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• Constructed a comprehensive inventory
for 2018 Hokkaido coseismic landslides.

• Four different sampling techniques
were tested for the predictive perfor-
mance of LSM.

• DNN shows that different sampling
strategies are less consequential in LSM.

• Applicability of results is validated with
the 2015 Gorkha landslide cases.
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Predictive capability of landslide susceptibilities is assumed to be variedwith different sampling techniques, such
as (a) the landslide scarp centroid, (b) centroid of landslide body, (c) samples of the scrap region representing the
scarp polygon, and (d) samples of the landslide body representing the entire landslide body. However, new ad-
vancements in statistical and machine learning algorithms continuously being updated the landslide
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Fig. 1.Graphical sketch four types of landslide representat
of landslide body.
susceptibility paradigm. This paper explores the predictive performance power of different sampling techniques
in landslide susceptibility mapping in the wake of increased usage of artificial intelligence. We used logistic re-
gression (LR), neural network (NNET), and deep learning neural network (DNN)model for testing and validation
of the models. The tests were applied to the 2018 Hokkaido Earthquake affected areas using a set of 11 predictor
variables (seismic, topographic, and hydrological). We found that the prediction rates are inconsequential with
the DNN model irrespective of the sampling technique (AUC: 0.904 – 0.919). Whereas, testing with LR (AUC:
0.825 – 0.785) and NNET (AUC: 0.882 – 0.858) produces larger differences in the accuracies between the four
datasets. Nonetheless, the highest success rates were obtained for samples within the landslide scarp area. The
analogy was then validated with a published landslide inventory from the 2015 Gorkha earthquake. We, there-
fore, suggest that DNN models as an appropriate technique to increase the predictive performance of landslide
susceptibilities if the landslide scarp and body are not characterized properly in an inventory.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Landslides are typical of mountainous terrains, particularly in envi-
ronments generally associated with earthquakes and rainstorms
(Keefer, 1984; Li et al., 2020; Malamud et al., 2004; Wang et al., 2019;
Yunus et al., 2020). Catastrophic landslides cause potentially adverse im-
pacts in the downslope regions to people and their properties (Froude
and Petley, 2018; Li et al., 2020a; Tien Bui et al., 2019). Therefore, a sig-
nificant amount of research in the past two decades has been devoted to
quantifying the controls of landslides and mapping their spatial
ivemaps: (a) centroid of landslide sca
distribution (Dou et al., 2015a; Gorum et al., 2011; Korup and Stolle,
2014). With latest advancements in statistical models and machine
learning techniques that continuously being developed and updated,
the spatial prediction of landslides in the form of vulnerability or land-
slide susceptibility maps (LSM) aiding in planning and mitigation strat-
egies (Chang et al., 2019; Dou et al., 2019a; Santangelo et al., 2015).

Success rates of susceptibility maps are critical to effective landslide
risk reduction. The predictive performance rates of landslide suscepti-
bility methods rely mainly on the quality of input data (Hussin et al.,
2016; Reichenbach et al., 2018). This includes the quality of landslide
rp; (b) centroid of landslide body or boundary; (c) samples of landslide scarp; (d) samples
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inventory, their completeness, and the input conditioning factor vari-
ables that feed into the model, most of which comes from a digital ele-
vation model (DEM) (Dou et al., 2019b). While landslide conditioning
factors are selected on the base of geoenvironmental characteristics of
the study area in conjunction with the nature of landslide occurrence,
landslide inventories are often obtained by field investigation or remote
sensing approaches (Guzzetti et al., 2012; Reichenbach et al., 2018). The
quality of DEMnowadays is foundmore or less accurate to ground truth
with the introduction of LiDAR and unmanned aerial vehicle (UAV)
based Structure from Motion (SfM) photogrammetric techniques
(Chang et al., 2019; Sidle and Bogaard, 2016). Further, satellite-based
DEMs from the TanDEM-Xmission and ALOSmission are found of supe-
rior quality for performing geomorphological studies (Avtar et al., 2015;
Tadono et al., 2016).

Contrarily, most of the landslide inventories are incomplete in the
sense that they do not distinguish between landslide initiation zones
and landslide runout zones (Korup and Stolle, 2014). A large number
of studies in the recent past addressed that a reliable landslide inventory
(i.e., quality of the landslide mapping method, positional accuracy, and
the sampling strategy) is a vital to accurate susceptibility maps (Chang
et al., 2019; Petschko et al., 2014; Steger et al., 2016). Because, in a geo-
graphic information system (GIS), the conditioning factor information is
extracted accordingly with the positional precision and mapping/sam-
pling criteria. Positional accuracy, though can be achieved with modern
technologies such as differential Global Positioning Systems (GPS)
assisted field surveys.
Fig. 2. Location of the case study showing earthquake-induced landslides (scarp and body), an
and gravel, 4. conglomerate and sandstone, 5. sandstone and siltstone, 6. mudstone and sandst
(GSJ): https://gbank.gsj.jp/datastore/.
Notwithstanding, it is well documented in the literature that the se-
lection of landslide pixels affects dramatically the effectiveness of land-
slide susceptibility modeling (Chang et al., 2019; Dou et al., 2015c;
Pham et al., 2019). Landslide inventories for susceptibility map genera-
tion typically feed into the GIS in any one or combination of the follow-
ing types (cf. Fig. 1): (a) the landslide scarp centroid, (b) centroid of
landslide body, (c) samples of the scrap region representing the scarp
polygon, and (d) samples of the landslide body representing the entire
landslide body. However, until recently, only a few studies distin-
guished the initiation zone (scarp area) and the runout zone (part of
landslide body), primarily because it is difficult to separate them from
medium to low-resolution satellite imageries. Thus, it is required a thor-
ough study on how themapping quality, or in otherwords, the selection
of landslide pixel/point samples can affect the landslide susceptibility
modeling. Although a small number of studies in the recent past ad-
dressed the issue of sampling strategies and their effects in LSM, here
we critically evaluating the differences in prediction accuracies of LSM
obtained from the aforementioned four sampling strategies. We take
up this issue, particularly because, we hypothesize that with the ad-
vancement in artificial intelligence (AI), the differences in prediction
performance is more or less inconsequential between the sampling
techniques, hence older inventories that haven't characterized for initi-
ation and runout zones can be re-evaluated with an appropriate AI
model for highly accurate LS maps.

