystalline cells are more
expensive.

The classification of PVOUT (Fig. 3) is nearly similar in characteristics to the
categorization of DNI. The east part of Kashmir exhibits maximum PVOUT values
(>1800 kWh/kWp). Gujarat and 50% of Rajasthan’s geographical area form a very
high technologically potential zone to generate a greater amount of solar energy
using efficient SPVs. This region occupies an area of 0.51 mil m2. Madhya Pradesh,
Chhattisgarh, Maharashtra and Karnataka, western and southern Andhra Pradesh,
west Jharkhand, and the remaining area of Rajasthan have the photovoltaic power
potential ranging between 1533.00 kWh/kWp and 1630.00 kWh/kWp and are also
suitable to harness solar energy in large quantities. The combination of these three
potential zones covers an area of 2.08 km2 and they overlap with regions having

A Spatial Investigation of the Feasibility of Solar Resource Energy Potential. . . 177



greater DNI values. Therefore, investing in large-scale utility solar plants like CSPs
will be of greater advantage to the government in shifting the power sector towards
renewables sustainably. The initial cost of installation and production may be high,
but will bring forth massive long-term benefit monetarily and through environment
protection and conservation.

Fig. 3 State-wise distribution of PVOUT in India
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3.3 Solar Economic Potential Zones of India

In this study, the solar economic potential zones were delimited on the basis of the
different types of economic benefits provided by each state government to its
investors, mainly in terms of the number of eligible producers, provision for land
allotment, provision for banking of power, and monetary incentives. It is believed
that a greater number of eligible producers will invite a variety of solar projects in a
city or the state. Most of the governments restrict their policies to registered
companies who are eligible through bidding system conducted by the respective
governments. On the other hand, it is observed that the policies which allow more
number of producers to tap solar energy usually provide more monetary incentives to
the investors, and therefore they attract funds and investments easily from different
parts of the state. If land incentives are provided by the government, then the project
developer can invest extra money into solar-efficient technologies. The banking of
electricity refers to the process by which the power generated from electricity
generating station is supplied to the grid and often sold to a third party. In such a
situation, the generating station has the authority to draw back the electricity
supplied from the grid for its own use. As the number of years for banking of
electricity increases, the receiving station gets ample time to generate the required
fund to repay the generating station. In this way, energy-deficit regions can make use
of renewable energy to lighten their areas in a sustainable manner. Other monetary
incentives include subsidies provided by the government to promote the develop-
ment of solar power systems in their jurisdiction.

The economic feasible zone can be easily identified in Fig. 4. The solar policies of
Rajasthan, Gujarat, Jammu and Kashmir, Karnataka, Chhattisgarh, Jharkhand,
Bihar, Meghalaya, and Mizoram provide maximum number of economic incentives
by allowing maximum number of producers to be eligible to tap solar energy; these
governments are ready to provide necessary land to project developers with the
lowest bid in solar energy generation tenders. These states also provide maximum
number of subsidies to its investors. The average performing states include Punjab,
Himachal Pradesh, Haryana, Uttar Pradesh, Kerala, Karnataka, and Assam. Their
average performance is a result of lower number of banking facilities and monetary
incentives provided by the government. The remaining states like West Bengal,
Uttarakhand, Tamil Nadu, Sikkim, and Arunachal Pradesh have very little contri-
bution toward an effective solar energy policy, and therefore have performed very
poorly in the solar economic feasibility section of the study.

3.4 Viability of Solar Cities Mission

The concept of the solar city is manifold as it embraces definitions oscillating from a
decentralized solar approach to a reduction in conventional sources of energy and
meeting sustainable energy needs (Byrne et al. 2015; Kim et al. 2006). The global
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cities located in high solar potential areas are involved in deployment of rooftop
solar PV technologies in urban environment (Byrne and Taminiau 2018; Peng and
Lu 2013). These studies mainly concentrate on the estimation of PV-suitable roof
area as a means to address the dual-energy challenges within their city boundaries.
The Indian cities are rarely planned and architecturally aesthetic to comply with the
international standards in addressing solar energy accessibility challenges. There-
fore, there is a need to delineate areas that are not only suitable for PV installations in
rooftop areas but also construction of large-scale solar parks with CSP facilities.
Therefore, in this study, a GIS-based MCDA method was applied to identify the
cities with the maximum potential to successfully fulfil the ambitious solar city
project.

In order to deploy SPVs in the solar cities, the conditions that were considered
necessary are as follows: high GHI, maximum PVOUT, and the highest number of
economic benefits that will be provided by the government. Similarly, the best cities
to tap solar energy from CSPs include the same options, except the higher GHI
values are replaced with higher DNI values. TOPSIS method was used to determine
which cities have the best potential to invest in SPVs and CSPs for the renewable
energy generation within and surrounding their administrative boundaries. It was
observed that (Fig. 5) for the deployment of SPVs, Rajkot, Gandhinagar, and Shirdi
from west India and Mahbubnagar and Vijayawada from southeast India have the
highest technoeconomic potential for the deployment of SPVs within their urban

Fig. 4 Total number of economic benefits provided by each state government to its investors,
mainly in terms of the number of eligible producers (a), provision for land allotment (b), provision
for banking of power (c), and monetary incentives (d)
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boundaries. Around 15 cities fall in the second-best technoeconomic feasible zone,
mainly all the cities of Maharashtra and Kerala as well as the cities of Ajmer,
Jodhpur, Raipur, Mysore, Leh, and the Union Territory of Puducherry. The solar
cities of Gujarat, Maharashtra, and Kerala, which show a higher technologically and
economically solar energy resource potential have already set ambitious targets to
achieve the SCM by 2022. The Gujarat government is ready to install 8 lakh rooftop
solar PV in residences by 2022 and the surplus electricity generated through such
systems will be bought at Rs 2.25 per unit (The Indian Express 2019). Such
initiatives further boost the urbanites to install the cost intensive SPVs in their
urban rooftops. These cities are also ideal to develop large-scale solar plants in
their vicinity to fulfil the cities’ energy demand.

The cities which have the potential to generate solar energy without much risk
include the remaining cities falling in west India, Chandigarh, Mohali, and the solar
cities of Central India. Although Chandigarh falls in this category, but has substan-
tially progressed in achieving the targets set in their SCM Master Plan. Chandigarh
and its surrounding solar cities have the potential to generate electricity from large-
scale CSPs as they have a higher technoeconomic potential for the deployment of
CSPs than SPVs. The solar cities falling in central and east India have lower
technoeconomic potential for the deployment of SPVs and CSPs, and therefore the
government administering these cities should be prepared to take the risk before
developing the SCM Master Plans and setting SCM targets. MNRE has achieved
25% of its ambitious target till date, and aims to achieve the remaining 75% of the
target by 2022. However, achieving such ambitious projects do not depend only on
financial incentives; other factors like lack of knowledge about energy systems,

Fig. 5 Solar City suitability analysis using TOPSIS method for determination of cities suitable for
harnessing solar from SPVs (a) and CSPs (b)
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inconsistent pricing structure, technical and market barriers, and socioeconomic
constraints can hinder the success rates of these projects (Painuly 2001).

4 Conclusion

The renewable energy infrastructure planning and energy system modelling from
centralized generation of electricity to a decentralized one is very challenging. The
future energy landscapes may generate optimum amount of electricity when their
effectiveness in studied spatially. The integration of GIS science with the planning
and modelling of renewable energy systems incorporates a space and time factor in
the modelling process. Although the application GIS in energy system modelling is
in the infant stage, the integration of GIS and decision-making approaches in
renewable energy studies will enhance the future research avenues in this field.

This study open new horizons for “spatial awareness” from freely available data
sources of solar energy resources, and thus this study examines the viability of
technoeconomic potential of solar energy resources in different solar cities of India
as a means to assess the viability of the Solar Cities Mission program in all these
cities. Here, for the first time, a multivariate approach to exploring the
technoeconomic feasibility of solar cities using theTOPSIS approach was conducted
to study the spatial allocation of solar energy resources all over India. The cities
located in the west and south India have the highest potential to tap solar energy in
the form of SPVs and CSPs and, therefore, maximum investment should be directed
in electrifying these cities from solar energy. The National Solar Mission and the
SCM are smart initiatives by the Indian government to mandate the use of renewable
energy in the Indian cities. A gradual shift to renewable energy is mandatory for
India to secure citizens from the perils of climate change and global warming.
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Mapping Rice Growth Stages Employing
MODIS NDVI and ALOS AVNIR-2

Dyah R. Panuju, David J. Paull, Amy L. Griffin, and
Bambang H. Trisasongko

Abstract Rice, a staple food of most Asian inhabitants, is broadly cultivated and
has attracted substantial research interest in the past few decades. Monitoring rice
production areas is important due to the growing global demand for the crop. Since
cropping systems vary across time and space, frequent monitoring over broad areas
is required. This research exploits Moderate Resolution Imaging Spectroradiometer
(MODIS) data to identify the stage of rice growth, and Advanced Land Observing
Satellite–Advanced Visible and Near Infrared Radiometer Type 2 (ALOS AVNIR-
2) to map the stages. Exploiting X12-ARIMA to decompose Normalized Difference
Vegetation Index (NDVI) time-series for growth-stage indication and five classifiers
for mapping the growth stages, the framework was tested in Indonesia’s “paddy
basket,” namely the North Coastal Region of West Java. A conventional classifier,
Maximum Likelihood, was compared with some decision tree algorithms, namely
Classification Rule with Unbiased Interaction Selection ( CRUISE) and Quick,
Unbiased, Efficient, Statistical Tree (QUEST); neural network (NN); and support
vector machine (SVM) for mapping the growth stages. The seasonal component of
time-series decomposition assisted in indicating the stages. Meanwhile, decision tree
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algorithms produced interpretable rules for rice growth stages while the spatial
representation of SVM and NN was closer to the ground truth.

Keywords ALOS AVNIR-2 · X12-ARIMA · MODIS · pixel-based classifier · rice
· growth stages

1 Introduction

Rice is a staple food for over half the global human population, and provides more
than 20% of energy and 15% of protein being ingested (FAO 2014b). About
700 million tons have been produced annually (FAO 2014a) and sold at a median
cost of US$412 per ton in the last 2 years (FAO 2015), placing it among the most
valuable agricultural commodities in the world. Increasing demand for rice and its
international trade mean that production must increase at a commensurate rate; yet
human population expansion and urbanization are consuming prime agricultural
lands (Azadi et al. 2011; Phuc et al. 2014). Therefore, monitoring the world’s
major rice growing areas is of immediate concern.

Remote sensing offers the technology to obtain environmental information over
broad areas and monitoring at a frequent revisit times and at various spatial scales
(Lu et al. 2003). Since paddy has a relatively short growth cycle (100–160 days)
(International Rice Research Institute 2013) and its cultivation varies between
farmers, frequent monitoring is required for assessing farming practices and for
allowing valid estimation of the area under cultivation and in different growth stages.

Temporal-based growth stages exploration using optical images mostly employs
vegetation indices (VIs). They, however, are affected by seasonality (Verbesselt
et al. 2010), which is defined as the periodic cycle of vegetative growth or natural
events, affected by seasonal and interannual climate variability (Zhao et al. 2013;
Pezzulli et al. 2005). Monitoring land surfaces, including rice growth phases by
using VIs therefore needs to account for seasonal variation (Verbesselt et al. 2010;
Panuju et al. 2010). The growth stages of vegetation have been studied by exploring
phenological pattern of plants facilitated by time series analysis (Zhao et al. 2013).

Meanwhile, decomposing a univariate time series of a vegetation index has
allowed the differentiation of vegetation types (Lu et al. 2003) and identification
of cropping intensities (Chen et al. 2012a, b). The present research is focused
specifically on decomposition techniques that assist in differentiating rice growth
stages. Mapping agriculture extent, especially of rice fields, has been achieved using
numerous remote sensing platforms, including synthetic-aperture radar (SAR) (Toan
et al. 1997; Trisasongko 2019) or optical imageries (Panuju and Trisasongko 2008;
Trisasongko et al. 2012).

Mapping of farmland has been facilitated by image classification techniques
(Wu et al. 2014; Ozdarici-Ok et al. 2015). Decision tree classification, a nonpara-
metric technique, is currently attracting a substantial amount of research in remote
sensing (Yang et al. 2003; Zhao et al. 2011). The fact that these methods make no
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statistical assumptions, their explicit structure, and ease of interpretability, particu-
larly in the identification of discriminating factors between classes are among
possible reasons for their popularity (Pal and Mather 2003).

Multiple algorithms in decision tree techniques are available to optimize classi-
fication, for instance, the Classification Rule with Unbiased Interaction Selection (
CRUISE) and Quick, Unbiased, Efficient, Statistical Tree (QUEST). Loh (2011)
concluded that QUEST andCRUISE generated better accuracy compared with other
algorithms tested. Nonetheless, various experiments and applications comparing
multiple classifiers demonstrated inconsistent accuracies. For instance, Pal and
Mather (2003) showed that both Maxlike and NN outperformed decision tree
classification of hyperspectral imagery on two environmental settings, but
other research demonstrated that SVM generated more stable accuracy for different
numbers of variables and sizes of training pixels than Maxlike, NN, and decision tree
classifiers (Huang et al. 2002). It seems, therefore, that the comparisons yield
different results under different settings. Thus, to have an optimal result in a
given environmental setting, comparison of multiple algorithms is warranted.

The present study explores the use of seasonal time series analysis and several
classifiers employing MODIS and ALOS AVNIR for mapping growth stages. The
goal is to investigate the potential of time-series decomposition of VIs for indicating
growth phases and to compare the performance of five classifiers for mapping paddy
growth stages. The classification accuracy and resulting crop maps were then
assessed.

2 Study Area

In Indonesia, rice production areas are distributed throughout almost all islands, with
Java having the largest planted area and the most productive one (Panuju et al. 2013).
The North Coastal Region (NCR) of West Java is one of the most important rice-
basket areas, sharing 35% of West Java province’s production (Kementerian
Pertanian Republik Indonesia 2015). Nonetheless, NCR’s proximity to Jakarta has
put the paddy fields in this region under land development pressure. Therefore,
monitoring the spatial dynamics of these paddy fields is critical in the region. This
study was conducted in the NCR area, which is located between 107� 310–107� 540 E
and 6� 110–6� 490 S and it comprises 205,177 ha, or 6.34% of West Java’s area.

The site concentrated on PT Sang Hyang Seri’s (PT SHS) area. PT SHS is a seed
producer having fields located in various parts of Indonesia including the site. Rice
plots were clearly mapped, and had appropriate sizes for medium–coarse resolution
image analyses that allowed identification of homogeneous samples. Access to such
data is often difficult to obtain for remote sensing applications since small-scale
farmers dominate paddy cultivation in the region.
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3 Materials and Method

This research employed optical imagery, including MODIS and ALOS AVNIR.
MOD13Q1 datasets from the sinusoidal grid of H28V09, having 250 m spatial
resolution, were accessed freely from the United States Geological Survey (USGS)
and used to develop the time-series VIs. The MODIS data spanned from Julian
Day-1 of 2004 until Day-353 of 2010. MOD13Q1 of Collection 5 comprises
12 bands including blue, red, near infrared, and mid-infrared reflectance, and the
Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index
(EVI), vegetation index quality, and pixel reliability. A new equation of EVI called
EVI2 has been implemented to derive EVI layers to account for atmospheric
disturbances in cloudy or hazy pixels (Didan et al. 2015).

The time-series of NDVI and EVI (including EVI2) were compared to help
identify the beginning and end of growing seasons as well as the identification of
rice phenology and cropping intensity. Furthermore, an ALOS AVNIR image dated
June 30, 2009, matching with the available ground truth, was used to map rice areas
based on their growth phases. Ancillary information about planting management
provided by PT SHS for the years 2006–2009 was used to evaluate time-series
analysis and to assist the identification of rice growth cycles.

The flow of analyses is described in Fig. 1. The figure shows three main parts,
including data preparation, identification of growth stages, and mapping rice stages.

Fig. 1 The flow of analyses

188 D. R. Panuju et al.



Data preparation involved MODIS acquisition, stacking, and sampling. The next
steps are explained in detail in the following subsections.

3.1 Identifying Rice Growth Stages

Seasonality has been discussed in previous research employing vegetation indices
(Jonsson and Eklundh 2002). Seasonal adjustment was used in the present study to
correct and smooth the time-series of VIs while decomposing time-series into trend,
seasonal, and irregular components for indicating the growth stages.

