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Abstract

The Lyapunov function method is a powerful tool to stability analysis
of functional differential equations. However, this method is not effectively
applied for fractional differential equations with delay, since the construct-
ing Lyapunov-Krasovskii function and calculating its fractional derivative
are still difficult. In this paper, to overcome this difficulty we propose an
analytical approach, which is based on the Laplace transform and “inf-sup”
method, to study finite-time stability of singular fractional differential equa-
tions with interval time-varying delay. Based on the proposed approach,
new delay-dependent sufficient conditions such that the system is regular,
impulse-free and finite-time stable are developed in terms of a tractable lin-
ear matrix inequality and the Mittag-Leffler function. A numerical example
is given to illustrate the application of the proposed stability conditions.
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1. Introduction

Over the last decades, considerable attention has been paid to stability
theory of fractional differential equations (FDEs) (see [8, 9, 15] and the ref-
erences therein). Stability analysis of singular fractional differential equa-
tions (SFDEs) is more complicated than that of ordinary fractional differen-
tial equations, because fractional derivatives are nonlocal and have weakly
singular kernels and singular systems usually have complicated structure
of modes as finite dynamic, non-dynamic modes, impulse modes, which do
not appear in the state-space systems. In recent years, various effective
methods have been employed to derive stability criteria for SFDEs. The
most well-known one is the Lyapunov function method, which was used
in [12, 13, 14] by applying the Lyapunov stability theorem extended to
FDEs. In addition, Laplace transform and Lambert functions approach
([6, 7]), Gronwall’s approach ([10, 23]), Razumikhin approach ([2, 21]) and
discrete comparison principle ([22]) are also used to investigate the stability
of FDEs. On the other hand, there has been a considerable research interest
in study of FDEs with delays. Recently, in [17] the authors proposed some
sufficient conditions for finite-time stability of FDEs with constant delay
using the inf-sup method. The authors of [19] studied asymptotic behavior
of solutions to nonlinear fractional differential equations with constant de-
lay based on the linearization approach. The finite-time stability of SFDEs
was studied in [16], but for the system with constant delay. It is worth
noting that the methods used in the mentioned paper are not effectively
applied for FDEs with time-varying delay. In fact, it is difficult to construct
a Lyapunov functional and calculate its fractional derivatives in order to
apply fractional Lyapunov stabilty theorems. This is the main reason that
there are few results on stability of FDEs with delays. In [5, 25], to over-
come the difficulty of calculating the fractional-order derivative the authors
attempt to construct an appropriate Lyapunov functional V (xt) associated
with the Riemann-Liouville fractional integral. However, the proof of the
main theorem in these papers contains a gap, that is, the positivity of the
constructed Lyapunov-Krasovskii functionals can not guarantee the posi-
tive definiteness of V (xt). In [26] the authors proposed a Lyapunov stability
theorem for FDEs with delays to derive sufficient stability conditions, unfor-
tunately, the obtained results are also incorrect, since their proof is based
on a wrong argument of proving the definite positiveness of the infinite-
dimensional Lyapunov functional V (xt).

Motivated by the above discussion, we consider stability problem of
SFDEs with time-varying delay. A central analysis technique is enabled by
using Laplace transform approach combining with the “inf-sup” method.
The main contribution of this paper is to propose new delay-dependent
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conditions for finite-time stability in the form of an easily verified linear
matrix inequality and the Mittag-Leffler function. It should be pointed
out that the proposed delay-dependent Lyapunov functional, which is only
non-negative definite, makes the derived conditions relatively simple and
reliable.

The paper is organized as follows. In Section 2, we provide some pre-
liminaries on fractional derivatives, Laplace transforms, finite-time stability
problem and some auxiliary lemmas needed in next section. In Section 3,
delay-dependent sufficient conditions for finite-time stability of SFDEs with
interval time-varying delay are presented. The effectiveness of the theoret-
ical result is illustrated by a numerical example and its simulation.

Notations: N denotes the set of all non-negative integers, R
+ de-

notes the set of all non-negative real numbers; C denotes the complex
space; R

n denotes the n−dimensional Euclidean space with the scalar
product 〈., .〉; Rn×r denotes the space of all (n × r)− matrices; λ(A) de-
notes the set of all eigenvalues of A; λmax(A) = max{Re(λ) : λ ∈ λ(A)};
λmin(A) = min{Re(λ) : λ ∈ λ(A)}; ‖A‖ denotes the spectral norm defined

by
√

λmax(A�A); Matrix A is positive definite (A > 0) if (Ax, x) > 0 for
all x �= 0. C([h, 0],Rn) denotes the set of all Rn c-valued continuously func-
tions on [h, 0]; [a] denotes the integer part of a number a;ΔV (.) denotes the
gradient of vector function V (.).