To test our hypothesis, we selected the landslide affected areas dur-
ing the September 2018 Mw 6.6 Hokkaido earthquake region, Japan.
d major lithological units (1. Altered sandstone, mudstone, conglomerate, 2. shale, 3. sand
one, 7. sandy siltstone, and 8. siltstone and sandstone) Source: Geological Survey of Japan
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Our rationale for selecting this case is because we obtained high-
resolution pre- and post-earthquake DEM's and airborne imageries for
the affected areas (please see Section 3), which aided in accurately pro-
ducing landslide inventories with the distinction of initiation and
runout zones. We selected three AI models to validate our hypothesis:
logistic regression (LR) as a benchmark technique, artificial neural net-
work (NNET), and deep learning neural network (DNN) as two very ad-
vanced machine learning models. DNN is a forked branch of NNET,
therefore allows direct comparison, unlike the results from support vec-
tormachines (SVM) or tree-basedmodels (e.g. RandomForest) can pro-
duce (Catani et al., 2013; Yunus et al., 2019). Moreover, there are only a
handful number of studies carried using DL in the landslide field so far
(Ghorbanzadeh et al., 2019; Huang and Xiang, 2018).

2. Overview of the study area

The study area is located in the Mw 6.6 earthquake struck region of
Iburi-Tobu, southern Hokkaido, Japan, covering a part of the Yubari
mountain range (Fig. 2). The affected areas are mainly located in
Atsuma, Mukawa, and Abira towns of Hokkaido prefecture with com-
paratively low population densities (17 people/km2). The epicenter is
positioned at 42.686 N, 141.929 E, neighboring the Ishikari Lowland,
the western culmination zone of the Hidaka Collision region. This low-
land region has the presence of surficial faults that strikes between
N20W and N20E; however, the present Iburi-Tobu Mw 6.6 earthquake
has a deep focus (35 km) and has no observed surface rupture. This
qualified the 2018 September 6th event an unusual deep-seated conti-
nental earthquake one that has a significant amount of coseismic land-
slides. The topographic features in the study area are characterized by
gently undulating hills with elevations ranges between 100 m to
800 m above mean sea level. The mean slope angle in the study area is
Fig. 3. The flowcha
about 20°, and N70% of Terrain within the study area showcases slopes
between 15° - 35° degrees. The surficial geology is comprised of
blanketed volcanic deposits of several layers formed during the erup-
tions ofmount Kuttara, Tarumae, Eniwa, and the Shikotsu caldera volca-
noes (9000–40,000 years ago) (Yamagishi and Yamazaki, 2018). The
deposits of these layers consist of unconsolidated pumice, scoria, and
coarse-grained volcanic ash particles. Underlying these deposits, thickly
bedded Quaternary and Neogene sedimentary rocks are present, pre-
dominantly consists of shale, and altered sandstone - conglomerate
lithology.

The annual precipitation of the Hokkaido ranges between 1200 mm
to 1800mm. This rainfall is lower thanwhat is observed in other regions
of Japan (Yamagishi et al., 2002). The presence of large scale faulting and
folding, weak, and low-consolidated sedimentary deposits, along with
hilly terrain, makes slopes prone to sliding (Ayalew et al., 2011).

3. Modeling approach

Themodeling approach used by this research can be summarized in
Fig. 3. First, the earthquake-triggered landslides were mapped by
interpreting aerial photographs, Lidar DEM, and ground truth to create
a comprehensive landslide inventory for the study area. Subsequently,
the landslide conditioning factor was examined. Thereafter, the LSM
maps were produced by three data mining techniques, namely logistic
regression, artificial neural network, and deep learning neural network.
Eventually, the three models were investigated and validated for accu-
racy using the area under the receiver operating characteristic curve
(AUC), and other evaluation matrices.

All analyses done by this research were conducted in Python (3.7.0)
environment. Specifically, Tensorflow API (2.0.rc) was used exclusively
to implement LR, NNET and DLmodels. The source code of this research
rt of this study

Image of Fig. 3


Table 1
Spatial data sources used in the study area.

Spatial database Data Type Scale/resolution Data source

Aerial photographs Landslide Raster 0.2 × 0.2 m GSI
Lidar DEM Landslide Raster 2 × 2 m Hokkaido Government
Topographic map Morphometric factors Raster 10 × 10 m GSI
Geological map Lithology Polygon 1:200,000 GSJ
Tectonic factor Faults Polygon 1:200,000 GSJ
Seismic factor PGA

PGV
Epicenter

Raster
Raster
Polygon

10 × 10 m GSJ

Hydrological map Stream Density Distance to stream network Raster 10 × 10 m GSI
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is publically available online (https://www.github.com/aminevsaziz/).
Software such as ArcGIS (10.4) and SAGA (4.0.1) were used for map
compilation and production.

3.1. Landslide inventory

Preparing an accurate landslide inventory map is the first step in the
precise prediction of landslide-prone areas (Guzzetti et al., 2012). For
the 2018 Hokkaido earthquake affected areas, a complete landslide in-
ventory maps were generated by manually interpreting 0.2 m aerial
photographs, along with 2 m Lidar DEM for eliminating the shadow ef-
fect in the aerial photographs. The details of the data source and meta-
data used in this research are summarized in Table 1. The coseismal
landslides were generally shallow types (Wang et al., 2019; Yamagishi
and Yamazaki, 2018). Landslide initiation zone (scarp/crown area) can-
not easily be distinguishable for shallow type landslides compared with
Fig. 4. Landslide inventory map and four different sampling strategies adopted in this study. a)
elevationmodel, c) inventorymap showing landslide body (red color) anddeposition zone (yell
landslide body, f) multiple points from scarp area, and g) multiple points from landslide body.
the deep-seated ones; nevertheless, the high-resolution aerial images
and elevation models aided us to separate the initiation zone (scarp/
crown area) and runout zones for shallower landslides in our case
area. We interpreted a total of 10,120 landslides from the images. It is
worth mentioning that, only two coseismal inventories before this
study (2015 Gorkha: Roback et al., 2017, and 2004 Niigata: Sekiguchi
and Sato, 2006) have made the initiation zone and the accumulation
area separated, making our inventory one of the unique, and qualified
to prepare precise landslide susceptibilitymaps. Based on the inventory,
four different sampling criteria were adopted to be used as input data in
the susceptibility models. They are, (a) the point representing landslide
centroid, (b) point representing landslide body centroid, (c) points
representing the landslide scarp boundary, and (d) points representing
the whole landslide body. All the points are derived from the scarp and
landslide body polygonmaps. Landside scarp here refers to the source of
disposition/initiation, while landslide body is the boundary of the
aerial imagery showing cos-seismic landslides, b) i-value map generated from 2 m digital
ow color), d) point sampling fromcentroid of scarp area, e) point sampling from centroidof