In this research, X-12-ARIMA, a combination of a seasonal adjustment procedure
(X) and an autoregressive, integrated moving average (ARIMA) technique was used
to analyze time-series VIs. The procedure is the extension of X-11, the standard
statistical technique to analyze univariate time-series data (Shiskin et al. 1965).
Homogeneity of variances across time or written as Var(Yt) ¼ Var (Yt + k) ¼
γ0 and a constant mean with no trend are expected in X12-ARIMA (Chatfield
1996). When the stationarity assumption is not met, then differencing should be
employed (Box and Jenkins 1968). Assuming that original series of vegetation index
(Yt) follows a particular seasonal ARIMA model, as explained by Wei (2006), the
parameter for series data having (p,d,q)x(P,D,Q) order can be estimated by using:

ϕp Bð ÞΦP Bsð Þ 1� Bð Þd 1� Bsð ÞDYt ¼ θq Bð ÞΘQ Bsð Þat ð1Þ

Lowercase letters represent nonseasonal orders, while uppercase letters denote
seasonal ones. Letters p, d, and q represent orders for autoregressive, difference, and
moving average components, respectively, while ϕ symbolizes an autoregressive
function and θ stands for the autoregressive process. Moreover, B is a backshift
operator in which

ϕp Bð Þ ¼ 1� ϕ1B� ϕ2B
2 . . .� ϕpB

p and θp Bð Þ
¼ 1� θ1B� θ2B

2 . . .� θpB
p ð2Þ

Further discussion regarding X-12-ARIMA is provided by Findley et al. (1998).
If seasonality is indicated by the order of seasonal components being >1, then
seasonal adjustment analysis is performed to transform VIs and decompose them
into components. The technique was performed on both the NDVI and EVI series
based on Time-series Regression with ARIMA noise, Missing values, and Outliers
(TRAMO) and Signal Extraction in ARIMA Time-Series (SEATS) (Gómez and
Maravall 1996, 2001). Before decomposing the time series, following the work of
Jia et al. (2002), all VIs were summarized into monthly datasets using maximum and
average values. The original series data was decomposed by using an additive

Mapping Rice Growth Stages Employing MODIS NDVI and ALOS AVNIR-2 189



model, which can be written as Yt ¼ Tt + St + ItYt ¼ Tt + St + It, where Y is the
original value, subscript t refers to time, T denotes the trend component, S stands for
the seasonal component, and I symbolizes the irregular component. In the present
research, a seasonality test was used to indicate seasonal times of planting and
sowing. The count of peaks from a smooth pattern can be used to estimate the
intensity.

PT SHS cultivates various strains of rice, which vary across seasons. In order to
correspond with image data acquisition dates, only cultivation for the year 2009 was
graphed, and there were three cultivars being grown at that time, that is, hybrid,
Ciherang, and Situ Bagendit. The local cultivar Ciherang was selected in this
research since it is popular for farmers. For each sowing and planting time, one
plot was taken as a sample, with each plot covering a minimum area of 12 ha. There
are distinct stages of paddy growth (Vergara 1992), and this research attempted to
observe four of them: vegetative, reproductive, ripening, and fallow.

3.2 Training, Testing, and Classification of Paddy Growth
Stages

In this research, all algorithms were executed on atmospherically uncorrected ALOS
AVNIR-2 imagery dated June 30, 2009. AVNIR consists of four spectral bands, has
10 m spatial resolution (at nadir), and 70 km swath width. The range of wavelengths
for each band is Band 1: 0.42–0.50, Band 2: 0.52–0.60, Band 3: 0.61–0.69, and
Band 4: 0.76–0.89 (Tadono et al. 2004). The ground truth data were taken from plots
of PT SHS (Fig. 2). The size of every plot was 50 m wide, with various lengths
depending on irrigation networks and micro relief.

We identified training and testing sites from the result of time-series decomposi-
tion analysis verified by PT SHS ancillary data. Plots of training and testing samples
were taken separately to avoid overfitting. All five classifiers, CRUISE, QUEST,
Maxlike, NN, and SVM, were employed to classify paddy areas using three, four,
and five classes. The classes included four paddy stages of vegetative, reproductive,
ripening, and fallow, as well as built-up areas.

Verification of paddy growth stages for training samples was made based on its
age as recorded in the PT SHS data. Different rice cultivars have growth phases with
different durations. Ciherang normally takes 120 days for the entire growth cycle and
its vegetative stage extends from 0 (seedlings) to 55 days. In this research, three-
class analysis consisted of vegetative (X < 55 days), reproductive (55 days <
X < 90 days), and ripening (X > 90 days), where X represented the age of the plants
on June 30, 2009; four-class analysis added fallow; and five-class analysis added the
category built-up area, which occurred in the surroundings. Figure 3 shows images
taken from the fieldwork, including fields that had just been cultivated with hybrid
and Ciherang cultivars.
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Fig. 2 Field plots of PT SHS overlaid on AVNIR-2 false color RGB (4–3–2) imagery. Letters and
numbers denote the name of plots. Color represents paddies growth-phases on June 30, 2009
AVNIR-2 image copyright JAXA
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3.3 Accuracy Assessment of the Five Classifiers

The performance of classifiers was evaluated based on training data for building the
rules, then assessing the accuracy based on testing samples. Theoretically, the
accuracy assessment will sufficiently describe the proportion of correctly classified
pixels compared to the ground truth when sampling scheme, size, classification
scheme, and spatial autocorrelation were considered (Congalton 1991). In this
case, training and testing samples size for every class was about 620 pixels. Overall
accuracy, Kappa, and confusion matrices were then assessed. All plots were
observed, while detailed records, including photographs, were taken randomly at
about five points for each class to represent vegetative and nonvegetative conditions,
guided by information from field managers.

4 Results and Discussion

4.1 Identifying Rice Growth Stages

Raw time-series of selected paddy fields are presented in Fig. 4. In general, the
values of NDVI range and mean (0.1–0.7; 0.4) were greater than those of EVI
(0.1–0.5; 0.3), since there was correction of the values of EVI by the blue channel.
Nevertheless, both indices generally indicated similar patterns. By comparing two
indices on sample locations coupled with in situ information about sowing and
transplanting, an indicative pattern of the various growth phases emerged.

Fig. 3 (a) Fallow fields, (b) just planted with Ciherang cultivar, (c) just planted with hybrid
cultivar, (d) vegetative, (e) reproductive, and (f) ripening paddy stages
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NDVI and EVI plots showed different patterns across periods (Fig. 4). Unusual
observations shown by spikes (see stars) were more likely to be detected by using
maximum EVI values than averages. On the other hand, the graphs of maximum
NDVI seemed to be smoother than the average values and had smaller differences
between peaks. About 16 peaks were found from 7 consecutive years of NDVI or
EVI datasets (Fig. 4). This suggests that most rice fields at the test site experienced a
cropping intensity of 2.25–2.5 crop cycles per year. This intensity is considered
relatively high for most rice fields in Indonesia at this moment, and is likely due to
the extensive irrigation network across the NCR, including the test site.

Figure 5 shows the decomposition series of average EVI and NDVI, and maxi-
mum EVI and NDVI. Both series were selected to account for designated growing
phases (March–August 2009) that could be related to the AVNIR acquisition dates.
The trend component of NDVI decomposition depicted a similar pattern to EVI,

Fig. 4 The original time-series of (left) EVI and (right) NDVI for 7 years of average plot samples,
from top to bottom: (a,b) vegetative L17, (c,d) reproductive L43, (e,f) ripening S11, and (g,h)
fallow L28. Dashed lines represent monthly average values and solid lines correspond to monthly
maximum values. Red stars indicate unusual spikes
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being constant over the period of analysis for average and maximum values, except
for vegetative plot L17 and maximum NDVI. L17 was planted with the hybrid
cultivar, which tends to have heterogeneous stages within plots during the early
vegetative stage until the end of their productive stage at “heading” substage (the end
of reproductive stage) (Fig. 4). An increasing trend followed by a decrease after
pollination indicated the heterogeneity of stages within plot L17. Different vegeta-
tion cover within the plot is then less observable after pollination, resulting in the
more homogeneous value of indices within the hybrid-cultivated plot after the phase.

The seasonal component of the series showed an oscillating pattern that could be
associated with growing stages. Phenological patterns shown in Fig. 5 row S reflect
crop calendars available for the test site. The sequence of growing seasons for four
parcels obtained from SHS planting calendar matches relatively well with Fig. 4. The
calendar differed across plots (see Fig. 1). The S11 plot, for instance, which in June
was in a heading–ripening phase, corresponds to the pattern. S11 peaked first,
followed by L43, which was in reproductive stage. These were trailed by the L17
plot, which was in a vegetative phase at that time, and lastly by L28, hosting hybrid
cultivar in an early vegetative phase.

The irregular component differed somewhat between EVI and NDVI. Since the
magnitude of EVI was relatively smaller than NDVI, the regular component of EVI
for average and maximum values was also lower. The irregular component of
maximum NDVI of L17 was curvier than other plots, as was the trend component.

Fig. 5 Decomposition series of average (a) EVI and (b) NDVI, and maximum (c) EVI and (d)
NDVI from (O) their original observation series into (T) trend, (S) seasonal, and (I) irregular
components for four samples over the year 2009. Green lines represent vegetative L17, yellow lines
stand for reproductive L43, brown lines denote ripening S11 and gray lines fallow L28
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Patterns of maximum EVI and NDVI were therefore reasonably similar to the
average values of both indices. Even though decomposition of the maximum value
of EVI on the fallow plot L28 was approximated due to an inadequate model for
seasonal adjustment, the information was still useful for representing the cropping
calendar.

4.2 Map of Paddy Growth Stages

All algorithms including the decision tree were designed to differentiate paddy
growth phases in the controlled areas. As explained by Friedl and Brodley (1997),
decision tree classification provides a rule structure that eases interpretation by
identifying spectral bands that could separate classes. Figure 6 compares classifica-
tion rules constructed by CRUISE and QUEST with 3 and 4 classes. Tree structure
for five classes is not presented, nevertheless, the summary is provided in Table 1. In
general,CRUISE generated a more complicated structure than QUEST. For instance,

Fig. 6 Decision trees for three (a,b) and four (c,d) classes using the CRUISE and QUEST
algorithms respectively
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when QUEST produced four rules for three classes, CRUISE created five rules. The
result also suggests that adding classes creates more complicated branches. Of the
decision trees produced by CRUISE, the three-class tree consisted of five rules,
the four-class tree consisted of nine rules, and the five-class tree consisted of
19 elements. It appears that the number of classes was an important factor dictating
tree structure.

Moreover, tree structures show that the most important spectral band differs
throughout different numbers of classes. For instance, AVNIR-2 Band 4 was the
most important channel for discriminating paddy growth phases without fallow and
built-up classes; its wavelength (0.76–0.89 μm) corresponds to the near infrared
(NIR) portion of the electromagnetic spectrum. Band 4 (NIR) distinguished vegeta-
tive phase from reproductive phase. Other channels that contributed to discriminat-
ing three classes were the red channel (0.61–0.69 μm) and the blue channel
(0.42–0.5 μm). These two channels differentiated the reproductive from the ripening
stage. Those channels discriminated different concentrations of chlorophyll in the
different stages of paddy. This result is similar to a previous test using Landsat- and
LOSAT-simulated data (Trisasongko et al. 2010) that found that the NIR channel
had substantial utility for rice monitoring.

However, when the fallow class was added, the discriminator was not the same.
For four classes, the first and second discriminators were the blue and red channels,
while NIR was not important. During growing seasons, rice fields are mostly
waterlogged, except shortly before ripening. According to Chuvieco and Huete
(2010), absorption on water bodies increases with longer wavelengths, thus
the highest reflectance occurs in the blue band, it decreases in NIR, and approaches
zero in SWIR. The blue portion of the spectrum was, therefore, useful for discrim-
inating paddy fields in this phase. Using Band 1 (blue), fallow lands that were
waterlogged could be distinguished from the vegetative phase. In all cases, Band
2 was seen to be the least important for this task. Indeed, although tree structures
generated by CRUISE and QUEST were different, the discriminator was the same.

Table 1 Number of rules for QUEST and CRUISE algorithms for 3, 4, and 5 classes of paddy
stages and built-up land

Cruise Quest

Classes 3 classes 4 classes 5 classes 3 classes 4 classes 5 classes

Fallow 1 4 1 2

Vegetative 1 1 2 1 1 5

Reproductive 3 4 3 2 3 3

Ripening 1 3 1 1 1 1

Built-up 9 9

Total rules 5 9 19 4 6 20
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4.3 The Accuracy of Classifications and their Spatial
Configuration

Accuracy assessment through overall accuracy, Kappa and their spatial configura-
tion revealed some important features. Increasing the number of land cover classes
did not always reduce classification accuracies (Fig. 7). Classifications using four
classes produced the highest accuracy for all algorithms except maximum likeli-
hood, which generated the same accuracy both for three and four classes. In this case,
maximum likelihood outperformed other algorithms by producing overall accuracy
and Kappa at 99.2% and 0.984, respectively. The next highest accuracy of three-
class classification was generated by CRUISE and SVM at 94.6% and 94.0%,
respectively. Maximum likelihood maintained the same accuracy as three-class
classification when adding one class, but then drastically decreased to 78.4% when
a fifth class was added. The other three classifiers, namely QUEST, NN, and SVM,
produced even higher accuracies when one class was added, from 87.3%, 91.8%,
and 94.0%, respectively, to 90.7%, 93.2%, and 95.5%, respectively. Of the two
decision tree classifiers, QUEST produced a slightly lower accuracy using three land
cover classes compared to CRUISE. However, for five land cover classes, the
reduction of the accuracy of QUEST was less than CRUISE, with QUEST
(82.4%) producing higher accuracy than CRUISE (80.4%). This is consistent with
the findings of Trisasongko et al. (2012), although that study used different datasets,
that is, Worldview-2, which has nine spectral bands with additional coastal, yellow,
and red-edge channels. That research produced accuracies of 77% and 89% for C
RUISE and QUEST, respectively. In the most complex classes, SVM outperformed
other classifiers in producing accuracy at 87.9%, while maximum likelihood seemed
to generate the lowest accuracy.

As shown by Pal and Mather (2003), using more spectral bands would likely
generate higher accuracy. This suggests that several tests ought to be undertaken to
determine optimal approaches under different settings including datasets. Another
issue seen in this research is declining accuracy for complex classification. For some
classifiers including SVM, NN, and the QUEST, rising error was trivial at certain

Fig. 7 The comparison of overall accuracy and Kappa value of five classifiers for three, four, and
five classes of paddy growth stages and built-up use
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levels; however, this issue could be interesting for maximum likelihood and CRUI
SE. Despite the highest accuracies of Maxlike and CRUISE for small numbers of
classes, accuracies produced by these two algorithms decreased substantially when
classifying numerous categories.

In order to understand misclassification and possible mixtures among classes,
an accuracy matrix using testing datasets was generated for the five classes (Table 2).

Table 2 The confusion matrix for five algorithms when differentiating five classes including three
paddy growth stages, fallow, and built-up land

Class Fallow Vegetative Reproductive Ripening Built-up

CRUISE

Unclassified 0.0 0.0 0.0 0.0 0.0

Fallow 100.0 0.0 0.0 0.0 0.2

Vegetative 0.0 97.0 0.0 0.0 7.3

Reproductive 0.0 0.0 91.7 27.6 0.0

Ripening 0.0 0.0 1.9 20.8 0.0

Built-up 0.0 3.0 6.4 51.6 92.5

QUEST

Unclassified 0.0 0.0 0.0 0.0 0.0

Fallow 100.0 0.0 0.0 0.0 0.0

Vegetative 0.0 97.3 0.0 0.0 2.7

Reproductive 0.0 0.0 88.1 22.4 0.0

Ripening 0.0 0.0 1.9 28.9 0.0

Built-up 0.0 2.7 10.0 48.7 97.3

Maximum likelihood

Unclassified 0.0 0.0 0.0 0.0 0.0

Fallow 100.0 0.0 0.0 0.0 0.0

Vegetative 0.0 83.9 0.0 0.0 1.1

Reproductive 0.0 0.0 78.1 0.0 0.0

Ripening 0.0 0.0 0.2 30.4 0.0

Built-up 0.0 16.1 21.7 69.6 98.9

Neural network

Unclassified 0.0 0.0 0.0 0.0 0.0

Fallow 100.0 0.0 0.0 0.0 0.0

Vegetative 0.0 99.2 0.0 0.0 27.3

Reproductive 0.0 0.0 83.1 0.0 0.0

Ripening 0.0 0.0 15.6 53.3 0.0

Built-up 0.0 0.8 1.3 46.7 72.7

SVM

Unclassified 0.0 0.0 0.0 0.0 0.0

Fallow 100.0 0.0 0.0 0.0 0.2

Vegetative 0.0 97.6 0.0 0.0 2.1

Reproductive 0.0 0.0 81.9 0.0 0.0

Ripening 0.0 0.0 17.2 62.0 0.0

Built-up 0.0 2.4 0.9 38.0 97.7
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It shows that the easiest class to separate was fallow. The result was consistent for all
classifiers. The conclusion is easily interpretable due to nonexistence of vegetative
cover on fallow land.