2. Preliminaries

In this section, we first give some basic concepts of fractional calculus
introduced in [8, 15]. The Mittag-Lefller function with two parameters is
defined by

Eα,β(z) =

∞∑
n=0

zn

Γ(nα+ β)
,

where α > 0, β > 0, and z ∈ C. For β = 1, we denote Eα(z) := Eα,1(z).

Lemma 2.1. ([8]). Given α > 0, we have

(i) Eα(z) ≥ 1, z ∈ R
+.

(ii) Eα(z) is increasing on R
+.

For 0 < α < 1, f ∈ C[0, T ] the Riemann-Liouville integral Iαf(t) and
the Riemann-Liouville derivative Dα

Rf(t) are defined respectively by

Iαf(t) =
1

Γ(α)

∫ t

0

f(τ)

(t− τ)1−α
dτ,

Dα
Rf(t) =

d

dt
I1−αf(t).
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The Caputo fractional derivativeDαf(t) is defined via the Riemann-Liouville
derivative as

Dαf(t) = Dα
R[f(t)− f(0)].

For the Laplace transform L[f(t)](s) of an integrable function f(.),
defined as

F (s) = L[f(t)](s) =

∞∫
0

e−stf(t)dt,

we mention the following relations.

Lemma 2.2. ([15]) Let f(.) : R+ → R be an integrable function, then
we have:

(i) L[Dαf(t)](s) = sαL[f(t)](s)− sα−1f(0), α ∈ (0, 1),

(ii) For k ∈ N, h > 0, Re(s) > h1/α,

L[tαk+β−1E
(k)
α,β(ht

α)](s) =
k!sα−β

(sα − h)k+1
,

(iii) L[f ∗ g(t)](s) = L[f(t)](s) · L[g(t)](s),
where f(t), g(t) are integrable functions on R

+, the convolution of f(t)

and g(t) is defined by f ∗ g(t) =
t∫
0

f(t− τ)g(τ)dτ.

Consider a singular fractional differential equation with interval time-
varying delay of the form{

EDαx(t) = Ax(t) +Dx(t− h(t)),

x(θ) = ϕ(θ), θ ∈ [−h2, 0],
(2.1)

where α ∈ (0, 1), x(t) ∈ R
n, E is a singular matrix, rankE = r < n. A,D ∈

R
n×n are given constant matrices, the initial function ϕ ∈ C([−h2, 0],R

n)
with the norm ‖ϕ‖ = sup

t∈[−h2,0]
‖ϕ(t)‖; the delay function h(t) is continuous

and satisfies the following condition:

0 < h1 ≤ h(t) ≤ h2, t ≥ 0.

Definition 2.1. ([3, 24]) System (2.1) is said to be (i) regular if
for some s ∈ C the polynomial det(sαE − A) is not identically zero; (ii)
impulse-free if for some s ∈ C the deg(det(sαE −A)) = rank E.

Similar to singular delay systems, system (2.1) may have an impulsive
solution, however, the regularity and the absence of impulses of the pair
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(E,A) ensure the existence and uniqueness of an impulse-free solution to
the system, which is shown in following lemma.

Lemma 2.3. ([20]) Assume that system (2.1) is regular and impulse-
free. Then for every initial continuous condition φ(t), system (2.1) has a
unique solution on [0,+∞).

Definition 2.2. For given positive numbers T, c1, c2, system (2.1) is
finite-time stable w.r.t. (c1, c2, T ) if it is regular, impulse-free and every
solution x(t, ϕ) of the system satisfies the condition:

sup
s∈[−h2,0]

ϕ(s)�ϕ(s) ≤ c1 ⇒ x(t, ϕ)�x(t, ϕ) ≤ c2, t ∈ [0, T ].

Consider system (2.1), where rank E < n. Then there are two nonsin-
gular matrices M,G such that

MEG =

[
Ir 0
0 0

]
.

Let us set

MAG =

[
A11 A12

A21 A22

]
, MDG =

[
D11 D12

D21 D22

]
.

Under the state transformation y(t) = G−1x(t), y(t) = (y1(t), y2(t)),
y1(t) ∈ R

r, y2(t) ∈ R
n−r, the system (2.1) takes the following form⎧⎪⎨

⎪⎩
Dαy1(t) = A11y1(t) +A12y2(t) +D11y1(t− h(t)) +D12y2(t− h(t)),

0 = A21y1(t) +A22y2(t) +D21y1(t− h(t)) +D22y2(t− h(t)),

y(t) = G−1ϕ(t), t ∈ [−h2, 0].