http://www.github.com/aminevsaziz/taiwan
Image of Fig. 4
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landslide from source to runout area. Representative examples of the
four sampling techniques shown in Fig. 4. The centroid points perfor-
mance used in this research were converted from landslide polygons
using ArcGIS 10.4 software, determined by the location of the center
of the polygon of gravity.

The probability density distribution of coseismal landslides and area
is plotted in Fig. 5.

3.2. Landslide conditioning factors

Selecting the appropriate landslide conditioning factors (LCF) is an
essential task for the assessment of landslide susceptibility. To date,
there are no established standard guidelines or universal agreement
on the option of landslide conditioning factors. In this study, we have in-
vestigated earthquake-induced landslide that occurred during an Mw
6.6 seismic event in Hokkaido, Japan on September 6, 2018; thus, we se-
lected seismic related parameters such as peak ground acceleration
(PGA), peak ground velocity (PGV), and distance to the epicenter as
the LCF. Besides, several other LCF, including topographical-
hydrological-lithological variables such as altitude, slope, distance to
streamnetwork, stream density, TopographicWetness Index (TWI), as-
pect, curvature, and lithology were selected for landslide susceptibility
assessment in this study. To test the inter-associations among the inde-
pendent variables, we executed a multi-collinearity analysis, because
collinearity among the variables amplifies the discrepancy of regression
analysis. The variance inflation factor (VIF) is used as an indicator of
multicollinearity analysis (Khosravi et al., 2019). A VIF value N10 indi-
cates significant multi-collinearity (O'Brien, 2007).

3.3. Logistic regression

The well-known multivariate analytical method, logistic regression
(LR), has been more attended in the last decade for landslide suscepti-
bility mapping (Budimir et al., 2015). Thus, LR is fit to be a benchmark
model when a new model was developed and suggested (Chang et al.,
2019). LR is based on a non-linear equation that is applicable for the bi-
nary variables such as ‘presence’ or ‘absence’ cases in the data. It can
compute the weights for each conditioning factors as independent
Fig. 5. Probability density distribution of coseismal landslides of the Hokkaido and other
major earthquakes in Japan.
variables based on the binary dependent variable at a statistical confi-
dence level (Shirzadi et al., 2012). The merits of LR include: (i) not re-
quire dataset to be normally distributed, (ii) dependent and
independent variables can both be continuous or discrete, and (iii) it
does not assume to having equal statistics variances among variables
(Dou et al., 2019d). The weights are calculated by the LR method
based on the following equations:

Z ¼ c0 þ α1x1 þ α2x2 þ :::þ αnxn ð1Þ

PLR¼1þ eZ¼c0 þ α1x1 þ α2x2 þ :::þ αnxn
eZ¼c0 þ α1x1 þ α2x2 þ :::þ αnxn

ð2Þ

where z is weighted linear combination of the independent variables
that vary from−∞ to +∞, c0 is the constant coefficient of the equation,
α1, α2, ..., αn are the coefficients of variables, x1, x2, ..., xn are landslide
conditioning factors, PLR is the probability of landslides occurrence that
either has been occurred (N0.5) or have been non-occurred (b0.5).
The higher the PLR for each pixel of the study area (closer to 1), the
more probable a landslide pixel is to occur. The closer the PLR to 0 will
be, the less the probability of a pixel for landslide occurrence.

3.4. Artificial neural network

Artificial neural networks (NNETs) are a set of algorithms, modeled
loosely after the human brain that is designed to recognize patterns.
In fact, NNET was developed as a very crude approximation of nervous
systems found in biological organisms (Swingler, 1996). The idea of
NNETs is to transport information along a predefined path between
“neurons”. Neurons have the ability to add up information from multi-
ple sources and they generally apply a non-linear transformation to
this information in order to allow for more complex interactions. Con-
trary to some popular beliefs, the idea of NNETs is already very old
(Hecht, 1987; Rumelhart et al., 1988). One of the first NNET to be
invented was the perceptron. The perceptron was a very simple neural
network with only one neuron and the Heaviside function as a non-
linearity. In otherwords, the perceptron implements the following deci-
sion function:

f xð Þ ¼
1; if ωxþ βN0

0; x≤0

8<
: ð3Þ

Its extension, the multilayer perceptron (MLP), can be regarded as
the first “real” NNET, with multiple neurons connected in 2 layers, as
shown in Fig. 6.
Fig. 6.Multilayer perceptronwith sigma non-linearity: NNET consists of several layers; an
input layer (Xn), a hidden layer (S) and an output layer (Yn). Every layer consists of nodes,
loosely modeled from neurons in the brain.

Image of Fig. 5
Image of Fig. 6
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In general, MLP has muchmore expressive power than a single neu-
ron. In fact, it can be shown that themultilayer perceptron is a universal
function approximators (Paola and Schowengerdt, 1995). NNETs typi-
callymodify themultidimensional representation of input data by grad-
ually applying (multi-)linear and non-linear transformations to its
components and thus changing the representation up to a certain final
result. The final result could be some classification or some other output
signals. Most importantly, there is no notion of time in these networks.
As far as the network is concerned, the output is generated instanta-
neously. Furthermore, the outputs of NNET neurons are continuously
valued.