The ripening paddy class was the hardest class to split. Testing data showed that
some ripening paddy areas could be misclassified as being in the reproductive stage
or built-up areas due to their spectral mixture or similarity. It is apparent that all
classifiers were more or less unable to classify ripening rice properly. Hybrid cultivar
taken as samples for the ripening class indicated a spectral mixture with reproductive
plants and at the same time with built-up lands. Non-simultaneous planting across an
entire plot applied for the hybrid cultivar; rather, there are different dates of planting
between the edge and middle parts of the plot. In ripening stage, chlorophyll contents
decreased substantially from their productive stage, which resulted in similarity to,
and thus confusion with, built-up lands. Moreover, in built-up areas, most settle-
ments were surrounded by small gardens planted with various trees, shrubs, or crops
that result in a spectral mixture in between vegetative and built-up classes. There-
fore, there is difficulty in separating ripening and built-up areas. Reproductive stages
were seen to mix as well with other classes such as ripening or built-up land.

The resulting classifications are presented in Fig. 8. CRUISE and QUEST
produced similar spatial patterns, as did NN and SVM, while Maxlike performed

Fig. 8 The map of classification of ALOS-2 using CRUISE, QUEST, Maximum Likelihood
(Maxlike), Neural Networks (NN), and Support Vector Machine (SVM) for three (top), four
(middle), and five (bottom) classes of paddy growth stage and built-up land
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in a distinctly different way to the other classifiers. It seems that although overall
accuracy produced by NN and SVM was lower than Maxlike (for three classes), the
spatial pattern of NN and SVM was closer to the spatial pattern of the ground truth.
As the number of classes became larger, CRUISE, QUEST, and Maxlike
overestimated built-up areas as did SVM, but to a lesser degree. This result is not
entirely consistent with the accuracy produced by using training and testing data
where SVM had the highest accuracy followed by NN. Overall, NN and SVM
respectively generated the most accurate spatial pattern.

5 Conclusions

Time-series analyses are invaluable to assess advantages and disadvantages of using
VIs. EVI is likely to be a better candidate for rice monitoring compared to NDVI.
The research also found that averaged values of monthly data produced suitable
information to assist the identification of crop calendars. The results suggested that
crop calendars, which traditionally have been limited in availability, can be
reconstructed from time-series analysis. Moreover, analyses using ground truth
data suggest the importance of considering cultivars when mapping rice areas,
particularly when hybrid and nonhybrid types are planted in closed proximity.

This research showed that all algorithms exposed their advantages in classifica-
tion. CRUISE and QUEST, like other decision trees algorithms, were somewhat
robust and interpretable due to their capability to visualize rule development during
classification. In the present research, CRUISE was more suitable for discriminating
a small number of classes. Nonetheless, CRUISE’s error rates rose substantially
when more classes were targeted. QUEST, in contrast, provided lower accuracy, yet
was able to prevent the declining overall accuracy with an increasing number of
classes. This suggests that in the future a thorough performance test to compare these
algorithms with other algorithms (e.g., C5 or Random Forest) is necessary to
develop a better picture of their respective strengths and weaknesses.

Accuracy assessment is an important tool to evaluate the performance of classi-
fiers. Nevertheless, this research indicates that merely having high overall accuracy
does not necessarily result in a map that resembles the ground truth data, particularly
when the accuracy assessment is based on training and testing samples. As stated by
Congalton (1991), sample size or sampling scheme (randomized, stratified, or
systematic) may still be an unresolved question. Comparing spatial patterns pro-
duced by a classifier qualitatively (visually) and quantitatively with higher spatial
resolution data would provide better information on the robustness of the classifier.
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Habitat Suitability Mapping of Sloth Bear
(Melursus ursinus) in the Sariska Tiger
Reserve (India) Using a GIS-Based Fuzzy
Analytical Hierarchy Process

Purva Jain, Raihan Ahmed, Haroon Sajjad, Mehebub Sahana,
Abolfazl Jaafari, Jie Dou, and Haoyuan Hong

Abstract This chapter presents a habitat suitability mapping of sloth bear using
fuzzy analytical hierarchy process that relies on geographical information system
(GIS)–automated techniques. We selected nine parameters for assessing sloth bear
habitat suitability: food availability, distance to waterholes, canopy density, slope,
elevation, grazing, human disturbance, and distance to villages and roads. All the
weighted parameter layers were integrated to obtain suitability classes. Of the total
area of the Reserve, 44% area was found under moderate suitability class and 34%
area under high suitability class. Within three core areas of the Reserve, the con-
centration of high suitability was observed in Core-I area. The habitat suitability
classes were validated by analyzing their relationship with the zonal statistics of
beat-wise habitat-use intensity data of sloth bear in the Reserve. This analysis
revealed that the beat-wise habitat-use intensity coincides with suitability zones.
Our study may prove to be beneficial for managing and formulating guidelines for
the self-sustenance of the reintroduced bears in the Reserve. The model adopted in
this study can also be applied for assessing habitat suitability of other bear species in
different geographical regions at various scales.
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1 Introduction

The sloth bear (Melursus ursinus) is endemic and patchily distributed in the Indian
subcontinent (Erdbrink 1953; Sathyakumar et al. 2012). Over the past years, sloth
bear has experienced unparalleled threat primarily due to poaching and habitat loss
(Akhtar et al. 2004; Yoganand et al. 2006). The root cause of the problem is
primarily related to deteriorating and shrinking habitat that lead to the increase in
human and bear conflicts (Akhtar et al. 2004; Bargali et al. 2005; Garshelis et al.
1999; Johnsingh 2003). The species is vulnerable to extinction (IUCN 2013) and has
led to its inclusion in Schedule I of the Indian Wildlife (Protection) Act as amended
in 2003 (GOI 1972; GOR 2014). Moreover, the International Union for Conserva-
tion of Nature (IUCN) has listed sloth bears as “vulnerable,” considering the rapid
loss in their natural habitat (Garshelis et al. 2008).

The conservation of sloth bear is challenging, since it requires large areas to meet
their requirement, making it necessary to have landscape-level management (Sinha
et al. 2017). The primary issue for the successful application of conservation plans is
to properly identify and delineate the priority habitats for the conservation and
reintroduction programs (Clevenger et al. 2002; Felix et al. 2004; Gerrard et al.
2001; Kaminski et al. 2013). Different methodologies such as radio telemetry (Joshi
et al. 1995, 1999a, b; Ratnayeke et al. 2007a, b) or bear sign (Akhtar et al. 2004;
Chauhan et al. 2003) have been adopted to study sloth bear–habitat interactions.
However, the absence of the target species makes it challenging for wildlife manager
to identify priority habitats required for reintroduction and future monitoring pur-
pose (Didier and Porter 1999;; Mackenzie 2005; Hirzel et al. 2006; Lobo et al. 2010).

Reintroduction process is defined as the deliberate release of some species into an
area with the aim of reestablishing a viable and self-sustained population of that
species in the long term (Stanley Price 1991). It is crucial to restore the species which
are vulnerable to loss or reduction to a nonviable level locally (Stuart 1991).
However, before initiating any reintroduction program, it is crucial to understand
the role of different geo-environmental factors that are supposed to directly and/or
indirectly exert effect on a reintroduction program. Various studies have suggested
the limitations and procedures to enhance the reintroduction programs of bears (e.g.,
May 1991; Smith et al. 1991; van Manen and Pelton 1997; Clark et al. 2002; De
Barba et al. 2010; Converse et al. 2013; Reading et al. 2013). Cost and time in
reintroduction programs are the major hindrances that, in many cases, dramatically
decreased the success rate of the conservation measures (Earnhardt 1999; Helmstedt
and Possingham 2017). Hence, scientific principles and methodologies are required
to adopt successful and timely reintroduction programs (Pullin 2002).

Since the 1980s, habitat suitability index (HSI) models have emerged and proven
to be very effective for identifying and protecting critical habitats of the threatened
species (Lauria et al. 2015), assessing ecological impacts on wildlife populations and
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facilitating management plans (Brooks & Temple 1990; Kaminski and Comer
2011). Further, the HSI models have frequently been suggested and used to predict
and estimate the sloth bear habitat suitability (e.g., Kaminski and Comer 2011;
Nawaz et al. 2014). The prediction of habitat suitability of species depends on an
adequate knowledge and information of their different habitat characteristics, such as
food habits, shelter, mating behavior, and so on (Bargali et al. 2012; Porwal et al.
1996). Previous studies (e.g., Akhtar et al. 2004; Clevenger et al. 2002; Joshi et al.
1995; Clevenger et al. 2006; Mitchell et al. 2002; Smith 1985) have found food
availability as a crucial factor in distribution of the bear populations. Sloth bear is the
only species of bear adapted as myrmecophagy, whose diets are largely or exclu-
sively composed of termites or ants (Sacco and Van Valkenburgh 2004). In India,
sloth bears mostly supplement their diets with fruit and plant matter (e.g., Chauhan
et al. 2003; Akhtar et al. 2004). The historical records of elevation and slope
preferences are confusing. While, in Western Ghats of India, sloth bear is observed
up to 2000 m elevation (Dharaiya et al. 2016), some studies in Sri Lanka (e.g.,
Phillips 1984; Ratnayeke et al. 2007a, b; Santiapillai and Santiapillai 1990; Bargali
et al. 2004), India (Johnsingh 2003), and Nepal (Garshelis et al. 1999) have found
out sloth bear as a lowland species, occurring in habitat below 1000 m. However,
Ratnayeke et al. (2007b) has found out 98% of the range was below 300 m in Sri
Lanka. Sloth bears also prefer the areas covered by forests (Puri et al. 2015),
presumably because these areas are more productive in fruit and provides more
shelter. However, In the Wasgamuwa National Park of Sri Lanka, bears have rarely
been observed at lowland sparse forest, as these areas are more prone to human
activities (Ratnayeke et al. 2007a, b). The agricultural activities in the reserve can
result in crop damage by bear that, in turn, increase the probability of human–bear
conflict (Bargali et al. 2004; Karamanlidis et al. 2011; Rigg et al. 2011; Can et al.
2014).

The presence of substantial literature regarding sloth bear habitat preferences
across the globe and the historical presence of sloth bear and suitable habitat in the
Sariska Tiger Reserve (STR) provides a case where priority areas can be identified in
the absence of a target species with the help of GIS tools and the use of site-specific
habitat data. Therefore, we have attempted to identify suitable habitat for the
reintroduction of bear through an understanding of requirement of the species with
respect to feeding, shelter, and other requisites for their better management and
conservation.

2 Study Area

This study was conducted in the Sariska Tiger Reserve located in the Alwar district
of Rajasthan state in India. The area extends from 27�050 N to 27� 330N latitudes and
76�170 E to 76� 340E longitudes. The study area lies in the Aravalli, the oldest
mountain range of India, and its elevation ranges from 540 to 777 m. The area is
characterized by dry deciduous and tropical thorn forests (Champion and Seth 1968).
The Reserve covers approximately 1200 km2. Out of the Reserve area, 881.11 km2 is
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under Critical Tiger Habitat (CTH) area and the remaining is buffer zone. The CTH
is further divided into core I (273.8 km2), II (126 km2), and III (97.5 km2) (GOR
2014). Sariska Tiger Reserve has six ranges: Sariska, Akbarpur, Talvriksh, Tehla,
Alwar buffer, and Ajabgarh range. These ranges are further divided into 84 beats:
Talvriksh range (13 beats), Akbarpur range(17 beats), Sariska range (19 beats),
Tehla range (20 beats), Alwar Buffer (15 beats), and Ajabgarh (13 beats) (See
Fig. 1).

Fig. 1 Location of the Sariska Tiger Reserve in Rajasthan state, India. The Reserve is divided into
84 beats and three core areas named as core I, core II, and core III
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Although there is still a place called “Rich-unda” that means “Bear is there,” sloth
bears disappeared from the Reserve in early twentieth century. Although the reason
for the disappearance of sloth bear from the Reserve is not clearly known, poaching
and bear–human conflict are considered as the main possible reasons (GOR 2014).
The area has high abundance of various fruit trees and shrubs such as Ziziphus,
Ficus, Phoenix, Diospyros, Anogeissus, Boswellia, and Butea, and large numbers of
termite mounds that can very well sustain a large population of sloth bear in the
Reserve. However, the Reserve is currently highly burdened with anthropogenic
activities due to many villages and hamlets (Jain and Sajjad 2016a; Jain and Sajjad
2016b). Further, the state highways (SH-13 AND 29A) which pass through the
sanctuary (GOR 2014) have resulted in a serious habitat fragmentation in the
Reserve (Jain et al. 2016). The Reserve also consists of several pilgrimage sites,
where attract millions of devotees over the year.

The sloth bear was rescued and relocated in the Core I of the Reserve in the year
2013 and since then the male sloth bear has survived on wild food resources without
being involved in any conflict. However, during field visit it was found that the
current status of sloth bear is unknown, and the authorities have proposed a
reintroduction program of sloth bear according to the National Tiger Conservation
Authority (NTCA).

3 Methodology

Since recently, only one bear has been reported in the Reserve. This bear has been
rescued from the nearby area and relocated in the Core I of the Reserve, therefore, we
have attempted to find conducive habitat for this sloth bear and other bears which are
reintroduced in the near future. For this purpose, an integrated geospatial approach
that rely on analytical hierarchical process (AHP), fuzzy logic, and GIS-automated
techniques was proposed. In the first step of the study, the most effective parameters
on the assessment of habitat suitability of sloth bear were identified following a
preliminary analysis that used available data, potential relationships between char-
acteristics of the Reserve and sloth bears, and suggestions given in the literature
(e.g., Akhtar et al. 2004; Kaminski et al. 2013; Nawaz et al. 2014; Bargali et al. 2012;
Mitchell et al. 2002; Ratnayeke et al. 2007a, b; Akhtar et al. 2007; Das et al. 2014;
Larson 2003; Palei et al. 2014; Sinha et al. 2017). The map layer related to each
factor were collected from the forest department of the Sariska and satellite data.
These data were further informed in the second step of study using several field
surveys and screening processes. The third and final step included post-field surveys,
database creation, and geospatial modeling. The methodology adopted in this study
is shown in Fig. 2 and explicitly described as follows:
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3.1 Data Processing

Landsat TM (Thematic Mapper) image of September 28, 2014, was used for the
evaluation of habitat suitability in the study area. Image were geometrically regis-
tered to 1:50,000 scale survey topographic maps of the study area. It was followed
by atmospheric correction and radiometric calibration. Due to the mountainous
nature of the study area, topographic normalization was performed to correct the
solar illumination differences. The layer maps of slope and elevation were extracted
from a shuttle radar topographic machine digital elevation model (SRTM DEM)
with 30 m resolution using the Arc Map software.

3.2 Fieldwork

Topographical sheets, survey of India of 1:50,000 scale were used for identifying
geographical locations of villages, pilgrimage sites, and roads in STR. Extensive
investigations by the forest department of the Sariska on the Reserve have been the
major source of data associated with number of trees cut, branches lopped, grasses
and bamboo cut, livestock sighted, and density of tree species and shrubs used in the
present study. The distance sampling technique (Buckland et al. 2001) was used to
calculate plants density in the study area. According to the Phase IV Report (2015),
194 linear transects of 1.6 km to 5 km each were placed within the study area of
1200 km2 in such a way that every beat is covered by two transects lines. These

Fig. 2 Flowchart of the methodology adopted for habitat suitability analysis of sloth bear
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transects were walked two times in the early morning hours, in April and May 2015.
A global positioning system (GPS) was used to define the coordinates (i.e., latitude
and longitude) of the beginning and ending points of each transect (Phase IV Report
2016). Field survey for ground truthing and validation of the presence of shrubs and
fruit trees was carried out during September 2016.

3.3 Post Fieldwork

The ultimate database was created using the remote sensing and GIS-automated
techniques. Following the work of Rikimaru (1996), forest canopy density maps
were prepared and categorized. The locations of water holes of the study area were
acquired from the Sariska management report and topographical sheets (GOR 2014).
The area faces water scarcity issue despite receiving a good amount of rain primarily
due to the geological structure and the absence of inflow in the area. Few natural
water holes existed in the study area. Majority of the water points have been
artificially constructed (GOR 2014).

The distance of 1.6 km and 0.8 km was taken from the roads and villages present
in the Reserve assuming bears avoid area within it (Clevenger et al. 2006). There are
contrasting views regarding the impact of roads on habitat quality of bear. While
some studies reported the negative effects of road networks on habitat suitability
(Ratnayeke et al. 2007a, b; van Manen 1991), other studies showed positive effect of
road networks (Carr and Pelton 1984; Fecske et al. 2002; Reynolds-Hogland and
Mitchell 2007). In this study, we followed van Manen (1991), assuming that roads
exert a negative influence on habitat suitability due to continuous traffic flow,
accidents, and increased chances of legal and illegal killing.