(2.2)

Lemma 2.4. ([3, 27]) System (2.1) is regular and impulse-free if A22 is
invertible.

Lemma 2.5. For any matrices A ∈ R
m×n, B ∈ R

n×n, if AB+BTAT <
0 then A and B are full-row rank and full-column rank, respectively.

P r o o f. The proof is obvious. �

The following generalized version of Lemma 1 in [4] will be used in the
proof of the main result.
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Lemma 2.6. ([18]) Let α ∈ (0, 1), x(t) ∈ C([0,+∞],Rn) and V (.) :
R
n → R

+ be a convex and differentiable function on R
n such that V (0) = 0.

We have

DαV (x(t)) ≤ 〈ΔV (x(t)),Dαx(t))〉, t ≥ 0.

Lemma 2.7. Given T, h > 0, a ≥ 1, b ≥ 0, and a non-decreasing
function G(t) : [−h, T ] → R

+ satisfying

G(t) ≤ aG(0) + bG(t− h), ∀t ∈ [0, T ],

we have

G(t) ≤ G(0)a

[T/h]+1∑
j=0

bj, ∀t ∈ [0, T ].

P r o o f. For each t ∈ [0, T ], there exists m ∈ N such that mh ≤ t <
(m+ 1)h. By induction we have

G(t) ≤ G(0)

m∑
i=0

abi + bm+1G(t− (m+ 1)h),

for m ≥ 1, and G(t) ≤ aG(0) + bG(t − (m + 1)h), for m = 0. Since G(t)
is non-decreasing on −h ≤ t− (m+ 1)h < 0, G(t − (m+ 1)h) ≤ G(0) and
a ≥ 1, we obtain that

G(t) ≤
{[

a+ ba+ · · ·+ bma+ bm+1a
]
G(0), m ≥ 1,

(a+ ba)G(0), m = 0,

= a
m+1∑
j=0

bjG(0).

Besides, t ≤ T leads to m ≤ [T/h] and hence

G(t) ≤ a

[T/h]+1∑
j=0

bjG(0).

The proof is completed. �

3. Finite-time stability of system (2.1)

In this section, we present delay-dependent conditions for finite-time
stability of system (2.1). The proof is based on the properties of Mittag-
Leffler functions, the Laplace form and “inf-sup” method. Before introduc-
ing the main result, the following notations of several matrix variables are
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defined for simplicity:

W11 = PA+A�P� − h2PE, W22 = −h2PE +RD +D�R�,

G�PEG =

[
P1 0
0 0

]
, p =

λmax(PE)

λmin(P1)
, η2 = λmax([G

−1]�[G−1],

β = λmax(G
�G), γ = max{‖A−1

22 A21‖, ‖[A22]
−1D21‖, ‖[A22]

−1D22‖},

γ1 =
[

max
i=0,1,2,...,[ T

h1
]
2

i∑
k=0

γk+1 + 2ηγi+2
]2
.

Our main result is the following.

Theorem 3.1. For given positive numbers T, c1, c2, system (2.1) is
finite-time stable w.r.t. (c1, c2, T ) if there exist a non-singular matrix P ∈
R
n×n, a symmetric positive definite matrix U and a matrix R ∈ R

n×n, such
that the following conditions hold:

PE = E�P� ≥ 0, (3.1)⎡
⎣W11 PD (UA)�

∗ W22 (UD)� −R
∗ ∗ −2U

⎤
⎦ < 0, (3.2)

β
[
p(1 + γ1)

[T/h1]+1∑
j=0

(Eα(h2T
α)− 1)jEα(h2T

α) + η2γ1

]
≤ c2

c1
. (3.3)

P r o o f. The proof is divided into two steps. The first step is to prove
the regularity and the impulse-absence of system (2.1). The second step
will focus on deriving conditions for finite-time stability by using Laplace
transform and “inf-sup” method.

Step 1. The regularity and impulse-absence of the system (2.1). Let us
set

G� =

[
G11 G12

G21 G22

]
, GTSM−1 =

[
S11 S12

S21 S22

]
, G�PM−1 =

[
P1 P12

P21 P22

]
.