In NNET, we usually use a gradient descent technique to train the
network. Gradient descent requires a large amount of data (the data
has to be annotated for supervised learning) in order to determine the
gradient of a predefined cost function and to converge to an (ideally
global) minimum (Le et al., 2019b). Once the minimum is found, the
network is considered trained and can be used for inference. Usually,
no further training occurs at this stage.Multiple versions of gradient de-
scent have been invented over time, with some of the more prominent
being the Stochastic Gradient Descent (SGD), or Adaptive Moment Esti-
mation (Adam). Thus, NNET method has been applied in the field of
hazard mitigation because of good performance (Le et al., 2019a; LV
et al., 2020; Shariati et al., 2019).

3.5. Deep learning

Deep learning (DL) is a self-teaching system, learning as it goes by
filtering information through multiple hidden layers, in a similar way
to humans. Technically speaking, deep learning neural networks
(DNN) refers to “stacked artificial neural networks” (Bengio, 2009).
This effectively distinguishes DNN from NNET (MLP) by their depth;
that is, the number of hidden layers composed of. In fact, Deep learning
is a phrase used for complex neural networks (Candel et al., 2016). The
complexity is attributed to elaborate patterns of how information can
flow throughout the model. Fig. 7 below illustrates an example of a DL
network. The architecture has become more complex but the concept
of DNN is still the same despite, there is now an increased number of
hidden layers and nodes that integrate to estimate the output(s).

Essentially, DNN has a unique feature known as feature hierarchy,
and it is a hierarchy of increasing complexity and abstraction. This
makes DL networks capable of handling vast, high-dimensional data
sets with billions of parameters that pass through nonlinear functions.
Therefore, DNN can perform automatic feature extraction without
human intervention, unlike most traditional machine-learning algo-
rithms. Given that feature extraction is a task that can take teams of
data scientist's years to accomplish, DNN is a way to circumvent the
Fig. 7. An example of a d
chokepoint of limited experts. It augments the powers of small data sci-
ence teams, which by their nature do not scale (Deng and Yu, 2014).

NNETs have been invented over time, including the Convolutional
Neural Network (CNN), thought to roughly emulating the human visual
system, as well as the Recurrent Neural Network (RNN), used to inter-
pret and generate sequential data such as text and video. Although the
architectures of these networks are much more complicated than that
of the MLP, they can be regarded as variations of the same idea. This
can be seen for instance in the fact that all types of NNETs/DNN may
use the same learning algorithms, e.g., gradient descent using
backpropagation.

3.6. Conditioning factors analysis

In general, the conditioning factors used in landslide assessment
frameworks are numerous, including terrain factors (obtained from a
DEM) or factors derived by performing statistical certain operations
on the terrain factor. However, the overabundance of data can undoubt-
edly lead to overfitting predictive model. As a result, three statistical
tests have been implemented. The 1st and second statistical tests in-
clude a bivariate descriptor, Pearson Correlation matrix, and Variance
Inflation Factors (VIF), respectively. The 3rd includes an entropy-
based descriptor, Information Gain (IG).

The Pearson correlation and VIF statistical tests are common tests to
detect high correlation among certain conditioning factors (i.e.
multicollinearity) that lead to faulty modeling with erroneous system
analysis (Merghadi et al., 2018). Specifically, these two tests assess the
non-independence among conditioning factors. Generally, Pearson cor-
relations focus on the covariance between each pair of factors divided
by the product of their standard deviations (Eq. 4).

rx:y ¼ ∑n
i¼1

xi−xffiffiffiffiffiffiffiffiffiffiffiffiP
k¼1

p n
xi−xð Þ2

� yi−yffiffiffiffiffiffiffiffiffiffiffiffiP
k¼1

p n
yi−yð Þ2

ð4Þ

where: n is the number of samples; xi, yi are conditioning factors

indexed with i; x is the mean of xi where: x ¼ 1
n

X
i¼1

n

xi , analogously

same applies to y.
On the contrary, VIF focus on the standard error variations of land-

slide conditioning factors, which imply the lower the standard errors,
the lower multicollinearity risk, the safer the conditioning factor to im-
plement (Eq. 5).

VIF ¼ 1

1−R2 ð5Þ
eep neural network.

Image of Fig. 7


Table 3
The multi-collinearity test for landslide conditioning factors using IG and VIF indexes.

Variable The centroid
of Landslide
Body

The centroid
of Landslide
scarp

Samples of
Landslide
Body

Samples of
Landslide
Scarp

IG VIF IG VIF IG VIF IG VIF

PGA 0.168 1.422 0.175 1.699 0.197 1.381 0.203 1.453
PGV 0.144 2.968 0.133 3.063 0.159 2.857 0.149 2.969
Epicenter 0.670 1.382 0.666 1.387 0.586 1.324 0.612 1.341
Altitude 0.678 3.208 0.674 2.861 0.615 3.285 0.633 3.015
Slope 0.679 1.567 0.676 1.591 0.630 1.499 0.646 1.535
Stream Distance 0.002 1.187 0.012 1.219 0.002 1.198 0.012 1.206
Stream Density 0.662 1.319 0.656 1.216 0.534 1.334 0.580 1.236
TWI 0.593 1.011 0.581 1.009 0.558 1.008 0.559 1.008
Aspect 0.679 1.023 0.673 1.025 0.626 1.017 0.643 1.010
Curvature 0.683 1.019 0.681 1.010 0.653 1.024 0.663 1.013

Table 2
Confusion matrix of landslide and non-landside occurrence conditions.

Actual class

Landslide Non-landslide Total

Predicted class Landslide TP FP TP + FP
Non-landslide FN TN FN + TN
Total TP + FN FP + FN TP + FP + FN + TN
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If the VIF value is N5 or correlation or correlation above 0.7, it indi-
cates that there is a multicollinearity problem in the predisposing fac-
tors (Dormann et al., 2012; O'Brien, 2007).

The 3rd employed technique is Information Gain, defined as a reduc-
tion in entropy E(C) of a referent landslide inventory C (with j classes),
due to the informational interference of a conditioning factor F (with n
Lithology 0.132 1.189 0.135 1.177 0.122 1.146 0.142 1.166

Fig. 8. The output results of the Pearson correlationmatrix. (a) Samples of Landslide Scarp, (b) Centroid of Landslide Scarps, (c) Samples of Landslide Body, (d) Centroid of Landslide Body.

Image of Fig. 8
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Table 4
Total landslide density of each susceptibility class in each susceptibility map.