Food availability, human disturbance, and grazing layers were prepared from the
beat-wise data provided by the forest department using the line transect method
(Phase IV Report 2015). The food availability layer indicates the density of fruit
trees and shrubs available in the respective beat. Those shrubs (Ziziphus
nummularia), herbs (Cassis fistula), and fruit trees (Phoenix, Ziziphus, Ficus,
Diospyros, Aegle) that are palatable for sloth bear were included in this study.
Grazing layer was prepared based on the number of cattle sighted. Similarly,
human disturbance layer was prepared using the beat-wise data on grasses, bamboo,
and tree cutting and lopping. In the Reserve, the areas located in higher altitudes and
flat surfaces are more susceptible to human disturbances (Jain et al. 2016). There-
fore, we considered elevation and slope as other influencing factors for the assess-
ment of habitat suitability. The factors considered for the assessment of habitat
suitability were food availability, water, elevation, slope, canopy density, distance
to villages and road, grazing activity, and human disturbance (see Fig. 3). Based on
the weighting the importance of these factors using the Fuzzy Analytical Hierarchy
Process (FAHP), assessment of habitat suitability was performed (see Fig. 2). The
beat-wise data on sloth bear availability during the years 2015–2016 was collected
from the Sariska forest department.

Habitat Suitability Mapping of Sloth Bear (Melursus ursinus) in the. . . 211



3.4 Identifying Sloth Bear Habitat Suitability Using Fuzzy
Analytical Hierarchy Process (FAHP)

An integrated approach of GIS-automated techniques, fuzzy logic, AHP, and statis-
tical algorithm was adopted to weight the effective factors in habitat suitability and
its potential mapping. The FAHP has an advantage over analytical hierarchy process
for handling vagueness, uncertainty, fuzziness associated with decision-making
process, and mapping (Ahmed et al. 2017; Deng 1999; Jamil et al. 2017). The
priority vector through FAHP was obtained through triangular fuzzy comparison
matrix for sloth bear habitat suitability.

For applying FAHP, “E” value was obtained based on hierarchy using following
notation:

E1
gi,E

2
gi,E

3
gi,E

4
gi,E

n
gi

where for each criteria the goal set of gi is (i ¼ 1, 2, 3, 4. . .. . .. . .n).
All value of E j

gi are triangular fuzzy number ( j ¼ 1, 2, 3, 4,. . .. . .. . .. . .. . .. . .m).

Fig. 3 GIS maps representing (a) canopy density map, (b) elevation (in meters), (c) slope angle
(in degree), (d) waterholes, (e) human disturbance, (f) villages and road, (g) grazing activity, and (h)
food availability in the STR
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The stepwise description of FAHP given by Chang (1996) is as follows:
For ith criteria the synthetic extent value of Fuzzy (S1) is expressed as:

S1 ¼
Xm
j¼1

E j
gi

O Xn
i¼1

Xm
j¼1

E j
gi

" #�1

ð1Þ

Computation of this involves

Xm
j¼1

E j
gi ð2Þ

Addition operation of fuzzy for E extent value of a particular matrix is expressed
in Eq. (3), and finally a new set is obtained for further use, that is (x, y, z).

Xm
j¼1

E j
gi ¼

Xm
j¼1

x j,
Xm
j¼1

y j,
Xm
j¼1

z j

 !
ð3Þ

where

x ¼ lower limit value
y ¼ middle limit value
z ¼ upper limit value

From x, y, and z set we have Eq. (4):

Xn
i¼1

Xm
j¼1

E j
gi

" #�1

ð4Þ

Addition operation of fuzzy for E j
gi ( j ¼ 1, 2, 3, 4,. . .. . .. . .. . .. . .. . .m) values,

inverse vector is computed through Eq. (5).

Xn
i¼1

Xm
j¼1

E j
gi ¼

Xm
j¼1

x j,
Xm
j¼1

y j,
Xm
j¼1

z j

 !
ð5Þ

By inversing vector, we have:

Xn
i¼1

Xm
j¼1

E j
gi

" #�1

¼ 1=
Pn

i¼1
xi, 1=
Pn

i¼1
yi, 1=
Pn

i¼1
zi

h i
ð6Þ

Degree of possibility for E1 � E2 is calculated as
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V E1 � E2ð Þ ¼ sup
x�y min μE1 pð Þ, μE2 qð Þð Þ½ � ð7Þ

where p and q are the membership function values of each criterion and V
(E1 � E2) ¼ 1. Since E1 and E2 are convex fuzzy numbers, we have:

V E1 � E2ð Þ ¼ 1 iffy1 � y2

V E2 � E1ð Þ ¼ hgt E1

\
E2

� �
¼ μy1 dð Þ ð8Þ

where point of highest intersection (d ) is between (μE1) and (μE2).
when
E1 ¼ (x1, y1, z1) and E2 ¼ (x2, y2, z2).
The ordination of d is expressed as below:

V E2 � E1ð Þ ¼ hgt E1 \ E2ð Þ ¼ x1 � r2
y2 � z2ð Þ � y1 � x1ð Þ ð9Þ

Convex fuzzy number and its degree of possibility to be greater than k convex
fuzzy number E1 (i ¼ 1, 2, 3, 4, . . .. . .. . .k) can be expressed as:

V E � E1,E2, . . . . . . . . . . . .Ekð Þ
¼ V E � E1ð Þand E � E2ð Þand . . . . . . ::and E � Ekð Þ½ �
¼ minV E � Eið Þ, i ¼ 1, 2, 3, . . . k

ð10Þ

The Eq. (10) is supported by the following:

d C1ð Þ ¼ minV Si � Skð Þ

where k ¼ 1, 2, 3, . . .n; k 6¼ i.
The weight vectors are expressed through the Eq. (11)

W1 ¼ d C1ð Þ, d C2ð Þ, d C3ð Þ, . . . . . . . . . d Cnð Þ,½ �T ð11Þ

where Ci (i ¼ 1, 2, 3, . . .n)
Process of normalization for weight vectors are performed using following

equation:

W ¼ d C1ð Þ, d C2ð Þ, d C3ð Þ, . . . d Cnð Þ,½ �T ð12Þ

where W represents non fuzzy number.
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3.5 Habitat Suitable Classes (HSC)

To determine the HSC of the study area, weighted factors were integrated using
weighted linear combination in a GIS environment as follows:

HSC ¼ CDwCDnrð Þ þ RwRnrð Þ þ ElwElnrð Þ þ FAwFAnrð Þ þ SlwSlnrð Þ½
þ GAwGAnrð Þ þ WHwWHnrð Þ þ VwVnrð Þ þ HDwHDnrð Þ� ð13Þ

where CD is canopy density, R is road, El is elevation, FA is food availability, GA is
grazing activity, WH is water holes, V is villages, and HD is human disturbance.
Subscripts of w and nr represent weights and normalized value of all the factors
influencing habitat suitability.

3.6 Validation

It is difficult to validate the results of a habitat suitability prediction in the absence of
target species. In this study, the known we have attempted to validate the HSC by
analyzing its relationship with the beat-wise habitat use intensity data (2015–2016)
of the only sloth bear present in the STR. Zonal statistics of sloth bear habitat
suitability and beat-wise habitat use intensity of sloth bear in STR were calculated
to characterize the influencing factors for habitat suitability analysis.

4 Result and Discussion

The habitat suitability of sloth bear provides insight of priority areas for conservation
and effective decision making for reintroducing sloth bear into the study area. To
overcome the uncertainty in assigning the priority to the habitat suitability parame-
ters, triangular fuzzy numbers (TFN) were assigned on the basis of literature review
(Akhtar et al. 2004; Kaminski et al. 2013; Nawaz et al. 2014; Bargali et al. 2012;
Mitchell et al. 2002; Ratnayeke et al. 2007a, b; Akhtar et al. 2007; Das et al. 2014;
Larson 2003; Palei et al. 2014) and field research on habitat suitability of sloth bear
in our study area. The selected factors were assigned four triangular fuzzy numbers
to assign weights, that is, very strong importance (VSI�2, 5/2, 3), strong importance
(SI �3/2, 2, 5/2), weak importance (WI �1, 3/2, 2), and equal (E �1, 1, 1). Factors
like distance to villages, road, grazing activity, and human disturbance have inverse
relationship with sloth bear habitat suitability (Garshelis et al. 1999; Clevenger
et al. 2006; Yoganand et al. 2006; Kaminski et al. 2013; Bargali et al. 2012).
Many studies have focused on the effect of human activities on bears. The negative
effects of human activity on sloth bears in India has been reported by Garshelis et al.
(1999) and Yoganand et al. (2006). In the Terai region some large patches of
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remnant forests seemingly sufficient to sustain sloth bears have no evidence of bears
since they are severely degraded from grazing, cutting, lopping, and other human
activities (Garshelis et al. 1999). Likewise a study on the threats on sloth bear in
India by Yoganand et al. (2006) reported habitat loss or degradation, overgrazing,
over-extraction of minor forest produce and related human disturbances, fire dam-
age, and conflict with humans, as the major threats to the sloth bear are from
poaching and its habitat. In Wasgomuwa National Park, Sri Lanka, the major threats
to sloth bears are poaching and human activity. Raiding of agricultural fields leads to
higher human–bear conflicts and eventually killing of bear by villagers in rage
(Ratnayeke et al. 2006). The studies done on black and brown bears have also
similar findings (Clevenger et al. 2006; Elgmork 1978 Reynolds-Hogland and
Mitchell 2007). A temporal study of 40 years’ period conducted in Norway found
out a negative correlation between the rate of cabin and road construction and the
growth rate of the local bear population (Elgmork 1978). Human–bear conflicts had
a negative impact on conservation of bears to an extreme extent and therefore it is
necessary for the bear to stay away from human habitation (Can et al. 2014). Hence,
these parameters were inversed in habitat suitability matrix table. Based on the
alternative weights obtained through normalizing the values of suitability parame-
ters, habitat suitability areas were prioritized (Table 1) and criterion weights were
obtained through FAHP (Table 2). Each habitat suitability parameter was multiplied
with criterion weight on the basis of their habitat suitability for sloth bear (See
Eq. 13).

Food availability, waterholes presence, and distance to village parameters were
found to be the most significant determining factors for sloth bear habitat suitability
(Table 2). Nearly 44% area was under moderate suitability class, which is followed
by high suitability (34%), and low suitability (22%) (see Table 3, Fig. 4). High food
availability, proximity to waterholes, and less human interference were the prospec-
tive factors for the ideal habitat. Areas with low availability of food and water as well
as presence of villages and roads are less suitable locations for the sloth bear habitat.
The slope does not have significant influence on sloth bear habitat suitability. Higher
elevation areas (up to 500 m) were found to be most suitable habitat. The higher
elevations of STR are less prone to human disturbances(Jain et al. 2016). The bear
prefers high canopy density areas for resting place. This finding is in agreement with
Akhtar et al. (2007), who observed dense vegetation beyond 10 m radius around the
sloth bear den. However, the STR has dry deciduous forest and thus only 22% of the
total area of the Reserve comprised of high canopy density (Fig3a). Within the three
core areas of STR, core I area has the largest area (47%) under high suitable habitat
followed by medium habitat (37%) and low suitable habitat (16%). Cores II and III
was found to have moderate habitat suitability for sloth bear where 47% and 46% of
their respective areas were under moderate suitability class. Only 47% area of Core I
and 26% of Core III was found highly suitable for sloth bear habitat. Low suitability
was observed in those areas that were located in the vicinity of the villages and roads
of the Reserve.

Sloth bear habitat suitability was validated with the beat-wise habitat-use inten-
sity data of sloth in the STR (see Fig. 5). The high beat habitat-use intensity was
observed in areas of high suitability (77%) followed by moderate suitability (17%)
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and low suitability (7%). The high beat habitat-use intensity was characterized by
high food availability, nearness to waterholes, high canopy density, and less human
interference (see Table 4). The abiotic parameters (slope and elevation) did not figure
in generating influence on sloth bear beat habitat-use intensity. The studies
conducted by Larson (2003) and Akhtar et al. (2004)have shown the similar results.
Moderate beat habitat-use intensity was found in areas of moderate habitat suitability
(47%) followed by high suitability (30%) and low suitability (23%). The medium
and low beat habitat-use intensity was found in areas with moderate habitat suitabil-
ity. From this analysis it can be inferred that the sloth bear preferred to occupy
mostly the high suitability area in the Reserve. Beats with medium habitat-use
intensity covered human disturbance area (55%) followed by area in proximity to
human settlements (33%), whereas beats with low habitat-use intensity has only
25% of area with human disturbance and 26% area lies in the proximity to the

Table 1 Normalized rank of parameters of sloth bear habitat suitability

Factor Class Assigned rank Normalized rank

Villages (V) 800 m 1 0.11

1600 m 3 0.33

>1600 m 5 0.56

Road (R) 800 m 1 0.11

1600 m 3 0.33

>1600 m 5 0.56

Grazing (GA) High 2 0.22

Moderate 3 0.33

Low 4 0.44

Food availability (FA) High 5 0.42

Moderate 4 0.33

Low 3 0.25

Canopy density (CD) 0–27% 2 0.22

28–38% 3 0.33

39–100% 4 0.44

Slope (Sl) 0�–11� 3 0.27

11�–24� 4 0.36

24�–86� 4 0.36

Elevation (E) 0–400 m 3 0.21

400–500 m 4 0.29

500–600 m 4 0.29

600–750 m 3 0.21

Water holes (WH) 800 m 5 0.42

1600 m 4 0.33

>1600 m 3 0.25

Human disturbance (HD) High 2 0.20

Moderate 3 0.30

Low 4 0.40
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villages. This shows that beats with medium habitat use intensity exposed to higher
human interference than the beats with low habitat-use intensity. Food availability in
these areas could be the factor for medium beat habitat-use intensity in human
disturbance areas. Resource availability could be a decisive variable for analyzing
habitat quality for bears. The study by Larson (2003) also is in conformity with our

Fig. 4 Habitat suitability map for sloth bear in Sariska Tiger Reserve, India
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findings. The beats with high and medium habitat-use intensity were seen in the
areas of road interference. Thus, influence of roads was not seen in bear habitat-use
intensity while tree cutting and lopping, villages, and grazing activities can be a
major hindrance in the success of sloth bear reintroduction program.

Fig. 5 Sloth bear habitat-use intensity in Sariska Tiger Reserve, India
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5 Conclusion

The study analyzed the site-specific factors of sloth bear habitat suitability for
identification of potential areas. The factors selected for identifying habitat suitability
were food availability, water, elevation, slope, canopy density distance to villages and
road, grazing activity, and human disturbance. Weights of these factors were obtained
using Fuzzy analytical hierarchy process (FAHP). Comparison matrix of influencing
factors revealed that food availability, water, and villages have higher weightage
contrary to the other influencing factors in the study area. Food availability was
found to be the most dominant factor in determining the habitat suitability of sloth
bear. The weighted factors were integrated to produce high, medium, and low habitat
suitability classes using weighted linear combination in GIS environment. Habitat
suitability analysis revealed that largest area (44%) was found under moderate suit-
ability followed by high (34%) and low (22%) suitability categories. These suitability
classes were validated with the beat habitat-use intensity data of the sloth bear in the
study area. Food availability (100%), canopy density (88%), and nearness to the
waterholes (75%) have shown high habitat-use intensity. The bear avoided areas
with human settlements; however, intermediate distance from the settlement areas
was preferred, especially with food sources. Therefore, areas with human disturbance
recorded medium beat habitat-use intensity. Mertzanis (1992) also presented similar
results. Besides resource availability and disturbance free areas, high canopy density
also played a crucial role in bear habitat-use intensity in STR. Core I has the largest
area under high habitat suitability class (47%). The high suitability was found in areas
having high beat habitat-use intensity by sloth bear. Hence, it validated our habitat
suitability model and therefore helped us to identify areas in the STRwith the potential
to support sloth bear population. Human interference was found to have profound
impact on habitat suitability. The successful reintroduction requires a human distur-
bance free contiguous area in the Reserve. Therefore, the habitat quality conducive for
sloth bear could be increased if the priority is accorded for restricting human activities.
Some bears could be introduced on experimental basis in the STR for deeper under-
standing of the biological, social, economic, and political aspects for the successful
implementation of the reintroduction program of sloth bears.
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Estimation of Air Pollution Using
Regression Modelling Approach
for Mumbai Region, Maharashtra, India

Maya Kumari, Shivangi S. Somvanshi, and Syed Zubair

Abstract Timely information concerning variations in the levels of air pollutants in
urban regions is needed for implementing appropriate preventive actions. In this
regard, an attempt has been made to develop statistical models using remote sensing
data that can be beneficial in obtaining direct information on air quality using
remotely sensed data easily and quickly. The present research is an integrated
approach to attain the spatiotemporal attributes of air pollution index of particulate
matter (PM10 and PM2.5) and traces gases (O3, NO2, and CO) pollutants in Mumbai
city of India. Radiance values of different bands, vegetation indices, and urbaniza-
tion index resulting from Landsat 8 Operational Land Imager (OLI) and Thermal
Infrared Sensor (TIRS) images were employed to create regression-based models
with air pollution indices (APIs), which were intended from field-based air pollution
data. The spatial variation of API for different air pollutants was simulated using the
inverse distance weighted (IDW) method of interpolation. It was observed that
among all the image-based parameters, the highest correlation of pollutants was
with near infrared (NIR) and normalized difference vegetation index (NDVI). The
correlation between APIs, vegetation/urbanization based, and land surface temper-
ature (LST) indices suggest that areas with low vegetation, dense urbanization, and
high LST are consistently pertaining to elevated concentrations of air pollutants. The
high correlation coefficient, 0.965 between overall API and API (PM10), indicates
that PM10 has a significant effect on the overall air quality of the study area, followed
by PM2.5. Correlation results also revealed a positive relation of air pollutants with
urban settlement density and satellite-derived LST, respectively. The multivariate
regression model with the two most correlated variables (NIR and NDVI) gave the
most accurate air pollution image with R square (R2) value of 0.69, 0.55, and 0.52
for API (PM10), API (NO2), and overall API, respectively. Regression model for API
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(PM2.5) with a least R2 value of 0.34 seems inadequate for the prediction of API
(PM2.5). On comparing among the APIs-modeled and APIs-interpolated images,
72.27% accuracy was obtained for API (PM10), 66.01% accuracy was obtained for
API (NO2), and 79.89% accuracy was obtained in the case of overall API. The
developed regression models were validated using February 12, 2019, in situ and
satellite data.

