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Abstract 
This study examines the efficiency of the addition of viscous dampers on the dynamic response of regular buildings (i.e. 
with a periodicity in vertical direction) in function of their dynamic behavior model. The addition of viscous dampers is 
particularly interesting because these devices can be used with either new or existing structures, they are very reliable 
over time with little maintenance and require no energy source. By increasing the level of damping, resonance effect is 
reduced and dissipation increased, involving the decrease of the levels of displacement and stress in the structure. 
However, the activation of the dampers depends on the speed of their attachment points, generally proportional to the 
displacement between two levels. This latter depends of the behavior model of the building, and his level can be very 
different between shear and bending models. The model of behavior is also an important factor to take into account, 
under penalty of inefficiency of the device. 

The procedure adopted in this study is based on homogenization method of idealized periodic buildings. This approach, 
which is purely analytical, allows the building of analytical models of dynamic behavior whose parameters are deduced 
from the material and geometric properties of the local elements. Applied on idealized periodic structures, this method 
had allowed in previous study to find the classical beam models, as shear or bending models but also no usual models as 
Timoshenko or Sandwich models. A generic model, including three basic mechanisms (one shear and two bendings), 
presented in [Hans&al., 2008] describes the whole behaviors and the three non-dimensional parameters allowing the 
assessment of the importance of each mechanism. In this study, the adding of viscous dampers is taken into account by 
the application the homogenization method. Consequently, a global modal integrating a new viscous parameter are 
obtained, what allows a parametric study of the effect of the dampers in function of the other non-dimensional 
parameter, i.e. in function of the type of the considered model: basic beams like shear beam or bending beams or more 
complex like Timoshenko or Sandwich beams. 

In conclusion, the level of apparent damping is also studied in function of the different models of behavior and a design 
of the devices can be proposed. 
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1. Introduction 
This study examines the efficiency of the addition of viscous dampers on the dynamic response of regular 
buildings (i.e. with a periodicity in vertical direction) in function of their dynamic behavior model. The 
addition of viscous dampers is particularly interesting because these devices can be used with either new or 
existing structures, they are very reliable over time with little maintenance and require no energy source [1]. 
By increasing the level of damping, resonance effect is reduced and dissipation increased, involving the 
decrease of the levels of displacement and stress in the structure. However, the activation of the dampers 
depends on the speed of their attachment points, generally proportional to the displacement between two 
levels. This latter depends of the behavior model of the building, and his level can be very different between 
shear and bending models. The model of behavior is also an important factor to take into account, under 
penalty of inefficiency of the device. 

The procedure used in this study lies on the modeling with homogenization method applied on periodic 
idealized buildings. This entirely analytical approach makes it possible to construct models of dynamic 
behavior whose parameters are deduced from the material and geometrical properties of the constituent 
elements. This results in general models incorporating the properties of the dampers and their arrangements 
in the structure. From the models obtained, the influence of the properties of the shock absorbers on the 
modal responses is evaluated, for different behavior models: shear beam, bending beam or more general 
models such as the Timoshenko or Sandwich beam. It is then possible to propose a pre-sizing of these 
devices according to the models studied. Some examples of dynamic responses illustrate the method. 

2. Global description of dynamic behavior of regular periodic buildings 
This paragraph summarizes previous work on the dynamic behavior of a periodic building class in vertical 
direction, the details of which can be found in [2,3]. This work has been motivated in particular by the fact 
that, for a long time, the dynamic behavior of periodically elevated buildings has been approached by 
continuous models of beams, such as the bending or shear beams – from the latter, in particular the formula 
T = N/10 – or, even more rarely, Timoshenko or Sandwich beams. 

2.1 Periodic idealized buildings and method of scale change  
To justify these beam models and to determine the set of possible behaviors for this class of periodic 
building, an analytical approach, based on the method of scaling called 'method of homogenization of 
discrete periodic media' [4, 5, 6] was conducted on a family of idealized periodic buildings. These idealized 
buildings consist of a repeat of a cell consisting of only two identical walls and a floor (Fig 1).  