Dataset Model Landslide density (%)

Very
high

High Moderate Low Very
low

Samples of landslide scarp DNN 88.581 7.612 1.211 2.076 0.519
LR 78.201 18.512 2.422 0.865 0
NNET 85.64 11.592 2.076 0.692 0

Centroid of landslide scarp DNN 65.225 26.644 6.574 1.384 0.173
LR 58.651 25.779 7.439 8.131 0
NNET 65.571 14.533 8.997 8.997 1.903

Samples of landslide body DNN 57.439 20.761 11.073 7.266 3.46
LR 45.502 32.872 13.322 8.131 0.173
NNET 53.46 26.298 12.976 5.536 1.73

Centroid of landslide body DNN 55.200 21.800 8.834 9.505 4.599
LR 43.263 33.911 11.083 10.37 1.312
NNET 53.114 24.394 14.879 6.574 1.038

10 J. Dou et al. / Science of the Total Environment 720 (2020) 137320
classes). Given the E(C) as a measure of homogeneity of C:

E Cð Þ ¼ −
Xj

i¼1

δi log2δi ð6Þ

where δi are a proportion of the ith class valueswithin the entire set, and
introducing m factor classes with values [v1,v2,…vm], the Information
Gain IG(F) partitions the entropy by a factor of weighted expected en-
tropy E(F,v).

IG Fð Þ ¼ E Cð Þ−
X

v∈ Fj1;…;mf g

j Cv j
j C jE Cvð Þ ð7Þ

The latter comes as summed entropy of Cv subsets of C, matched
with the factor's class value v, and weighted by the subset proportion
to C. Here, it should be mentioned that unlike Chi-Square statistic χ,
this parameter allows preliminary ranking, since it disregards measure
scales and units of conditioning factors (Gerath et al., 2006; Mitchell,
1997).

3.7. Model metrics

Developed LSM should be verified to check their ability for predic-
tion accuracies (Pham et al., 2019; Tien Bui et al., 2019). Although
there are some statistical metrics to evaluate the performance of a ma-
chine learning model, we in this study used accuracy (classification
rate), kappa and area under the receiver operatic characteristic curve
(AUC) metrics. The accuracy is computed using for possibility indices,
including true positive (TP), true negative (TN), false positive (FP) and
false-negative (FN). The TP and FP are the number of landslide pixels
that correctly classified as landslide and non-landside pixels. However,
TN and FN are a number of landslide pixels that incorrectly classified
as landslide and non-landside pixels (Dou et al., 2019b; Pham et al.,
2019). These possibilities can be expressed in the Table 2:

Accordingly, the accuracy, which is defined as the number of cor-
rectly classified landslide and non-landslide pixels, can be obtained
using the four possibilities as follows:

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

ð8Þ

Another validation metric used in this study is the kappa index that
shows the reliability of the landslide models (Bennett et al., 2013). A
model is non-reliable if the value of the kappa is close to −1, while for
values closer to 1 the model is reliable. It can be formulated as follows:

Kappa ¼ Pa−Pexp

1−Pexp
ð9Þ

Pa ¼ TP þ TNð Þ= TP þ TN þ FN þ FPð Þ ð10Þ

Pexp ¼ TP þ FNð Þ TP þ FPð Þ þ FP þ TNð Þ FN þ TNð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ TN þ FN þ FPð Þ

p� �

ð11Þ

According to Landis and Koch (1977), if the kappa index is b0, the
model has a poor agreement between estimation (model) and observa-
tion (reality). However, the values of 0–0.2, 0.2–0.4, 0.4–0.6, 0.6–0.8 and
0.8–1, represents slight, fair, moderate, substantial, and almost condi-
tions, respectively.

The other metric that has been used in this study is the receiver op-
erating characteristics (ROC) curve. The ROC curve as a flexible and ro-
bust framework graphically evaluates the performance of a model. It is
Fig. 9. Landslide susceptibilitymaps produced for the study area (left column: DNN, central colu
Body, (g-i) Samples of Landslide Body, (j-l) Centroid of Landslide Scarps.
plotted based on the 100-specificity (false positive rate) and sensitivity
(true positive rate) on the x-axis and y-axis, respectively. The specificity
and sensitivity metrics can be computed according to the following
equations:

Sensitivity ¼ TN
TN þ FP

; y−axis ð12Þ

100−Specificity ¼ 100−
TN

TP þ FN

� �
; x−axis ð13Þ

The performance of a model by the ROC curve is quantitatively vali-
dated using the area under the curve (AUC) (Mason andGraham, 2002).
It has beenwidely used as a popular and promising tool in the classifica-
tion of performance. The model is perfect for the AUC to be close to 1;
however, a value of 0.5 represents an inaccurate model (Youssef et al.,
2015).

4. Results

4.1. Conditioning factors analysis

The output results of the Pearson correlation matrix (Fig. 8) show
that certain variables are positively or negatively correlated with each
other, yet they didn't exceed the allowed threshold of 0.7 for the corre-
lation. For example, parameters such as PGA, PGV, Epicenter, Altitude,
Slope, lithology and stream density, have good relationships with each
other (up to 0.75). This indicates that using the aforementioned vari-
ables for earthquake-induced landslides are effective in LSM studies.

Table 3 shows the results of multicollinearity analysis and informa-
tion gain contribution of all independent variables. The VIF results
show that there is no significant collinearity among the variables, and
the implemented models are safe to use since the VIF is less than the
critical threshold of 5 (Dou et al., 2019a; Merghadi et al., 2018). The IG
contribution of used variables is above 0.13 (except for distance to the
stream with 0.002). Curvature shows the highest IG value, followed by
variables such as aspect, slope, altitude, and distance to the epicenter.
The IG for seismic variables (PGA and PGV) is found less prominent,
probably because this study only considered point samples within the
affected areas where they are more or less the same for both presence
and absence cases.

4.2. Seismically-triggered landslides susceptibility assessment

The predicted landslide susceptibility maps using the implemented
models produced raster grids in the format of susceptibility toward
mn: LR, right column:NNET): (a-c) Samples of Landslide Scarps, (d-f) Centroid of Landslide



Table 5
Total area extent covered by each susceptibility map.