Keywords Air pollution index (API) · Landsat 8 OLI & TIRS · Regression
technique · Vegetation Indices · Built-up index · Land surface temperature (LST)

1 Introduction

Atmospheric pollution is the main issue hindering growth in developing countries,
including India. An increase in the air pollutant concentration with a rise in the built-
up land use denseness is a significant concern (Weng and Yang 2006). Conse-
quently, to maintain the quality of the air within the permissible limits as per
standards, it is required to gather information timely and frequently concerning
variations in air pollution levels in urban communities (Vashisht et al. 2018).
Significant use of remote sensing expertise in ambient air pollution monitoring
began in the 1970s, followed by the enhancement in technology, as stated by the
variation in reflectance of ground entities on satellite-based imagery (Ruru and
Shouping 2005). Although due to the comparatively weak and fuzzy border, caused
by the blending of this data with the ground truth data, the delineation of information
with respect to air pollution, from remotely detected satellite images is troublesome.
A portion of studies about explorations in this field has exposed the connection
between land use/land cover (LULC) through satellite-based reflectance and air
pollution (Ahmad et al. 2006; Ruru and Shouping 2005). Among the unique
components, it was likewise discovered that vegetation cover could be contemplated
as a controlling attribute for air toxins; therefore, vegetation indices are assessed as
indicators for built-up regulated pollution (Hogda et al. 1995; Manawadu and
Samarakoon 2005).

It is observable that Mumbai is experiencing exponential urbanization, which
resulted in environmental degradation–related scenarios such as elevated environ-
mental pollution and LST (Kumari and Sarma 2017). Urban land-use pattern has a
considerable effect on the air pollutants concentration. With an increase in the
greenhouse gases concentration in air, it significantly affects temperature of the
area (Zheng et al. 2017). Peng et al. (2010) work indicated a positive relationship
between land-use change and degraded air quality in urban areas. Increase in air
pollution and LST affect the climate of the country, especially for those who are
driven by monsoon like India, which ultimately leads to erratic patterns of rainfall.

To study the spatial distribution of air contaminants, interpolation strategies of
GIS are generally put in use by modifying point data to surface data (Wong et al.
2004 and Bell 2006). Among various interpolation methods, the most widely used
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techniques for air quality predictions are Kriging and IDW (Bell 2006). It likewise
aids in managing the huge database in a primary and speedy way. This study is an
effort to derive a relation between different air pollutants with vegetation/urbaniza-
tion indices and other image-based characteristics. The ambient air contamination
parameters used are in the form of pollution index in accordance with PM2.5, PM10,
CO, NO2, and O3 along with overall API, which can be characterized as a numeric
pollution indicator that can be calculated using weighted estimations of individual
pollutant (PM2.5, PM10, CO, NO2, and O3) (Rao and Rao 2001). The image
specifications taken into consideration are four vegetation indices: Enhanced Veg-
etation Index (EVI), Normalized Difference Vegetation Index (NDVI), Soil-
Adjusted Vegetation Index (SAVI), Atmospherically Resistant Vegetation Index
(ARVI), and one urbanization index Normalized Difference Urbanization/Built-up
Index (NDBI), LST along with all other 11 bands of Landsat OLI and TIRS
satellite data.

2 Study Area

Mumbai is the capital city of Maharashtra. It falls between latitude 18�300 to 19�200

N and Longitude 72�450 to 73�000 E. Mumbai consists of two districts, one is the
island city, made up of seven islands and the other is suburbs (Fig. 1). In 2016,

Fig. 1 Location map of study area
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Mumbai is categorized as the second most crowded metropolitan zone in India with
the population of 21.3 million. The whole territory of Mumbai is 603.4 km2, of this
67.79 km2 is of the island city, while the rural region covers 370 km2. The Arabian
Sea surrounds Mumbai to the west. Most of the areas of the city lie just above the
mean sea level, with an average elevation of 14 m. The climate of the city is tropical
dry and wet. The months from June to the end of September comprises of
the southwest monsoon season, and months of October and November structure
the post-monsoon season. The average total yearly precipitation is 2146.6 mm for
the island city, and 2457 mm for the suburbs. The average annual temperature
recorded is 27.2 �C.

3 Field Data Collection

Computation of the formula for Air Pollution Index (API) is dependent upon the type
of prime contaminants of the study region. In this study, the API was computed
using the value of PM10, PM2.5, NO2, CO, and O3 with the help of the following
formula (Rao et al. 2004):

API ¼ 1
4
� PM10

SPM10
þ PM2:5

SPM2:5
þ NO2

SNO2
þ CO
SCO

þ O3

SO3

� �
ð1Þ

Where, PM10, PM2.5, NO2, CO, and O3 stand for individual values of particulate
matter of diameter less than 10 μm and 2.5 μm respectively. Nitrogen dioxide,
carbon monoxide and ozone, and SPM10, SPM2.5, SNO2, SCO, and SO3 stand for
standard values of the respective pollutants, as stated by Central Pollution Control
Board (CPCB). The API concerning each pollutant was also evaluated and used in
the present study. The formula employed to compute the API of the single contam-
inants was as written below (Rao and Rao 2001):

APIPollutant ¼ Pollutant
SPollutant

� �
� 100 ð2Þ

wherein, Pollutant and SPollutant represent individual values and standardized values
of each pollutant (PM10, PM2.5, NO2, CO, and O3). The ground-based ambient air
pollutant data of Mumbai needed for the study was gathered from the website of
System of Air Quality and Weather Forecasting and Research (SAFAR) developed
by Ministry of Earth Science, Government of India and Indian Institute of Tropical
Meteorology, Pune (http://safar.tropmet.res.in/map_data.php?city_id¼3&
for¼current). Information was gathered from 10 monitoring locations, as mentioned
in SAFAR.
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3.1 Spatial Interpolation of APIs

With respect to quantitative analysis of the interrelation among air pollutants and
land use, APIs were interpolated from 10 monitoring sites of Mumbai city by the
IDW interpolation method. IDW nonlinear interpolation method was used to convert
discrete data of these 10 sampling locations into continuous data over the entire
study area. Values of different parameters were extracted using interpolated maps
from 50 random locations, which were used for the development of the model and
quantitative analysis. Data of similar sample points of the different dates were used
for validation purposes.

4 Satellite Data

The data used in the present study are Landsat 8 OLI and TIRS satellite data acquired
on February 5, 2019, and February 12, 2019 was obtained from the United States
Geological Survey (USGS). Different bands along with the spatial resolution of the
Landsat 8 OLI and TIRS satellite image, are as mentioned in Table 1. Landsat 8 has
two sensors onboard, the Operational Land Imager (OLI) with nine bands, and the
Thermal Infrared Sensor (TIRS) with two bands (Somvanshi et al. 2018).

Table 1 Different bands of Landsat 8 OLI & TIRS satellite data

Bands Wavelength (μm) Resolution (m)

Band 1 (coastal/aerosol): B1 0.435–0.451 30

Band 2 (blue): B2 0.452–0.512 30

Band 3 (green): B3 0.533–0.590 30

Band 4 (red): B4 0.636–0.673 30

Band 5 (NIR): B5 0.851–0.879 30

Band 6 (shortwave IR-1): B6 1.566–1.651 30

Band 7 (shortwave IR-2): B7 2.107–2.294 30

Band 8 (PAN): B8 0.503–0.676 15

Band 9 (cirrus): B9 1.363–1.384 30

Band 10 (TIR – 1): B10 10.60–11.19 100

Band 11 (TIR – 2): B11 11.50–12.51 100
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5 Data Analysis and Model Generation

5.1 Conversion of Digital Number (DN) to Radiance

The DN values of Landsat images were transformed to radiance values to remove the
systematic glitches and improvise the attributes. The transformation depends on a
calibration curve of DN (Chander and Markham 2003; Negi et al. 2009).

5.2 Image Processing (Spectral Enhancement)

Since the time satellite recording of spectral radiance of ground objects in visible and
near-infrared bands became possible, many others have developed various indices
based on the certain combinations (sum, difference, ratio, linear-additional) of bands
(Somvanshi et al. 2017). These indices are used to identify and monitor the temporal
variation of the object. Moreover, these combinations have the advantage of reduc-
ing the effect of external factors, such as solar irradiance, atmospheric influence, etc.
(Girard and Girard 2003). Four vegetation-based indices, Normalized Difference
Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), Enhanced Veg-
etation Index (EVI), and Atmospherically Resistant Vegetation Index (ARVI) and
one urbanization-based index, Normalized Differential Built-up Index (NDBI), as
shown in Table 2, were used for the present study. All the images produced after
spectral enhancement were used for the development of models for monitoring air
pollution parameters over the study area.

Table 2 List of spectral indices used in the study

Indices Formula Date

Normalized Differential Vegetation
Index (NDVI)

(NIR � Red) / (NIR + red) Rouse et al.
(1973)

Soil-Adjusted Vegetation Index
(SAVI)

[(NIR � Red) / (NIR + red + 0.5)] *
(1 + 0.5)

Huete
(1988)

Atmospherically Resistant Vegeta-
tion Index (ARVI)

(NIR� (red� 1*(blue - red))) / (NIR + (red
�1* (blue � red)))

Tanre et al.
(1992)

Enhanced Vegetation Index (EVI) 2.5*((NIR � red) / ((NIR + 6*red
�7.5*blue) +1))

Huete et al.
(2002)

Normalized Differential Built-up
Index (NDBI)

(NIR � SWIR) / (NIR + SWIR) Zha et al.
(2003)
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5.3 Model Generation

The statistical analysis was done using SPSS 20. Pearson correlation and multiple
linear regression (MLR) were employed to discover the association between APIs
(dependent variables) and pixel values of different bands and the indices developed
through the satellite image (independent variables). Correlation analysis helped us in
evaluating the effectiveness of these parameters in predicting the air quality of the
study area. This statistical tool assisted in exclusion of irrelevant independent vari-
ables; only those with a high correlation coefficient with dependent variables were
selected (Somvanshi et al. 2019).

Further, MLR models were employed to measure the associations within
the various APIs and shortlisted bands and indices of the satellite data. To generate
the regression formula for prediction of API (PM10), API (NO2), and overall API of
the study area, coefficients of the selected variables were put in use. After analyzing
the regression coefficients (R2), the standard error of the mean Y estimate (SE(Y)),
and P-value at 95% confidence level, the developed regression model was used for
developing a unique class simulated maps for air quality of the study area.

5.4 Model Validation

The developed regression model on the satellite data of February 5, 2019, was
validated and quantified using the ground truth data and satellite image of February
12, 2019, to certify that they are not only applicable on a specific data set but also
generated precise results on several data sets. To validate the models, two quantita-
tive criteria R square (R2) and Root Mean Square Error (RMSE) were calculated
between the calculated and predicted values. R2 values specify the preciseness of the
linear statistical relationship between two values, and RMSE indicates absolute
estimation errors (Moriasi et al. 2007).

6 Land Surface Temperature (LST)

The LST was measured using Landsat 8 dataset. The methodology for the derivation
of LST was taken from Landsat Data Users Handbook Science Data. Transforma-
tion of DN values in thermal infrared wavelength to spectral radiance (Lλ) was done
employing the equation given below:

Lλ ¼ gain� DN þ offset ð3Þ

Where Lλ is spectral radiance; gain is the slope of the radiance/DN conversion
function; DN is the digital number of a given pixel; offset is the intercept of the
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radiance/DN conversion function (Landsat Project Science Office 2002). The meta-
data file linked with every Landsat image contains the offset and gain-related
information. ERDAS Imagine and ArcGIS 10.5 software were used for image
processing and analysis.

Afterward, the surface temperature was computed by using the acquired spectral
radiance (Lk) values. The formula for the conversion is as follows:

TB ¼ K2= ln K1
Lλ

� �
þ1

� �
ð4Þ

Where TB represents surface temperature in kelvin, K1 with a value of 666.09 is the
calibration constant 1, K2 with a value of 1282.71 is the calibration constant 2, and
Lλ is the thermal band pixel’s spectral radiance.

Values of temperature acquired using the above equation were referenced to a
black body. Spectral emissivity (e) corrections were applied in accordance to land
cover. The content, chemical composition, structure, and roughness of the surface of
land are the parameters that affect the emissivity of an area. For vegetative covers,
emissivity can differ considerably with the type of plant species, areal density, and
growth stage (Snyder et al. 1998).

Depending upon the land surface type, the rectifications in the emissivity were
applied. Vegetative and nonvegetative regions were assigned a value of 0.95 and
0.92, respectively (Nichol 1994). The LST (emissivity-corrected) was calculated by
employing the following formula (Artis and Carnahan 1982 and Weng et al. 2004).

LST ¼ TB

1þ λTB
ρ

� �
ln ε

ð5Þ

where λ represents emitted radiance’s wavelength; ρ ¼ h* c/σ (1.438 9 10–2 Mk); σ
is Boltzmann’s constant (1.38 9 10–23 JK-1); h is Planck’s constant (6.626 9 10–34
Js), and c is the velocity of light (2.998 9108 ms-1).

Further, the Pearson correlation was employed to discover the relation between
LST, air quality, and land use.

7 Results

7.1 Correlation between APIs, Radiance Values, and LST

Satellite-driven data gives an upper hand for acquiring data spatially as well as over
time. The LST was predicted using the radiance values of thermal bands of Landsat
data during February 2019; the temperature ranged from 21.54 to 36.53 �C with a
mean temperature of 27.58 �C (Fig. 2).
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Fig. 2 Land surface temperature of the study area for February 2019

Estimation of Air Pollution Using Regression Modelling Approach for Mumbai. . . 237



Correlation study has been done between radiance values of all the 11 bands of
Landsat 8 OLI and TIRS data, spectral indices (NDVI, ARVI, SAVI, EVI, and
NDBI), different APIs of the 50 sample points (Table 3), and LST. A negative
correlation was observed of the APIs with reflectance in NIR, SWIR, TIR, and all
types of vegetation indices except with API (O3). The best correlation of most of the
APIs is with the radiance in NIR with a Pearson correlation coefficient of �0.692,
�0.883, �0.548, and � 0.740 for API, API (PM10), API (PM2.5), and API (NO2),
respectively. However, the correlation between indices and APIs were analyzed and
from the calculations it was perceived that comparatively there was a better corre-
lation in case of NDVI compared to other indices. NDVI showed a high negative
relation with correlation coefficient (R) equal to �0.654, �0.573, �0.656,
and � 0.685 with API (PM10), API (PM2.5), API (NO2), and overall API respec-
tively, and week correlation with API (CO) and API (O3).

Strong correlation was obtained between overall API and API (PM10) with the
value of R equal to 0.965, which shows that PM10 has significant impact on overall
air quality of the study area followed by PM2.5 (R ¼ 0.668). After analyzing the
correlation matrix, most correlated band (NIR) and index (NDVI) were shortlisted
and subjected to multiple linear regression (MLR) analysis. Similar results were
portrayed by (Mozumder et al. 2012), where vegetation indices and NIR showed
maximum correlation with air quality parameters.