2.2.1 Framework 
The working assumptions were as follows: 

- the study range being limited to small deformations, the mechanical behavior of the materials is isotropic 
linear elastic, 

- the study being carried out in the plane of the figure, the various elements are modeled as Euler-Bernoulli 
beams, perfectly connected to their junction massless points, 

- one places oneself in harmonic mode, the variables are writing as D(x,t) = D(x) 𝑒!"#; in the equations that 
follow, the term time 𝑒!"# is systematically omitted. 

The applicability of this method of scale change is limited to the modes of vibration of large lengths, that is 
to say in practice to the first modes of vibration. This is linked to the introduction of a small scale parameter 
named ε defined by the ratio between the height ℓ of a level on the length characteristic of the studied mode 
𝐿 and thus: 
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𝜀 =
ℓ
𝐿 ≪ 1	

 It is shown [7] that the value of this parameter (linked to the studied mode) is ε! =
(!"!!)!

!"
  with  

respectively k the mode number and N the number of levels.	

  
 

Fig. 1 – Left: the idealized building and the study plane (e1, e2)  

Middle: the transverse kinematic – Right: the longitudinal kinematic.  

 

2.2.2 Steps of the modeling 
The modelling takes place in three phases: 

- a phase of discretization of dynamic balance: the local dynamic balance of each beam is integrated 
according to the movements of the nodes, which allows, without loss of information, to rewrite the overall 
equilibrium at the level of the nodes of the system, with as new unknowns the movements of these nodes, 

- a homogenisation phase: a continuous description of the variables is introduced in asymptotic form: 

𝐷 𝑥 =  𝐷! 𝑥 + 𝜀 𝐷! 𝑥 +  𝜀! 𝐷! 𝑥 +⋯	
and the contrasts between the mechanical and geometrical parameters of the various elements and also the 
frequency are weighted according to the powers of 𝜀, what allows the mathematical translation of the 
balances between the different mechanical and dynamic efforts. 

 - the resolution phase: in the chosen frequency range, it is then possible to develop mathematically the 
different terms of the equilibrium equation in different order of 𝜀 . This parameter being considered 
mathematically as infinitely small, these balances of different orders can be separated, which leads to 
prioritizing phenomena according to their importance, order 0 being the dominant component, successive 
orders being less and less important components called 'correctors'. 

In practice, the dominant order equations are used to determine the behaviour model, the effective value of 𝜀 
allowing to define the degree of its precision. 

2.2 Overview of possible models and associated criteria  
For the transverse dynamics of this class of periodic buildings, a general model was found (Fig. 2). This 
model combines three basis mechanisms, characterized by a specific stiffness: a global bending mechanism 
(Euler-Bernoulli beam - EI), a shear mechanism (K) and an inner bending mechanism (EIµ). In function of 
the contrast of stiffness of the elements of the cell (storey) and of the number of cells, one or several 
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mechanisms can be dominant. This generates different models, from the simpler (Bending or Shear) to the 
more complex (Timoshenko, Sandwich or Generic) (Fig.2).  

 

 
Fig. 2 – Overview of the possible models of dynamic behavior deriving from three basis models (T, the 
period of the fundamental mode, is proportional to N or N2, the number of level, in the basis models). 

 

The Generic Beam model can be described, like for an Euler-Bernoulli beam, by a set of two local balance 
equations, but three laws of behaviors (in place to one) between the kinematics variables 𝑈 (displacement of 
the level) and 𝛼 (rotation of a level) and the three macroscopic forces:  𝑇 (shear force), 𝑀 (global bending 
moment) and ℳ (local bending moment) – see Figure 2 : 

Local Balance 

  𝕋(𝑥)! =  𝑇 𝑥 −ℳ ! 𝑥 ′ = Λ𝜔!𝑈 𝑥  

𝑀! 𝑥 + 𝑇 𝑥 = 0 

Behavior relations 

𝑇 𝑥 = −𝐾(𝑈! 𝑥 − 𝛼 𝑥 ) 

𝑀 𝑥 = −𝐸𝐼𝛼′(𝑥) 

ℳ 𝑥 = −𝐸𝐼!  𝑈′′(𝑥) 

By introducing non-dimensional parameters (C the ratio between the global bending stiffness and the shear 
stiffness and 𝛾 the contrast between the two bending stiffness), the Generic Beam model is described by the 
sixth degree equation: 

𝐶𝛾 𝑈(!) 𝑋 − 1 + 𝛾 𝑈 ! 𝑋 − Ω!𝑈 ! 𝑋 +
Ω!