Dataset Model Total area extent (%)

Very
high

High Moderate Low Very
low

Samples of landslide scarp DNN 19.004 19.014 9.057 11.987 40.938
LR 4.451 20.835 19.824 29.557 25.332
NNET 5.153 21.027 19.609 28.09 26.12

Centroid of landslide scarp DNN 14.614 18.063 12.236 17.139 37.948
LR 3.87 17.412 23.639 37.39 17.689
NNET 2.509 29.042 17.11 23.184 28.154

Samples of landslide body DNN 13.241 16.619 13.444 20.141 36.555
LR 12.766 13.993 18.641 28.153 26.446
NNET 6.032 24.619 17.719 23.351 28.279

Centroid of landslide body DNN 3.25 27.941 17.56 28.494 22.756
LR 4.451 20.835 19.824 29.557 25.332
NNET 6.032 24.619 17.719 23.351 28.279
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landsliding (Fig. 9). These probability raster maps are visual key to the
overall quality of the implemented models.

The obtained LSM maps are shown in Fig. 9, where maps produced
by DNN models show smooth maps, and the transition from each sus-
ceptibility class is unnoticeable. On the other hand, LRmodels produced
overall bad LSM maps with a jittery gradient compared to maps gener-
ated by DNN and NNET. NNET-based maps were decent compared to
both end of the spectrum (i.e. DNN and LR) therefore occupying the
middle ground between DNN and LR based maps. However, in terms
of the dataset used, maps generated based on scarps datasets (i.e.
Fig. 9 (a–c) and (j–l)) produced overall better maps than body-based
datasets. The results of the statistical distribution of susceptibility levels
also show similar trends, given in Tables 4 and 5. Quantitatively, these
results can be explained that a better model fit (i.e. generalization) of
LSM is given by the scarp datasets than the other models.
4.3. Model comparison and validation

The performance results (Table 6 and Fig. 10) show that all models
produced very good results (AUC N 0.785, Acc N 0.716 and
kappaN0.433). In general, DNN outperforms the remaining models by
considerable margin followed by NNET and, LR achieved the lowest
Table 6
Performance results of the implemented models.

Dataset Model Metrics

AUC ACC

Samples of landslide scarps DNN Mean 0.919 0.847
std 0.004 0.006

LR Mean 0.825 0.753
std 0.003 0.002

NNET Mean 0.882 0.809
std 0.005 0.005

Centroid of landslide scarps DNN Mean 0.912 0.841
std 0.001 0.005

LR Mean 0.815 0.751
std 0.003 0.005

NNET Mean 0.869 0.803
std 0.002 0.002

Samples of landslide body DNN Mean 0.913 0.842
std 0.007 0.008

LR Mean 0.811 0.737
std 0.01 0.008

NNET Mean 0.859 0.787
std 0.008 0.007

Centroid of landslide body DNN Mean 0.904 0.829
std 0.002 0.003

LR Mean 0.785 0.716
std 0.002 0.003

NNET Mean 0.864 0.797
std 0.004 0.004
performance out of the three implementedmodels. Moreover, landslide
scraps achieved much better results than landslide bodies.

Nevertheless, the difference in performance results of the imple-
mented models and datasets need to be assessed statistically if it is sig-
nificant or not. Such a step is achieved by the non-parametric signed-
rank test of Wilcoxon pairwise test using a significance threshold of
b0.05.

The results of Wilcoxon test based on models pairwise (Table 7),
demonstrate that in each datasets DNN effectively outperform the
NNET, and NNET outperform LRmodel as the difference in performance
between each pair of models reject the null hypothesis that suggests
that there is no statistical significance in performance if p.value ≥0.05
and− 1.96 N z.value N +1.96. On the other hand, the results of dataset
pairwise (Table 8) indicate that: (1) landslide scraps datasets outper-
form landslide body datasets; and (2) sampling most of the landslide
polygons are more effective than using a single polygon centroid.

5. Discussion

5.1. Susceptibility paradigms in deep learning era

Landslide inventory maps are quite important data for landslide as-
sessment in the hilly terrains, especially the quality of landslide inven-
tory maps (Chang et al., 2019; Guzzetti et al., 2012). Good quality of
landslide inventory maps depends on the various factors, such as the
scale, data acquired, quality of aerial photographs, etc. (Guzzetti et al.,
2012). In this study, we collected various data sources to improve the
quality of landslide inventorymaps. There are difficulties in interpreting
landslides in the shadow regions, and dense forested regions using
ortho aerial photographs (Fig. 4a), however high resolution LiDAR ele-
vation models when coupled with the red relief images (Fig. 4b) en-
hances the visualization and interpretation of topographic features
(Görüm, 2019), providing accurate landslide mapping, creating the
state of movement of landslides, and determining the initiation, runout
zones. In termsof sampling, both the landslideswith scarp and landslide
bodies are effective for the prediction of LSM maps (Guzzetti et al.,
2012). Some researchers only acquired point data to express the land-
slides for easiness or due to limited availability of high resolution imag-
eries (Pham et al., 2019; Tien Bui et al., 2019), while some other
researchers use landslide body polygon to symbolize the landslides,
Kappa TP TN FP FN

0.693 2099.3 2324 288.33 513
0.012 36.935 8.485 19.754 15.895
0.505 1853.6 2078.6 533.66 758.66
0.004 31.899 26.03 13.474 12.284
0.617 1988 2236.3 376 624.33
0.011 44.967 19.754 8.485 21.638
0.682 2057.6 2335.6 271.66 559.66
0.009 21.484 41.363 2.867 26.911
0.502 1809.3 2114 493.33 808
0.01 28.194 13.589 38.003 14.306
0.606 1935.6 2260.3 347 681.66
0.002 36.971 44.063 20.928 22.425
0.683 2053 2344.6 277.33 549.66
0.017 44.594 2.867 28.825 21.297
0.475 1775.3 2077.3 544.66 827.33
0.016 30.685 13.96 43.099 10.781
0.573 1891.3 2219.3 402.66 711.33
0.014 43.759 8.498 23.3 12.71
0.657 2041 2288.3 309 586.33
0.006 65.335 54.786 7.071 10.781
0.433 1787.3 1955.6 641.66 840
0.005 26.662 41.556 30.291 33.536
0.593 1940 2222 375.33 687.33
0.007 44.654 58.861 25.25 12.499



Fig. 10. ROC curves of the implemented models: (a) Samples of Landslide Scarp, (b) Centroid of Landslide Scarps, (c) Samples of Landslide Body, (d) Centroid of Landslide Body.
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representing scarp/crown, deposition, etc. (Chang et al., 2019; Dou et al.,
2019b). There are no agreements or universal rules on how to select the
proper practices, or operational protocols, for the collection and
updating landslide maps. The question on which landslide representa-
tive inventory maps for assessment of susceptibility is better, still keep
the limitation of the complete discussion. In this study, we sampled
four common types (cf. Section 3.1) to evaluate the effect uncertainty
Table 7
Models pairwise comparison on the implemented models using Wilcoxon pairwise test.