For API (PM10), there is a positive correlation coefficient (R ¼ 0.69) with LST,
but a negative correlation with vegetation indices as vegetation could deposit

Table 3 Correlation matrix between APIs and radiance values

API API (PM10) API (PM2.5) API (NO2) API (CO) API (O3)

API 1 0.965 0.668 0.555 0.291 �0.167

B1 0.263 0.071 0.253 0.086 0.400 �0.087

B2 0.228 0.028 0.220 0.094 0.427 �0.110

B3 0.166 �0.061 0.181 0.030 0.387 �0.078

B4 0.104 �0.068 0.114 0.016 0.310 �0.063

B5 �0.692 �0.833 �0.548 �0.740 �0.103 0.415

B6 �0.240 �0.364 �0.167 �0.303 0.146 0.045

B7 �0.111 �0.217 �0.080 �0.137 0.207 �0.014

B8 0.111 �0.051 0.124 �0.048 0.397 �0.093

B9 0.057 �0.278 0.121 �0.313 0.384 0.238

B10 �0.127 �0.053 �0.124 �0.098 0.119 �0.128

B11 �0.167 �0.049 �0.168 �0.092 0.064 �0.133

NDVI �0.685 �0.654 �0.573 �0.656 �0.263 0.348

ARVI �0.387 �0.415 �0.303 �0.364 �0.387 0.415

SAVI �0.303 �0.387 �0.427 �0.415 �0.207 0.303

EVI �0.415 �0.303 �0.364 �0.415 �0.303 0.397

NDBI 0.412 0.450 0.394 0.475 0.303 0.172

LST 0.687 0.69 0.67 0.562 0.566 �0.113

Note: Correlation Coefficient between LST and NDVI ¼ �0.606
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particulate matter. An identical interrelation between suspended particulate matter
and land use was observed in representative cities of China. The strong correlation
between particulate contamination and woodland and grasslands are found (Sun
et al. 2016). The effect of landscape pattern on PM2.5 concentrations using correla-
tion analysis was also observed in Beijing. Vegetative cover can effectively lower
PM2.5 levels, whereas construction works on land escalate the level (Wu et al. 2015).
LST also showed a high negative correlation (R ¼�0.606) with NDVI (Kumari and
Sarma 2017). In the case of trace gases, ozone showed a weak correlation with LST
and negative correlations with nearly all vegetation indices. API (NO2) showed a
strong positive correlation with LST, with a correlation coefficient equal to 0.562.
NO2 is affected profoundly by land use among other trace gases. NO2 is the perfect
indicator of vehicular traffic-caused air pollution. In studies, earlier done for NO2

prediction employing the LUR model, NO2 showed a positive correlation with urban
areas and a negative correlation with agricultural fields and tree canopy (Novotny
et al. 2011; Meng et al. 2015). API (CO) showed a positive correlation with
(R ¼ 0.566) with LST. The results showed that the amount of CO is greatly affected
by anthropogenic activities in urban areas (Zheng et al. 2017). Results also revealed
that the geographical patterns of air contaminants were positively correlated with
urban land use and satellite-driven land surface temperature (Weng and Yang 2006).

7.2 Regression Models

The results revealed by the regression model developed are presented in Table 4,
describing how efficiently, geographical changes in air contaminants can be
ascertained by implementing various regression models.

Models were developed for API of particulate matters (PM10, PM2.5), NO2, and
overall API using radiance values of NIR and NDVI. The first model, which
combines NIR and NDVI, provided the best fit for predicting API (PM10). It had a
high R2 value, that is, 0.69, implying a good linear interrelation within estimated and
forecasted API (PM10) and indicated that this model could describe 69% of the
variance in the API (PM10) values. Each one of these variables had quite significant
p-values, referring to a strong correlation with API (PM10). Contrarily, third and

Table 4 Recommended models for different APIs

Pollutant Regression model R2

API (PM10) γ ¼ β0 + (β1*NIR) + (β2*NDVI)
Where: β0 ¼ 210.1798785, β1 ¼ (�2.15655), β2 ¼ 0.0433

0.69

API (PM2.5) γ ¼ β0 + (β1*NIR) + (β2*NDVI)
Where: β0 ¼ 368.8025, β1 ¼ (�1.886), β2 ¼ (�0.7688)

0.34

API (NO2) γ ¼ β0 + (β1*NIR) + (β2*NDVI)
Where: β0 ¼ 126.237, β1 ¼ (�1.071), β2 ¼ (�0.0739)

0.55

API γ ¼ β0 + (β1*NIR) + (β2*NDVI)
Where: β0 ¼ 189.818, β1 ¼ (�1.022), β2 ¼ (�0.242)

0.52
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fourth models used for predicting API (NO2) and overall API with R
2 values of 0.55

and 0.52 showed an average correlation between variables and APIs. While
the second model used for predicting API (PM2.5) showed the least significance
with the R2 value of 0.34. Hence the model is not appropriate for predicting API
(PM2.5). The proposed algorithms for API (PM10), API (NO2), and overall API were
validated using the radiance values extracted from Landsat 8 satellite images pro-
cured on February 12, 2019, along with corresponding ground truth data from
SAFAR (Figs. 3, 4, and 5). Spatial distribution of all the parameters API (PM10),
API (NO2), and overall API) showed highest values over the inland waterbodies as
when warm, unstable air moves out over a cool water body, a temperature inversion
develops near and over the waterbody, giving a very poor dispersion condition in
lower layer (Hewson and Olsson 2012).

Indeed, undoubtedly apart from the parameters used in the study, many other
aspects also control suspended particulate matter and trace gases. With the expo-
nential development in information sharing across the globe, more potential param-
eters can be added to the correlation analysis.

7.3 Model Validation

The performance of the developed regression models on the data of February
5, 2019, was quantified using the ground truth data of 50 sampling points and
image of February 12, 2019. The validation results for the best regression models
are shown in Figs. 6, 7 and 8. Verification results revealed that the models developed
using Landsat 8 data are appropriate for APIs, whereas the data acquired from the
mentioned satellite cannot be put in use for predicting PM2.5, CO, and O3

(Somvanshi et al. 2019). Values of R2 equal to 0.7227 and RMSE of 0.7773 indicate
that this regression model had the best fit for predicting API (PM10).

Similarly, R2 value of 0.6601 and RMSE value of 8.7290 for the regression
model used for predicting API (NO2) indicate that the model is appropriate to predict
the parameter with good accuracy using remote sensing data. Further, as per the
validation results of overall API values of R2 equaling 0.798 and RMSE 1.2131,
indicating that the regression model is adequate for the prediction of air quality.

8 Conclusion

Geospatial technology was applied for air pollution modeling of the Mumbai region.
Based on the study, it was observed that the near-infrared band and remote sensing–
derived NDVI showed the highest correlation with in situ air pollutant data of
February 5, 2019. The IDW method was used for spatial interpolation of APIs of
different air pollutants. A strong correlation was observed between overall API and
API (PM10) followed by API (PM2.5) and API (NO2), indicating that API (PM10)

240 M. Kumari et al.



Fig. 3 Simulated map of API (PM10) using model
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Fig. 4 Simulated map of API (NO2) using model
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Fig. 5 Simulated map of API (overall) using model

Estimation of Air Pollution Using Regression Modelling Approach for Mumbai. . . 243



Fig. 6 Scatter plot of predicted versus measured API (PM10)

Fig. 7 Scatter plot of predicted versus measured API (NO2)
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has a maximum effect on the overall air quality of the study area. The overall API
was also in positive correlation with low vegetation, high built-in, and land surface
temperature. New regression models were developed for most representative com-
ponents for assessing air quality for the study area and the same was validated with
satellite data and ground data of February 12, 2019. Therefore, remote sensing data
can be efficiently used to assess pollutant levels and their potential source which can
be regulated based on GIS spatial interpolated maps.
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Mapping of Agriculture Productivity
Variability for the SAARC Nations
in Response to Climate Change Scenario
for the Year 2050

Ram Kumar Singh , Vinay Shankar Prasad Sinha, Pawan Kumar Joshi,
and Manoj Kumar

Abstract Agriculture productivity is often guided by prevailing climate and man-
agement interventions. The climatic variations over a region on a temporal scale may
have favorable or adverse feedback on productivity. Evaluation of the influences of
climate change on agriculture productivity is essential to ensure food security. The
South Asian Association for Regional Cooperation (SAARC) is consortium of
Afghanistan, Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan, and Sri
Lanka, which represents a region where agriculture drives the economy and people
are primarily dependent on it for their food requirements. Climate change is expected
to influence the productivity of this region, which further depends on climate and
other driving factors. We assessed the influences of climate change on agriculture
productivity (Net Primary Productivity, NPP) using JULES (“Joint UK Land Envi-
ronment Simulator”), which is a Dynamic Global Vegetation Model (DGVM).
JULES was used to process NPP for the future climate change scenario of the year
2050 under low emission represented by RCP 2.6. The climate change projections–
based Coordinated Regional Climate Downscaling Experiment (CORDEX) for the
South-Asian region was used to simulate productivity using the JULES model. A
slight decrease in productivity was witnessed which had spatial variability across the
SAARC nations. However, the majority of the agriculture area (87% of the total
agriculture land) is expected to witness moderate change where productivity would
fall by 1 to 3 Mg-C/ha/year. We present agriculture productivity estimates of
SAARC nations under climate change influence, which would assist planners in
ensuring the food security of the region through proper management interventions.
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1 Introduction

Global agriculture production is expected to witness various levels of threat under
the influence of climate change (FAO 2009; Gregory et al. 2005; Singh et al. 2020).
The impact of climate change on agriculture production is identified as one of the
prime challenges that would affect food production–related consequences (Gregory
et al. 2002; Roetter et al. 2007). Climate change is expected to impact agriculture
productivity (Acevedo 2011; Ranuzzi and Srivastava 2012), land cover change
(Singh et al. 2020a, b; Wardlow et al. 2007), changes in biodiversity (Ingram et al.
2010; Wezel and Soldat 2009), sporadic changes in temperature and precipitation
(Singh et al. 2019), and sustainable food security (Herrero et al. 2017; Thomson
2003). The rapid economic development (Gerlitz et al. 2017), increasing population
(Cutter and Finch 2008), agriculture–forestry land conversion (Fuss et al. 2015), and
urbanization (Mishra et al. 2010) also impact agriculture directly or indirectly (West
et al. 2010). The studies on agriculture food production for sustainable future
production are an important and major challenge in changing climate scenarios
(Kumar et al. 2018a; Tilman et al. 2011). Agriculture crop productivity is precisely
estimated using agriculture crop growth models, including Dynamic Global Vege-
tation Models (DGVM) (Van den Hoof et al. 2011). The agriculture crop growth
models simulate the growth of a crop using climatic parameters, cultivar, irrigation
and soil condition, and other estimators. Crop models are useful for the estimation of
regional and global agriculture crop production (Xiong et al. 2008; Yun 2003).
However, for medium- and long-term predictions, models may not give a reliable
estimate as to the relationship between the growth and other variables that impact the
growth, as they often form nonlinear complex relationships while the models are yet
evolving (Peng 2000; Singh et al. 2020a, b).

The existing DGVMs (Kalra and Kumar 2018) can simulate the productivity of
vegetated region using climate drivers such as the diurnal temperature, precipitation,
wind velocity, specific humidity, soil condition, geographical condition, and flux
(shortwave and longwave radiations), etc. The vegetated regions are often
represented in such models by Plant Functional Type (PFT), representing a con-
glomeration of various tree species having comparable functional traits (Kumar et al.
2018a). The various models have evolved in recent decades that could be used for
the estimation of agriculture productivity (Haxeltine and Colin Prentice 1996; Van
den Hoof et al. 2011), impacts on forests and agriculture crops (Kumar et al.
2019a, b), carbon estimation of forested and agriculture lands (Raich 1991; Sitch
et al. 2008), monitoring of land resources (Thenkabail 2015), and the monitoring of
ecosystems (Kucharik et al. 2000; Thenkabail 2015). After the evolution of mech-
anistic growth simulation models, the earlier approaches of indicator weight, regres-
sion, correlation, interpolation, and other statistical approaches are generally
discarded where process-based growth models provide a better estimate for long-
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term future projections under the stimulus of multiple drivers along with climate
change (Cutter 2017; Kalra and Kumar 2018). Various DGVMs of present days that
can be used for the estimation of future productivity for terrestrial landscape,
including Joint UK Land Environment Simulator (JULES) (Van den Hoof et al.
2011), Lund–Potsdam–Jena (LPJ) (Sitch et al. 2003) and others. In this study, we
used the JULES model to predict future agriculture productivity under a low
emission scenario of RCP 2.6 for the year 2050.

1.1 The Process-Based Joint UK Land Environment
Simulator

The JULES is one of the latest DGVMs developed by varied community researchers
of the UK, coordinated by UK Meteorological Office (UKMO), Centre for Ecology
and Hydrology (CEH) (http://jules.jchmr.org/). The model integrates a full suite of
land-based processes, rigorously based on observations and theoretical science. The
model is based on the Met Office Surface Exchange System (MOSES) land surface
scheme (Cox et al. 1999) and the Top-Down Representation of Interactive Foliage
and Flora Including Dynamics (TRIFFID)” model (Cox 2001), but with significant
improvements to allow various land processes to interact with each other.

The used JULES v. 4.8 represents five plant functional types (PFTs): shrubs, C3
and C4 grasses, broadleaf trees, and needle-leaf trees. PFTs are a driven system to
classify plants based on their phylogenetic, physical, and phonological character
(Diaz and Cabido 1997). PFT helps modelers to group multiple trees existing in a
region to make the representation easier in the process-based models, based on the
similarity of physiological process and other functional attributes to make fewer
clusters. The vegetation of a region is usually fed as one of the PFT while simulating
the ecosystem processes using a DGVM.

Van den Hoof et al. (2011) used JULES-SUCROS, a dynamic model to study the
agricultural growth. JULES-SUCROS is specific to agroecosystem features which
are based on dynamic agriculture crop growth process such as sowing to harvest
phenological cycle and yield-bearing model. The study also compares fluxes against
FLUXNET measured at six European sites to highlight complex connections
between land surface, agriculture growth, water, and primarily energy cycles for
our ecosystems was observed. The JULES-SUCROS prediction yield provides a
good correlation with observed gross primary productivity (GPP), heat flux, and
sensible heat flux. We used the JULES v. 4.8 model to estimate the productivity of
regions dominated by agriculture for the year 2050 for the SAARC nations under the
climate change scenario of RCP2.6. The PFT3 and PFT4 represent grasses in the
model which was found to represent agriculture lands of the study region. We
present the application of a DGVM for the following reasons:

1. To test the application of the process-based model to simulate PFT that matches
with the agriculture lands.
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2. To test how well a DGVM can simulate the productivity of agricultural lands in
the present scenario.

3. To estimate the productivity of agricultural lands under the influence of climate
change scenario for the year 2050.

2 Methods

2.1 Study Region

The study was done for the South Asian Association for Regional Cooperation
(SAARC) nations represented by eight nations that include Afghanistan,
Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan, and Sri Lanka. It covers a
total geographical area of 51,000,000 sq. km and extends between the latitudes 0.8�

S and 38.5� N and longitudes 59� E and 93.6� E (Fig. 1). India contributes the largest
geographical area in the SAARC, spread over 3,290,000 sq. km, while the Maldives
has the smallest area of 298 sq. km. The SAARC region has a predominantly tropical
climate along with arid and semiarid tropics. The region has a unique climatological
distinction and is mostly under the influence of the monsoons. Most of the area of the
SAARC region depends upon the monsoon for agriculture and is usually referred to
as rainfed agriculture (Chatterjee and Khadka 2011; Savita et al. 2018). Agriculture
and forests are the two leading land uses that provide most of the ecosystem services
for the sustenance of the human population in the region which is under the impact of
climate change (Kumar et al. 2018b). Thus, assessing the projected changes in the
productivity of these two dominant ecosystems is often the priority of researchers.
Moreover, agriculture alone contributes more than 30% of gross domestic product
(GDP) of the region as per the assessment done by World Bank (2011) for the period
2000–2010, thus assessing the impressions of climate change on agriculture pro-
ductivity becomes much desirable. At the same spell, the region is witnessing a swift
growth of population (World Bank 2011) where most of the people would be relying
on agriculture for their food security. Thus, it provides an opportunity to assess the
impacts for a future time step, so that the assessment would help the planners to
develop management approaches to safeguard food security in the region.