𝐶
𝑈 𝑋 = 0 
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with   𝐶 = !"
!!!

 ,  𝛾 = !!!
!"

 , Ω! = !!!!!

!
   et  𝑋 = !

!
 

Then, from these parameters weighted with the scale parameter 𝜖, the domain of validity of each models 
(derived of the Generic Beam model – Fig.2) can be drawn (Fig.3).  

 

 

 

 

 

 

 

 
 

 

 

Fig. 3 – Domain of validity of beams models derived of the Generic Beam model and analogical 
representation of the model. 

 
2.3 Calculus of the eigenmodes 
The modes of the Generic beam model can be calculated analytically, with the clamped-free limit conditions, 
which are deduced from the energetic formulation of the model (Kinetic energy = Work of limit conditions + 
Elastic energy): 

1
2

Λ𝜔!𝑈!𝑑𝑥
!

!
=
1
2
[𝕋 𝑥 𝑈 𝑥 +𝑀 𝑥 𝛼 𝑥 +ℳ 𝑥 𝑈! ! ]!! +

1
2

  
!

!

𝑇!

𝐾
+
𝑀!

𝐸𝐼
+
ℳ!

𝐸𝐼!
𝑑𝑥 

 

Limits conditions: 𝑈 0 = 0,𝛼 0 = 0,  𝑈! 0 = 0   𝕋 𝐻 = 0, 𝑀 𝐻 = 0,   ℳ 𝐻 = 0  

 

This leads to the calculus of eigenfrequencies 𝜔!  and eigenvectors 𝜙!!𝑎𝑛𝑑 𝜙!!, whose orthogonal properties 
are:  

Λ𝜙!!𝜙!!𝑑𝑥
!

!
= 0  𝑠𝑖 𝑖 ≠ 𝑗 

  
!

!

𝑇!𝑇!
𝐾

+
𝑀!𝑀!
𝐸𝐼

+
ℳ!ℳ!

𝐸𝐼!
𝑑𝑥 = 0    𝑠𝑖   𝑖 ≠ 𝑗  

with the relationships between the eigenvectors 𝜙!!𝑎𝑛𝑑 𝜙!! , and also the eigenfrequencies: 



17th World Conference on Earthquake Engineering, 17WCEE 

Sendai, Japan - September 13th to 18th 2020 

  

6	

 

𝜙!! 𝑥 = 𝜙!!
! 𝑥 +

𝐸𝐼
𝐾

Λ𝜔!

𝐾
𝜙!!

! 𝑥 + 𝜙!!
(!) 𝑥 −

𝐸𝐼!
𝐾
𝜙!!

(!) 𝑥  

𝜔!! =
  !

!
𝑇!!
𝐾 +𝑀!

!

𝐸𝐼 +
ℳ!

!

𝐸𝐼!
𝑑𝑥

Λ𝜙!!
!𝑑𝑥!

!

 

3. Effect of addition of dampers on the models 
3.1 Studied case and modification in equations of the generic beam model 
The addition of linear viscous dampers on the two diagonals of each level is now considered. The effort 
generated is proportional to the differential speed between the anchor points. In this configuration, the 
structure remains symmetrical and the longitudinal and transverse directions remain decoupled. The study is 
resumed, considering various orders of magnitude of the parameter 𝜂 of the linear viscous dampers. 

 
Fig. 4 – Position of the viscous dampers (building drawn horizontally) 

The addition of diagonal shock absorbers induces in the generic model a change in the law of behaviour of 
the shear force, with a complex stiffness parameter 𝐾∗. 