Pairwise Dataset

The centroid of landslide
body

The centroid of landsl
scarp

p. Value z. Value p. Value

DNN vs. LR 0.000 9.982 0.000
DNN vs. NNET 0.002 3.574 0.006
LR vs. NNET 0.000 −5.995 0.000
of landslide representative, namely, landslide scarp, the centroid of the
scarp, landslide body, and the centroid of the body as shown in Figs. 1
and 4. In terms of accuracy of LSM, we noticed that sampling the scarp
areas represent a better performance of the model than other methods,
which are in agreement with a few previous types of research (Simon
et al., 2013; Süzen and Doyuran, 2004). Though the centroid point sam-
pling method is very quick, easy to the procedure and is automated for
ide Samples of landslide body Samples of landslide scarp

z. Value p. Value z. Value p. Value z. Value

9.943 0.0002 7.165 0.000 4.666
8.921 0.0016 2.66 0.0004 2.458

−10.39 0.000 −4.471 0.0007 −5.839

Image of Fig. 10


Table 8
Datasets pairwise comparison on the implemented models using Wilcoxon pairwise test.

Pairwise Model

DNN LR NNET

p. Value z. Value p. Value z. Value p. Value z. Value

Samples of landslide scarp vs. centroid of landslide scarp 0.001 2.376 0.000 3.349 0.000 2.165
Samples of landslide scarp vs. samples of landslide body 0.000 4.554 0.001 6.829 0.000 5.868
Samples of landslide scarp vs. centroid of landslide body 0.000 5.235 0.000 7.368 0.000 6.276
Centroid of landslide scarp vs. samples of landslide body 0.002 2.289 0.001 3. 546 0.000 2.723
Centroid of landslide scarp vs. centroid of landslide body 0.000 3.645 0.000 5.753 0.000 4.786
Samples of landslide body vs. centroid of landslide body 0.000 4.998 0.000 6.545 0.000 4.471
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saving the time, themethod to allocate a point inside a polygondepends
exclusively on the center of gravity of the polygon, henceforth resulting
in lower accuracy. Scarp stands for unstable areas and undisturbedmor-
phological conditions. As the landslide point pixel sampling strategy
uses a single centroid vs the entire polygon, the success and prediction
of the landslide significantly increasedwith the polygon sampling strat-
egy. Similarly, the scarp polygon of the landslide gives a high success
rate in predicting when compared with landslide bodies. Choosing the
approximate landslide inventory maps, depending on the purpose,
such as landslide body polygon is suitable for computing the landslide
area, the point is straightforward to interpret landslide location and
save time, landslide scarp is better of assessment of susceptibility maps.

An interesting observation in our analysis is that with DNN, the AUC
values of the four different approaches yield more or less similar values
within a range of 0.015 (Table 6). This suggests that irrespective of the
sampling strategy, a deep learning algorithm accurately predicts the
landslide susceptibilities with only a marginal difference. However,
the difference in accuracies noticed in other traditional models (i.e., LR
and ANN) with multiple sampling techniques yields a larger difference
in AUC value. This implies that DNN can successfully be applied for the
cases where inventories are available for the past, but no separation is
made between the scarp and body, or even for the point inventories. In-
deed, it is true that except for 2015 Gorkha (Roback et al., 2017) and
2004 Niigata (Sekiguchi and Sato, 2006) earthquake datasets, all other
published co-seismic landslide inventories are only having their land-
slide bodies demarcated.
Table 9
Results for Nepal Case Study using multiple sampling techniques and susceptibility models.

Dataset Model Metric

AUC ACC

Samples of landslide scarps

DNN
Mean 0.918 0.841
std 0.006 0.006

LR
Mean 0.845 0.775
std 0.005 0.006

NNET
Mean 0.915 0.839
std 0.005 0.003

Centroid of landslide scarps

DNN
Mean 0.899 0.818
std 0.007 0.005

LR
Mean 0.789 0.726
std 0.017 0.023

NNET
Mean 0.893 0.813
std 0.008 0.009

Samples of landslide body

DNN
Mean 0.897 0.814
std 0.001 0.002

LR
Mean 0.824 0.760
std 0.005 0.004

NNET
Mean 0.891 0.808
std 0.002 0.003

Centroid of landslide body

DNN
Mean 0.896 0.819
std 0.004 0.003

LR
Mean 0.802 0.741
std 0.007 0.008

NNET
Mean 0.890 0.815
std 0.006 0.005
The advantages of DNNwith a gradient descent approach include fast
and simple implementation and relatively fast convergence as compared
to algorithms such as Genetic Algorithms (Arifovic and Gencay, 2001;
Dou et al., 2015b). While the limitation lies in the fact that in order to
apply the gradient descent algorithms in DNN, the network has to be
static, i.e., the connections between neurons may change in strength but
not in number. Therefore, during the final inference stage, the computa-
tional load remains the same regardless of the complexity of the real
problem. Another issue with DNN is its tendency to over-fit the training
data. Overfitting causes the network to have an excellent performance
on training data and bad performance on test data. For complex problems
such as computer vision problems that require networks with millions of
parameters, the onlyway to alleviate this issue is to providemore training
data. This can limit the applicability of DL for problems with small
amounts of available data. Nevertheless, there exist numerous landslide
inventories in the published domain with either point data or the only
body is demarcated, but the assessmentswith DNN could change the cur-
rent susceptibility paradigms with such datasets.