2.2 Data and Method

The JULES requires nine different input files for the simulation (Table 1). The
desired input files needed to run the JULES were obtained from the Coordinated
Regional Climate Downscaling Experiment ( CORDEX), which follows World
Climate Research Programme (WCRP) for the SAARC region. The projected
climatic scenario and climatic data is disseminated through the Earth System Grid
Federation (ESGF) and data node are available through the climate data portal of
Centre for Climate Change Research, Indian Institute of Tropical Meteorology
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(CCCR-IITM), India. The climate data portal of IITM was used for retrieving
necessary input files for running JULES.

The CORDEX South ASIA dataset consists of multiple models and scenarios for
which daily scenarios have been produced data dynamically downscaled to project
for regional analysis. Datasets spatial resolution (~56 km) for projection of regional
climate that can be used to estimate change impacts on sensitive processes at large
scale for climate gradients. These datasets assist the scientific community to analyze
impact at the regional level.

The Fifth Assessment Report (AR5) of IPCC defines a set of scenarios denoted as
Representative Concentration Pathways (RCPs) based on climate models (Moss
et al. 2010). It represents the greenhouse emission scenario estimates for the future
from lower, medium, and higher emissions scenarios. The CCCR-IITM data node
has published datasets for multiple CORDEX South Asia Regional Climate Model

Fig. 1 Study region showing the South Asian Association for Regional Cooperation (SAARC)
nations
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(RCM) experiments. For this study, low emission scenario represented by RCP 2.6
was used for assessing the productivity of the agriculture region for the year 2050.

2.2.1 Parameterization of the JULES Model

The simulation was done for the agriculture regions of the landscape by setting the
parameters of PFT3 and PFT4 which is a representation of C3 grass and C4 grass
(Essery et al. 2001). The leaf area index (LAI) along with height of canopy have
been estimated for daily mean value for the geographical land cover types including
crops, herds, grass in temperate and tropical ecosystems, etc. (Breuer et al. 2003;
Groenendijk et al. 2011). The JULES includes parameters of rooting depth and
simulates flues over temperate and tropical agriculture cropland. In its process, the
photosynthesis of leaf equations for the agriculture to calculate the carboxylation rate
and leaf nitrogen concentration are however different in agriculture crops and
grasses (Schulze et al. 1994; Wullschleger 1993). Other important factors to be
considered are the infiltration enhancement to identify natural and managed ecosys-
tems and the fluxes during simulation (House et al. 2001; Ndiaye et al. 2007).
The seasonal time series LAI is used for prescribing the agriculture crop phenology.
The LAI, rooting depth, and canopy height in the model are used to segregate the
agriculture crop species (Debaeke 2004).

Table 1 Input, output, and plant functional type (PFT) represented in the JULES model

Model Required input PFTs Output

Agriculture(Van
den Hoof et al.
2011)

JULES
(v 4.8)

1. Geographical
location
2. Air temperature (�C)
3. Diurnal temperature
range (K)
4. Daily mean
precipitation
(kgm�2 s�1)
5. Frequency of wet
days (days month1)
6. Incoming shortwave
and longwave radiation
(W m�2)
7. Specific humidity
(kg kg�1)
8. Wind speed (ms�1)
9. Soil type

1. Broad-leaf
trees
2. Needle-
leaf trees
3. C3 grass
4. C4 grass
5. Shrubs

1. Soil temperature (K)
2. Soil moisture
(kg m�2 s�1)
3. Surface runoff
(kg m�2 s�1)
4. Plant respiration
(kg C m�2 s�1)
5. Soil evaporation
(kg m�2 s�1)
6. Gross primary
productivity
(kg C m�2 s�1)
7. NPP (kg C m�2 s�1)
8. Soil respiration
(i.e., CO2 emitted)
(kg C m�2 s�1)
9. Surface fluxes of
heat (W m�2)
10. Surface fluxes
of carbon (CO2 and
methane) (kg C m�2

[360 days]�1).

C3 grass as crop
C4 grass as crop
Grassland biome
(staple food wheat
and corn)
(Ellis and
Ramankutty
2008)
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The JULES v.4.8 describes vegetation in a grid box using five PFTs (PFT 1:
broad-leaf trees, PFT2: needle-leaf trees, PFT3: C3 grasses, PFT4: C4 grasses, and
PFT5: shrubs) (Table 1).

2.2.2 Assessment of Productivity of the Agriculture Landscape

The representation of a landscape in JULES is through PFTs at a grid cell size of 0.5�

� 0.5. The agriculture area of the study region was represented as grids of 0.5�� 0.5
size where a grid may have more than one PFT. In this study, we considered PFT3
and PFT4 as a proxy representation for the agriculture crops. The model was run to
reach equilibrium state after a spin-up of 500 years, and the simulated PFT com-
prising of PFT3 and PFT4 was considered as agriculture lands. To assess the
influence of climate change for the year 2050, the model was forced to simulate
PFTs and their corresponding productivity using input files of future climate change
projection at a spatial resolution of 0.5. To estimate the output of a grid average
estimates of productivity (NPP) simulated for PFT3 and PFT4 were calculated for
each of the grids and a spatial presentation was done for the study region using
Hexagon-Geomedia software.

NPP ¼ 1
2

X2

pi¼1

NPPpið Þ ð1Þ

where NPP is the average NPP simulated in a grid for PFT3 and PFT4, NPPpi spec-
ifies PFT3, and PFT4 is simulated by JULES.

3 Results and Discussion

The agriculture land NPP for the scenarios RCP 2.6 for the year 2050 using the
JULES simulation model (Fig. 1a) was a range between 0 and 3.5 Mg-C/ha/year.
The recent current MODIS 17A NPP agriculture land (Fig. 1a) was in between 0.5
and 4.4 Mg-C/ha/year.

The scenarios based NPP were compared with current recent NPP was shown as
decreasing change (Fig. 1b), its value ranges between 0 and 4.4 Mg-C/ha/year. The
value of NPP was decreased in agricultural land with the highest value in the
southern part and coastal region of Bangladesh (3%) and India (15%) (Table 2)
(Fig. 1b). Least in the northern Himalayan region including Afghanistan (45%),
India (2.7%), Nepal (26%), and Pakistan (6%) (Table 2). Moderate change in NPP in
the region Afghanistan (55%), Bangladesh (96%), Bhutan (100%), India (82.4%),
Maldives (100%), Nepal (74%), Pakistan (94%), and Sri Lanka (100%) (Table 2)
(Fig. 2).
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Fig. 2 (a) NPP for the current recent year 2014 and RCP 2.6, the year 2050 (b) NPP change RCP
2050 as a comparison to the current year 2014
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Input file Output file
Plant functional
type (PFT)

1. Geographical location
2. Air temperature (�C)
3. Diurnal temperature range (K)
4. Daily mean precipitation (kgm�2 s�1)
5. Frequency of wet days (days month1)
6. Incoming shortwave and longwave
radiation (W m�2)
7. Specific humidity (kg kg�1)
8. Wind speed (ms�1)
9. Soil type

1. Soil temperature (K)
2. Soil moisture (kg m�2 s�1)
3. Surface runoff (kg m�2 s�1)
4. Plant respiration (kg C
m�2 s�1)
5. Soil evaporation (kg m�2 s�1)
6. Gross primary productivity
(kg C m�2 s�1)
7. NPP (kg C m�2 s�1)
8. Soil respiration (i.e., CO2

emitted)
(kg C m�2 s�1)
9. Surface fluxes of heat
(W m�2)
10. Surface fluxes of carbon
(CO2 and methane) (kg C m�2

[360 days]�1)

1. PFT1: Broad-
leaf trees
2. PFT2: Needle-
leaf trees
3. PFT3: C3 grass
4. PFT4: C4 grass
5. PFT5: Shrubs

The recent current MODIS 17A product time means NPP for the period
in-between year 2000–2014. The MODIS 17A accessed through data its portal
(https://modis.gsfc.nasa.gov), the sum of PFT3(C3) and PFT4(C4) time mean
value is used, which is expressed in Eq. 1. The SAARC nations International
Geosphere–Biosphere Programme (IGBP) land cover data used to access the agri-
culture land cover for the year 2014. The IGBP agriculture (2014) land cover used
for masking the MODIS 17A and JULES simulated agriculture NPP data.

4 Conclusion

The analysis reveals that agriculture production for the scenario RCP 2.6 the year
2050 was moderately decreased and net primary productivity decrease for c.a. 87%
of land cover NPP ranges between 1 and 3 Mg-C/ha/year. The highest NPP decrease
for c.a. 3% of land cover ranges between 3 and 5 Mg-C/ha/year and least change for
c.a. 10% of the SAARC nations’ agricultural land cover. The nations fall in the
moderate change in NPP were Afghanistan (55%), Bangladesh (96%), Bhutan
(100%), India (82.4%), Maldives (100%), Nepal (74%), Pakistan (94%), and Sri
Lanka (100%). Overall, the SAARC region NPP change moderately for the low
emission scenarios RCP 2.6 in the year 2050.

The simulation model provides the NPP daily for the agriculture and forestry
changes to better understand the ecosystem services (Kumar et al. 2019a, b; Wolff
et al. 2018). It simulates the output based on regional data to predict the global region
output for the different climate conditions, plants, and geographic areas, but other
techniques fail to run together on multiple plant species. In our further studies about
the agriculture and forestry, the simulation-based NPP, Leaf Area Index (LAI), and
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evapotranspiration (ET) are used to access the plants sensitivity, adaptability, and
vulnerability for the global perspective. It is not possible through basic methods on
indicators-weight method, correlation, regression for the long term in a global
perspective (Cutter 2017; Kumar et al. 2018a; Singh et al. 2020a, b). It is very useful
for the global agencies for the future levels of planning and fundraising for a food
security vulnerability, plant sensitivity analysis, adaptability of plant, terrestrial
carbon, yield prediction, and land resources monitoring. We also emphasize on
creation of local high-scale climate model data, which will be useful for mapping
of the plants at high scale.

This study shapes the justification for considering Geographic Information
(GI) science, which evolves new processes, integrated framework, and directions.
It is progressively being used for vegetation studies to solemnise information
representing location-based information. It identifies a new paradigm for remote
sensing data simulation for mapping agriculture and forestry resource. The GI
science DGVM simulation processes involve recent current and modelled, time-
series, global multisource parameters for the geophysical process at per-pixel grid-
level analysis, although it delineates vegetation productivity and other growth
interpretations. The provision for the next level of improvements and customization
for future advancement scope.
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Future Direction of GIScience
for Revolution in Science and Society Over
the Past 20 Years

Bharat Lal, Susheel Kumar Singh, Meenu Rani, Abhishek Kumar Shukla,
and Pavan Kumar

Abstract Geographic Information Science (GIScience) plays a vital role in today’s
era. Prior to the development of GIScience, all these tasks were done on a human
level in which not only a lot of time and capital was used but actual knowledge of the
subject matter was also not possible, because it was not always possible to reach a
particular place. GIScience is based on Sudur sensor calculators, so that no aspect of
the Earth can be hidden. It is partly covered with the various traditional disciplines
like environmental science, applied mathematics, geophysics, geography, oceanog-
raphy, spatial statistics, etc. GIScience came into the market between 1990 and 1992
as a game changer which contributed to the formation of geographical information
science (GIS). The work potential of contributing to the work was discovered
through this science, including database designing and modeling can be done in
any area. This technology is used in scientific research, resource management, asset
management, archaeological work, urbanization, and criminology. There are a
variety of applied fields of GIScience which are used in current scenarios for the
better understanding, interpretation, and visualization of the data.

Keywords GIScience · GIS · Digital technology

Geographic Information Science (GIScience) is a recent, universal, up-and-coming,
hi-tech, interdisciplinary scientific discipline. The concept of GIScience was first
advocate by Professor Michael F. Goodchild, University of California. Goodchild is
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globally known as the Father of GIScience in the present age of g-Governance
(Goodchild 1992). As presented by Goodchild, the evolution of GIScience is traced
back to two keynote addresses entitled “Spatial Information Science and Progress on
the GIS Research Agenda” at the Fourth International Symposium on Spatial Data
Handling held in Zurich, Switzerland, July 1990; and Second European Geographic
Information System (GIS) Conference held in Brussels, Belgium, April 1991,
respectively (Peucker et al. 1978; Tobler 1970; Tomlin 1990; Tomlinson 1968).
GIScience includes the accessible technologies and cartographic research areas
(map-making), geographic information systems (GIS), surveying (accurate measure-
ment of features on the Earth surface), digital image processing (processing and
analyzing of satellite date), geodesy (understanding the Earth’s orientation in space,
gravity field, and geometric shape), photogrammetry (photography in surveying and
mapping), global positioning system or GPS (position information on Earth’s
surface assisted by use of satellites), spatial analysis, modeling, and remote sensing
(surveillance of Earth observatory distance) (Goodchild 2010; Guttman 1984).

GIScience includes inquiry of visualization, accuracy, cognition, spatial data
structures, analysis, meaning, etc. It overlaps with the research area of several
traditional disciplines which have mainly focused their research on Earth’s physical
processes (e.g., environmental science, geophysics, geography, applied mathemat-
ics, oceanography, geology, ecology, physics, spatial statistics, etc.). GIScience also
concerned about human–machine interaction (e.g., artificial intelligence, informa-
tion science, computer science, cognitive psychology, cognitive science, etc.).
Despite the fact, GIScience represent a new kind of scientific collaborative among
all these disciplines. In view of application of GIScience in governance, civil society,
academia industry, research and development, curriculum of GIScience was
designed first time under the coordinatorship of Professor Michael Frank Goodchild
in USA (Goodchild 2003). GIScience was introduced at postgraduate level first time
in the University of California under Department of Geography. Presently, the
GIScience is a Master’s degree program in more than two dozen universities of
Malaysia, Canada, USA, UK, Australia, and many more. GIScience provide tools
that facilitate end users to execute spatial analysis and queries, help to improve
spatial data, and create printed maps (Fig. 1).

1 History of GIScience

The GIScience history can be dated back when Michael F. Goodchild challenged the
academic community of GI science to budge beyond the principal focus of the
practical prospective to more substantial intellectual confronts and logical enquiry
arise by GIS use, or the hindrance to its use, as he addressed at the Fourth
International Symposium entitled “Spatial Information Science.” GIScience has
played a crucial and significant role in the assessment of the physical characteristics
of the Earth surface over a decade. With the advancement of GIScience technologies
specifically in GIS, geomorphologic mapping has provided us with core data of
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landform development (Fisher 2001; Goodchild 2006). Geophysical or climatic
events includes earthquakes, volcanic eruptions, landslides, cyclones, etc. Aware-
ness of GIScience has increased significantly, for example, Web GIS, Volunteer
GIS, Geo-Portal, g-Governance, Cloud Server, Neighborhood Mapping, Mobile
Mapping, Ontology, LBS, GeoDesign, etc., and the discipline has developed with
a much broader set of applications for the dissemination of output results. GIScience
has become functional and almost obligatory in a wide range of anthropogenic
activities, from Earth science to human health, and from transportation to manage-
ment of resources. GIScience is the potent technology that has facilitated conve-
nience companies to budge to a higher level of efficiency in their management of
network distribution, and package delivery companies to save millions in delivery
costs (Goodchild and Hill 2008; Goodchild 2009). Advances in GIScience are
indispensable to the further GIS progress and the strategy to the success of the future
generations of technology. GIScience history may start between 1990 and 1992,
when the game changer contributed to the foundation of geographical information
science (Table 1).

National Center for Geographic Information and Analysis (NCGIA) was
established in 1988 by the efforts of U.S. National Science Foundation, and these
consortiums have three institutions: the University of Maine, the State University of
New York at Buffalo, and the University of California situated at Santa Barbara. The
primary objectives of NCGIA is to carry out basic research and also providing
needful services for the foreign members of geographic information science society
(Abler 1987; Bush 1945). A series of meetings at professional conferences were
organized by the NCGIA, from which in August 1995 the University Consortium for
Geographic Information Science (UCGIS) emerged and it was officially accepted as
nonprofit organization in Washington (Caron et al. 2008). The NCGIA initiated
Project Varenius in 1997 which focused on different crucial areas of GIScience

Fig. 1 Conceptual relation
among the sciences,
systems, and studies of GIS
technologies
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important for twenty-first century; these areas were cognitive representation of
geographical area, computational implementation of geographic concept, etc.
UCGIS is nonprofitable organization which forms and endorses the scientific com-
munity of GIScience research and education. Major research priorities of UCGIS is
cartography, geodetic science, geography, computer science, statistics, cognitive
science, environmental science, landscape architecture, remote sensing and photo-
grammetry, public policy, engineering, and land surveying law, etc.

Established in 1998, the Association of Geographic Information Laboratories for
Europe (AGILE) has a similar goal as UCGIS and works toward continuing the
European GIS conferences. AGILE promotes and helps to develop GIScience
initiatives. The aim of the AGILE is to speed up the research and teaching on GIS
up to the European level. It gives a permanent scientific forum for exchanging
knowledge throughout the geographic information researchers (Dutton 1978;
Egenhofer et al. 2003) (Fig. 2).