 

𝑇∗ 𝑥 = −𝐾∗(𝑈! 𝑥 − 𝛼 𝑥 ) 

with  𝐾∗ = 𝐾 + 𝑖𝜂𝜔ℓ 

 

3.2 Effects on the models  
The new model is scaled as previously: 

 

𝐶𝛾
𝓀

 𝑈(!) 𝑋 − 1 + 𝛾 𝑈 ! 𝑋 −
Ω!

𝓀
𝑈 ! 𝑋 +

Ω!

𝐶
𝑈 𝑋 = 0 

with  𝓀 = !∗

!
= 1 + 𝑖 𝐴  and   𝐴 = !"ℓ

!
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Fig. 5 – Effect of the dampers parameter on the domains of validity of the models  

 

 
Fig. 6 – Modification of Timoshenko beam model into a Global Bending beam model by addition of 

dampers.  
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The original model is modified by a new non dimensional parameter 𝓀, in which the effects of the addition 
of the dampers is taking into account in the non dimensional parameter 𝐴 = !"ℓ

!
. Two situations are then 

possible depending on the order of magnitude of this latter parameter: 

1. This parameter 𝐴 is small compared to 1, and the mapping of the models is not changed. 
2. If the order of magnitude of this parameter is greater than 1, the limits of the models shift to the left 

(Fig.5), especially as the order of this parameter increases. 

In this second case, the model can be modified (Fig.5 & Fig.6) and for example, a Timoshenko beam (brown 
cross) can derived into a global bending beam if the dampers bring enough ‘stiffness’ in the system.  

3.3 Links between dampers and damping of the structure  
The damping of the structure depends obviously of the characteristic (parameter 𝜂) of the dampers. But not 
only: the nature of the initial model (without dampers) has also to be considered. This is illustrated on Fig. 6 
in the case of a Timoshenko model with very stiff dampers: in this case, the addition of dampers turns the 
Timoshenko model into a Global Bending model and unfortunately, the effect of the dampers on the 
damping of the structure becomes negligible. 

On the figure 7, the calculation of complex frequencies for different types of model is conducted: Shear, 
Sandwich and Global Bending. In the case of the shear beam model, there is usually a decrease in the real 
frequency in parallel with the rapid increase in the rate of damping, then with the shift of behaviour towards 
an global bending model, a decrease in damping and an increase in frequency are observed, showing that the 
dampers act also as stiffeners. For the global bending beam model, the addition of dampers in this way, 
whatever their properties are, is virtually inefficient.  

 
 

Fig. 7 – Effects of the dampers on the fundamental frequency and on the level of damping of buildings in 
function of their original behavior. 
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3.4 Dynamic equation under earthquake with dampers 
In the following, the natural modes (cf. 2.3) are used to partially decoupled the dynamic equation of the 
Generic model, considering the situation of a building with dampers under earthquake solicitation. By taking 
the following decomposition on the modes and taking into account their orthogonality: 

𝑈 𝑥, 𝑡 =  ! 𝑠! 𝑡 𝜙!!(𝑥)   and   𝛼 𝑥, 𝑡 =  ! 𝑠!(𝑡)𝜙!!(𝑥)    

 

It comes: 

𝑠! 𝑡 + !ℓ
!

  
 !

!
!!!!
!  !"!!!(!)!!

!(!)

!!!
!!!"!

!
𝑠! 𝑡 + 𝜔!!  𝑠! 𝑡 =  −

!!!
!!"!

!

!!!
!!!"!

!
 𝐴!"#$(𝑡)  

 

It appears that the damping terms implies a coupling effect of the modes.  With weak level of damping, this 
coupling disappears.  Note that for shear beam model, this coupling also is negligible. But for others models, 
this coupling induces a transfer of energy between the different modes. 

With these equations, it becomes possible to evaluate the level of real damping induced by adding of 
dampers in function of the characteristics of the building. 

4. Conclusion  

This article presents a theoretical study on the effect of the adding of dampers in buildings in function of 
their dynamic behavior. It was shown that this effect depends of the type of behavior, in particular, for 
buildings whose behavior can be approached like global bending beam, it is necessary to be very careful how 
add dampers, if a real effect is expected. 
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