5.2. Validation of DNN results with Gorkha 2015 inventory

We validated our claim on the results about the non-necessity of
multiple sampling strategies in the future with DNN models as the
AUC yields similar output, and their applicability to past and future
landslide susceptibility assessments. For this purpose, we used the pub-
lished 2015 Gorkha earthquake-induced landslide inventory (Roback
Kappa TP TN FP FN

0.681 1439.330 1468.000 240.000 311.667
0.013 30.576 14.855 22.554 7.364
0.549 1334.330 1344.670 363.333 416.667
0.012 45.346 31.668 14.079 11.025
0.678 1435.330 1467.000 241.000 315.667
0.006 35.462 25.807 8.602 5.907
0.635 1382.330 1445.670 262.333 368.667
0.010 11.146 23.921 23.099 35.349
0.453 1223.670 1287.670 420.333 527.333
0.046 41.652 43.053 71.853 7.717
0.626 1383.000 1428.000 280.000 368.000
0.018 6.377 27.580 18.019 39.908
0.627 1333.670 1480.330 270.667 374.333
0.004 29.781 29.959 17.172 24.088
0.520 1237.670 1392.000 359.000 470.333
0.008 33.230 27.653 16.391 29.488
0.615 1328.330 1465.000 286.000 379.667
0.006 26.637 28.083 28.717 18.927
0.638 1339.000 1494.000 257.000 369.000
0.006 33.476 32.752 10.985 1.633
0.482 1197.670 1365.670 385.333 510.333
0.016 11.898 36.573 26.612 22.603
0.629 1344.000 1474.000 277.000 364.000
0.011 30.232 33.025 13.140 7.483



Fig. 11. Landslide conditioning factors rank importance using the IGR indicator.
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et al., 2017). Similar to our inventory, Roback et al. (2017) also mapped
both scarp and landslide bodies, thus helped for a direct comparison.
We used similar LCF and an ALOS World 3D DEM for preparing the re-
sults. The results of the Gorkha cases are shown in Table 9.

The results obtained for Gorkha case also shows that DNN
outperformed all other susceptibility models, and the difference in
four different sampling techniques is less consequential; i.e., the AUC
variation is only less than or equal to 0.022. This confirms the validity
of our hypothesis.

5.3. What controls the coseismic landslides

The assessment of the effect of the geo-environmental landslide con-
ditioning factors to the methods has absorbed a lot of attention in the
Fig. 12. Interpolated map of seismo-tectonic factor
landslide susceptibility and has been debated in the numerous studies
formerly (Dou et al., 2019a, 2019c; Pham et al., 2019; Tien Bui et al.,
2019). The result of the assessment of input factors importance related
to landsliding using IGR is shown in Table 3 and Fig. 11. It is worthmen-
tioning that the IGR ranking remains the same despite the change in
sampling approaches, indicating the robustness of themodelled results.
The results indicate that the topographical factors mainly influence the
coseismal landslides. Both convex and concave curvature has a high sig-
nificance in our study area. This can be attributed to the seismic ampli-
fication effect as shown by Maufroy et al. (2014), where they suggest
that topographic curvature is correlated with the site amplification fac-
tor since they can capture the frequency-dependent variabilities. Wang
et al. (2019), in their studies by analyzing coseismal landslides density
and factor analysis reported the high correspondence of slope and
s for Hokkaido earthquake: (a) PGA; (b) PGV.

Image of Fig. 12
Image of Fig. 11
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altitude factors in the occurrences of landslides, which also agree with
our IGR results. As for the aspect factor is considered, we noticed that
the southeast (SE) aspect is parallel to the strike of the seismogenic
source estimated from the moment tensor solutions proposed by the
United States Geological Survey (USGS). Here in this study, the impor-
tance of the seismic factors is not well represented by IGR because
these factors were made from interpolation of a few points, away
from the affected areas. Moreover, both the landslide presence and ab-
sence samplings points are taken from a similar seismic zone as
shown in Fig. 12. In addition, the bedrock lithology also does not con-
tribute much to the model and observed results, because the landslides
are mostly shallow and, the surficial geology is mostly covered by thick
layers (N8 m) of weathered tephra (Osanai et al., 2019), deposited dur-
ing the eruptions of mount Kuttara, Tarumae, Eniwa and the Shikotsu
caldera volcanoes (9000–40,000 years ago) (Yamagishi and Yamazaki,
2018).

6. Conclusions

A detailed and comprehensive inventory of over 10,000 individual
landslides perceived in the aftershock September 6th, 2018Mw6.6Hok-
kaido earthquake has been compiled with the help of aerial photo-
graphs and Lidar DEM, four types of samples were extracted from the
polygon shapes, i.e., samples of landslide scarp, centroid of scarp, sam-
ples of landslide body and centroid of body, respectively. Threemachine
learningmodels, namely, DNN, LR, and NNETwere used to carry out the
landslide susceptibility assessments. The AUC values of models are over
0.785 with good results. We found that the proposed DNN method has
the best performance (AUC = 0.919), following NNET (AUC = 0.882),
and LR (AUC = 0.825). In terms of LSM performance, the order of pre-
dictive power is in the following order: i.e., landslide scarp N landslide
body N centroid of scarp N centroid of the body. We observed that
with DNN, the accuracies between the four types of samples are more
or less inconsequential. This implies a high potential for deep learning
in future assessments. However, the aerial percentages and landslide
density in five susceptibility classes between the four sampling tech-
niques are found different. Therefore, the conclusion drawn from our
study should be used with caution and required to be tested for more
cases. Moreover, the model should be fine-tuned to address this issue.

The results of IGR show that topographic amplification in the steep
slopes of the low-elevated terrain leads to enormous landslides. We
hope the finding of thisworkmay assist landslide investigators to deter-
mine the appropriateness of the type of landslide data and models be-
cause it can affect the accuracy of the final landslide susceptibility
maps. This can be useful for developing appropriate hazard manage-
ment practices. In the future, long-term special effects on the environ-
ment should be considered, such as the following snowmelt and
heavy rainfall may exaggerate the unstable surface slope failure and
cause serious secondary hazard disasters to occur, the dynamic land-
slide datasets and more conditioning factors should be considered and
updated.
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