Table 1 Chronological contribution for GIScience before Goodchild

Scientists Contributions on GIScience

Bush 1945 As we may think

Tomlinson
1968

GIS development for local and regional planning

Hagerstraand,
1970

What people think in regional and local science

Tobler 1970 A computer-based simulation modeling through urban growth

Dutton 1978 Topological statistical infrastructure for GIS in first international advanced
study symposium

Peucker et al.
1978

Triangulated irregular network (TIN)

Hayes, 1979 The naive physics policy

Guttman 1984 A dynamic index infrastructure for spatial modeling (R-trees)

Abler 1987 Center for GIS and analysis (NCGIA)

Tomlin 1990 GIS and cartographic modeling

Fig. 2 Chronological initial history of GISciences

268 B. Lal et al.



2 Propagation of the Term GIScience in the World in Last
Two Decades

2.1 GIScience in Human Society

GIScience is an emerging science which is becoming most popular in the developing
scientific world because it creates interest in current generation of scientific world for
understand the things involved in the system and that help to the resolve the
upcoming problems. We tried to quantify the popularity of this science on the
basis of searching key terms of GIScience in the ScienceDirect, a peer-reviewed
journal of Elsevier library (Elwood 2010; Hagerstraandh 1970). The publication of
various researches on GIScience started from 1999 in the Elsevier library, and the
publication data of GIScience paper were taken up to the March 2020. The publi-
cation details on GIScience are presented in Fig. 3 and Table 2. While Table 2 shows
the publication of GIScience in a 5-year interval, there are only two publications
reported up to the year 2000, which increased to 35 after the 5-year interval, and
reached 229 publications up to March 2020. This shows that the publication
on GIScience enlarged after the emergence of GIScience, increasing day by day.
The increasing data represents how the popularity of GIScience has enhanced from
the period of its emergence till March 2020 (Hayesh 1979).
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library during the last 20 years
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The chronological development of research agenda of GIScience under the
Elsevier peer-review library searched by using keywords of GIScience in last
20 years are depicted in Fig. 3. The graph showed that very few publications were
reported in the early stage of development, that is, only one publication on the title
integrating GIS with hydrological modeling: practice, problems, and prospects
which published in the journal Computers, Environment and Urban Systems; the
publication rate increased with the increasing intervals after the emergence of
GIScience (Kuhn 2003; Longley et al. 2005). During 2009, the total number of
publications enhanced above 50 (i.e., 54) and the maximum number of publications
on GIScience in Elsevier library was recorded (68) in the year 2017; while 34 papers
have been published in first three months of 2020, they will increase before the end
of the year.

2.2 Research Priority of GIScience

There are various applied fields of GIScience which are used in current scenario for
the better understanding, interpretation, and visualization of the data which helps
future decision-making (Mark 2000, 2003). The NCGIA have been categorized the
GIScience research areas into different categories that are follows.

2.2.1 Geographic Information Technologies

There areas under this discipline include remote sensing, photogrammetry, image
processing, geodesy, surveying, and cartography.

• Cartography is the art and science of map-making.
• Remote sensing is the science of obtaining information about Earth from space or

observation without any physical contact.
• Geodesy is the science of precisely measurement about the Earth.
• Surveying is nothing but the technique or art and science of accurate measure-

ment of all physical and cultural features on the surface of Earth.
• Photogrammetry is the science and technology of extracting reliable information

from photographs and images.
• Digital image processing is the science of image data processing, analyzing, and

handling of the digital image data.

Table 2 List of GIScience
publications in ScienceDirect

Year of publications No of publications

Up to 2000 2

2001–2005 35

2006–2010 107

2011–2015 223

2016–March 2020 229
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2.2.2 Digital Technology

Under this discipline, databases, computer science, image processing, computational
geometry, pattern reorganization, etc. are used for better understanding the data and
information. The disciplines of geology, geography, geophysics, oceanography,
environmental science, agriculture, ecology, biogeography, biology, political sci-
ence, sociology, and anthropology help to understand the surface and near-surface
phenomena and objects of Earth science (McMaster and Usery 2004; Montello
2009). Nature of human interactions with artificial intelligence, cognitive science,
cognitive psychology, and environmental psychology are the major areas which help
us to know more about the GIScience and thier allied sectors.

References

Abler, R. F. (1987). The national science foundation national center for geographic information and
analysis. International Journal of Geographical Information System, 1(4), 303–326.

Bush, V. (1945). As we may think. The Atlantic Monthly., 176(1), 101–108.
Caron, C., Roche, S., Goyer, D., & Jaton, A. (2008). GIScience journals ranking and evaluation: An

international Delphi study. Transactions in GIS, 12(3), 293–321.
Dutton, G. (1978). First international advanced study symposium on topological data structures for

geographic information systems (pp. 1–8). Cambridge: Harvard University.
Egenhofer, M. J., Clarke, K. C., Gao, S., Quesnot, T., Franklin, W. R., Yuan, M., & Coleman,

D. (2003). Contribution of GIScience over the past twenty years, advancing geographic
information science. GSDI Association Press.

Elwood, S. (2010). Geographic information science: Emerging research on the societal implications
of the geospatial web. Progress in Human Geography, 34(3), 349–357.

Fisher, P. F. (2001). Citations to the international journal of geographical information systems and
science: The first 10 years. International Journal of Geographical Information Science, 15, 1–6.

Goodchild, M. F. (1992). Geographical information science. International Journal of Geographical
Information System, 6(1), 31–45.

Goodchild, M. F. (2003). Geographic information science and system for environmental manage-
ment. Annual Review of Environment and Resources, 28, 493–519.

Goodchild, M. F. (2006). GIScience ten years after ground truth. Transactions in GIS, 10(5),
687–692.

Goodchild, M. F. (2009). Geographical information system and science: Today and tomorrow.
Procedia Earth and Planetary Science, 1, 1037–1043.

Goodchild, M. F. (2010). Twenty years of progress: GIScience in 2010. Journal of Spatial
Information Science, 1, 3–20.

Goodchild, M. F., & Hill, L. (2008). Introduction to digital gazetteer research. International Journal
of Geographical Information Science, 22(10), 1039–1044.

Guttman. (1984). R-trees: A dynamic index structure for spatial searching in SIGMOD’84, inter-
national conference on management of data (New York, USA), ACM Press, pp. 47–57.

Hagerstraandh, T. (1970). What about people in regional science. Regional Science, 24(1), 7–24.
Hayesh, P. J. (1979). The naive physics manifesto. In D. Michie (Ed.), Expert systems in the micro-

electronic age (pp. 242–270). Edinburgh: Edinburgh University Press.
Kuhn, W. (2003). Semantic reference systems. International Journal of Geographical Information

Science, 17(5), 405–409.

Future Direction of GIScience for Revolution in Science and Society Over the. . . 271



Longley, P. A., Goodchild, M. F., Maguire, D. J., & Rhind, D. W. (2005). Geographic information
system and science. Hoboken: Wiley.

Mark, D. M. (2000). Geographic information science: critical issues in an emerging cross-
disciplinary research domain. Journal of the Urban & Regional Information System Associa-
tion, 12(1), 45–54.

Mark, D. M. (2003). Geographic information science: Defining the field. In Foundations of
geographic information science (pp. 1–18). New York: Taylor and Francis.

McMaster, R. B., & Usery, E. L. (2004). Eds; a research agenda for geographic information
science. CRC Press.

Montello, D. R. (2009). Cognitive research in GIScience: Recent achievements and future pros-
pects. Geography Compass, 3(5), 1824–1840.

Peucker, T. K., Fowler, R. J., Little, J. J., & Mark, D. M. (1978). The triangulated irregular network.
In American Society of Photogrammetry, digital terrain models symposium, USA, pp. 516–540.

Tobler, W. R. (1970). A computer movie simulating urban growth in the Detroit region. Economic
Geography, 46, 234–240.

Tomlin, C. D. (1990). Geographic information systems and cartographic modeling. Englewood:
Prentice-Hall.

Tomlinson, R. F. (1968). A geographic information system for regional planning. In: G.A. Stewart
(Ed.), Symposium on land evaluation, commonwealth scientific and industrial research orga-
nization, Melbourne, Australia.

272 B. Lal et al.


	Foreword
	Contents
	About the Editors
	Part I: General
	Introduction to Challenges and Future Directions in Remote Sensing and GIScience

	Part II: Challenges in Sustainable Natural Resources Management
	Environmental and Livelihood Impact Assessment of 2013 Flash Flood in Alakananda and Mandakini River Valley, Uttarakhand (Indi...
	1 Introduction
	2 Study Area
	3 Material and Methodology
	3.1 Data Collection
	3.2 Data Collection for the Survey
	3.3 Analysis of the Satellite Images for Impacts of Flood
	3.3.1 Image Acquisition
	3.3.2 Georectification
	3.3.3 Image Extraction (Subset/Mosaicking)
	3.3.4 Image Classification
	3.3.5 Unsupervised Classification
	3.3.6 Digitization (for Vector Layer)

	3.4 Environmental Impact Assessment of Flood
	3.5 Normalized Difference Vegetation Index (NDVI)
	3.6 Livelihood Impact Assessment

	4 Result/Discussions
	4.1 Land Use Changes in Alaknanda and Mandakini Basin
	4.2 Changes in Forest Cover
	4.3 Damage Caused by the Flood
	4.4 Assessment of the Impact of the Flood on the Livelihood of Inhabitants
	4.5 Environmental Evaluation System Using the Battelle Method

	5 Discussion and Conclusion
	References

	Assessment of Vegetation Vigor Using Integrated Synthetic Aperture Radars
	1 Introduction
	2 Study Area and Datasets
	2.1 Study Area
	2.2 Datasets

	3 Method
	3.1 In-Situ Measurements
	3.2 SAR Data Processing
	3.2.1 Conversion from Slant to Ground Range
	3.2.2 Generation of Amplitude and Power Images
	3.2.3 Geocoding
	3.2.4 Radiometric Calibration
	3.2.5 Speckle Filtering

	3.3 Integrated Regression Model
	3.4 Statistical Metrics

	4 Results
	4.1 Model Structure
	4.2 AGB-SAR Relationship
	4.3 Synergy Model
	4.4 Model Statistics

	5 Discussion
	6 Conclusions
	References

	Landslide Susceptibility Mapping Using Bivariate Frequency Ratio Model and Geospatial Techniques: A Case from Karbi Anglong We...
	1 Introduction
	2 Study Area
	3 Database and Methodology
	3.1 Landslide Inventory Map
	3.2 Landslide-Conditioning Parameters
	3.3 Landslide Susceptibility Model (Frequency Ratio)
	3.4 Validation of the Map

	4 Results
	4.1 Validation

	5 Conclusion
	References

	Retreating Glacier Dynamics Over the Last Quarter of a Century in Uttarakhand Region Using Optical Sensor Time Series Data
	1 Introduction
	2 Material and Methodology
	2.1 Study Area
	2.2 Data Used
	2.3 Data Calibration
	2.3.1 Digital Number to Radiance
	2.3.2 Radiance to Reflectance
	2.3.3 Radiance to Brightness

	2.4 Indices
	2.4.1 Normalized Difference Vegetation Index
	2.4.2 Normalized Difference Snow Index


	3 Results and Discussion
	3.1 Spectral Curve
	3.2 Histogram
	3.3 Normalized Difference Vegetation Index
	3.4 Normalized Difference Snow Index
	3.5 Zonal Change

	4 Conclusion
	References


	Part III: Remote Sensing and GIScience in Urban Growth Management
	Studying the Impact of Urbanization on HYV Rice Fields at a Local Level Using Fine Resolution Temporal RISAT-1 Datasets
	1 Introduction
	2 Material and Methodology
	2.1 Study Area
	2.2 Data Used
	2.3 Methodology
	2.3.1 Processing of RISAT-1 Data
	2.3.2 Processing of Optical Images
	2.3.3 Hotspot Analyses


	3 Results and Discussion
	3.1 Identification of Rice Fields from Polarimetric Decomposition
	3.2 Identification of Settlements from Landsat Images
	3.3 Identifying Settlement Expansion on Adjacent Rice Fields

	4 Conclusion
	References

	Identification of Impervious Built-Up Surface Features Using ResourceSat-2 LISS-III-Based Novel Optical Built-Up Index
	1 Introduction
	2 Study Area
	3 Database and Methodology
	4 Results and Discussions
	4.1 Spectral Clusters
	4.2 Spectral Index Correlation
	4.3 Accuracy Assessment

	5 Conclusion
	References

	Subsidence Assessment of Building Blocks in Hanoi Urban Area from 2011 to 2014 Using TerraSAR-X and COSMO-SkyMed Images and PS...
	1 Introduction
	2 Study Area
	2.1 Description of the Study Area
	2.2 Geological and Hydrological Setting

	3 Data Used
	3.1 TerraSAR-X and Cosmo-SkyMed Data
	3.2 Geodetic Leveling Data

	4 Methodology
	4.1 PSInSAR Method
	4.2 Accuracy Assessment

	5 Results and Discussion
	6 Conclusions
	References

	Analysis of Land Use/Land Cover Mapping for Sustainable Land Resources Development of Hisar District, Haryana, India
	1 Introduction
	2 Materials and Methods
	2.1 Study Area
	2.2 Data Used
	2.2.1 Georeferencing of Satellite Images


	3 Result and Discussion
	3.1 Land Use/Land Cover
	3.1.1 Built-Up Land
	3.1.2 Agricultural Land
	3.1.3 Forest Land
	3.1.4 Grass/Grazing Land
	3.1.5 Wasteland
	3.1.6 Wetland
	3.1.7 Water Bodies


	4 Conclusions
	References


	Part IV: Challenges and Future Directions in GIScience
	A Spatial Investigation of the Feasibility of Solar Resource Energy Potential in Planning the Solar Cities of India
	1 Introduction
	2 Material and Method
	2.1 Study Area
	2.2 Data Used
	2.3 Methodology

	3 Results and Discussion
	3.1 Solar Resource Potential in India
	3.2 Technological Advantage in Solar Sites
	3.3 Solar Economic Potential Zones of India
	3.4 Viability of Solar Cities Mission

	4 Conclusion
	References

	Mapping Rice Growth Stages Employing MODIS NDVI and ALOS AVNIR-2
	1 Introduction
	2 Study Area
	3 Materials and Method
	3.1 Identifying Rice Growth Stages
	3.2 Training, Testing, and Classification of Paddy Growth Stages
	3.3 Accuracy Assessment of the Five Classifiers

	4 Results and Discussion
	4.1 Identifying Rice Growth Stages
	4.2 Map of Paddy Growth Stages
	4.3 The Accuracy of Classifications and their Spatial Configuration

	5 Conclusions
	References

	Habitat Suitability Mapping of Sloth Bear (Melursus ursinus) in the Sariska Tiger Reserve (India) Using a GIS-Based Fuzzy Anal...
	1 Introduction
	2 Study Area
	3 Methodology
	3.1 Data Processing
	3.2 Fieldwork
	3.3 Post Fieldwork
	3.4 Identifying Sloth Bear Habitat Suitability Using Fuzzy Analytical Hierarchy Process (FAHP)
	3.5 Habitat Suitable Classes (HSC)
	3.6 Validation

	4 Result and Discussion
	5 Conclusion
	References

	Estimation of Air Pollution Using Regression Modelling Approach for Mumbai Region, Maharashtra, India
	1 Introduction
	2 Study Area
	3 Field Data Collection
	3.1 Spatial Interpolation of APIs

	4 Satellite Data
	5 Data Analysis and Model Generation
	5.1 Conversion of Digital Number (DN) to Radiance
	5.2 Image Processing (Spectral Enhancement)
	5.3 Model Generation
	5.4 Model Validation

	6 Land Surface Temperature (LST)
	7 Results
	7.1 Correlation between APIs, Radiance Values, and LST
	7.2 Regression Models
	7.3 Model Validation

	8 Conclusion
	References

	Mapping of Agriculture Productivity Variability for the SAARC Nations in Response to Climate Change Scenario for the Year 2050
	1 Introduction
	1.1 The Process-Based Joint UK Land Environment Simulator

	2 Methods
	2.1 Study Region
	2.2 Data and Method
	2.2.1 Parameterization of the JULES Model
	2.2.2 Assessment of Productivity of the Agriculture Landscape


	3 Results and Discussion
	4 Conclusion
	References


	Part V: GIScience for Revolution in Science and Society
	Future Direction of GIScience for Revolution in Science and Society Over the Past 20 Years
	1 History of GIScience
	2 Propagation of the Term GIScience in the World in Last Two Decades
	2.1 GIScience in Human Society
	2.2 Research Priority of GIScience
	2.2.1 Geographic Information Technologies
	2.2.2 Digital Technology


	References