Using the condition (3.1), we have

G�PEG = G�PM−1MEG = G�PM−1

[
Ir 0
0 0

]
=

[
P1 0
P21 0

]
≥ 0,

G�E�P�G =

[
P�
1 P�

21
0 0

]
≥ 0,

and hence,

P21 = 0, P1 = P�
1 ≥ 0, G�PEG =

[
P1 0
0 0

]
. (3.4)
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Since the matrix P is nonsingular, matrix G�PM−1 is nonsingular and

G�PM−1 =

[
P1 P12

0 P22

]
, thus from (3.4) it follows that det(P1) �= 0, P1 > 0.

Next, note that LMI (3.2) implies

G�[PA+A�P� − h2PE]G < 0. (3.5)

On the other hand, we formulate the expression of G�PAG,G�PEG as
follows

G�PAG = G�PM−1MAG =

[
P1 P12

0 P22

] [
A11 A12

A21 A22

]

=

[
P1A11 + P12A21 P1A12 + P12A22

P22A21 P22A22

]
,

G�PEG =

[
P1 0
0 0

]
.

Therefore, taking inequality (3.5) into account we have

P22A22 +A�
22P

�
22 < 0,

which gives, using Lemma 2.5, det(A22) �= 0 and then the system is, by
Lemma 2.4, regular and impulse-free.

Step 2. Finite-time stability. Consider the following non-negative con-
vex function:

V (x(t)) = x(t)�PEx(t).

Using Lemma 2.6 and taking the Caputo derivative of V (.) in t along the
solution of the system, we have

Dα(V (x(t))) ≤ 2x(t)�PEDα(x(t)) = 2x(t)�P
(
Ax(t) +Dx(t− h(t))

)
≤ 2x(t)�P

(
Ax(t) +Dx(t− h(t))

)
− h2x(t− h(t))�PEx(t− h(t))

+ h2x(t− h(t))�PEx(t− h(t))− h2x(t)
�PEx(t) + h2x(t)

�PEx(t).
(3.6)

Multiplying both sides from the left of system (2.1) by 2(EDαẋ(t))�U and
2x(t− h(t))�R, respectively, we obtain that

0 = −2(EDαẋ(t))�UEDαẋ(t) + 2(EDαẋ(t))�U [Ax(t) +Dx(t− h(t))],

0 = −2x(t− h(t))�REDαẋ(t) + 2x(t− h(t))�R[Ax(t) +Dx(t− h(t))].
(3.7)

Hence, we obtain from (3.6), (3.7) that

DαV (·)− h2V (·) ≤ ξ(t)�Wξ(t) + h2x(t− h(t))�PEx(t− h(t)), (3.8)
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where ξ(t) = [x(t), x(t− h(t)), EDαẋ(t)], and

W =

⎡
⎣W11 PD (UA)�

∗ W22 (UD)� −R
∗ ∗ −2U

⎤
⎦ ,

W11 =PA+A�P� − h2PE, W22 = −h2PE +RD +D�R�.
From the conditions (3.2), (3.8) it follows that

Dα(V (x(t))) − h2V (x(t)) ≤ h2x(t− h(t))�PEx(t− h(t)).
Let us set

M(t) = Dα(V (x(t))) − h2V (x(t)), (3.9)
then we have

M(t) ≤ h2x(t− h(t))�PEx(t− h(t)). (3.10)

Applying the Laplace transform to both sides of (3.9), by Lemma 2.2 (i),
we have

sαV(s)− V (x(0))sα−1 = h2V(s) +M(s),

where V(s) = L[V (x(t))](s), M(s) = L[M(t)](s), and hence

V(s) = (sα − h2)
−1(V (x(0))sα−1 +M(s)). (3.11)

On the other hand, using (3.10) we have

sup
0≤τ≤t

M(τ) ≤h2 sup
0≤τ≤t

x(τ − h(τ))�PEx(τ − h(τ))

≤h2 sup
−h2≤θ≤t−h1

x(θ)�PEx(θ).

and the following relations hold:

(t− τ)α−1Eα,α(h2(t− τ)α) ≥ 0,∀t ≥ 0, τ ∈ [0, t],

t∫
0

(t− τ)α−1Eα,α(h2(t− τ)α)dτ =
1

h2
[Eα(h2t

α)− 1].

Therefore, taking the inverse Laplace transform to both sides of equation
(3.11) and using Lemma 2.2 (ii)-(iii), we obtain that

V (x(t)) = V (0, x(0))Eα(h2t
α) +

t∫
0

M(τ)(t − τ)α−1Eα,α(h2(t− τ)α)dτ

≤V (x(0))Eα(h2t
α) + sup

0≤τ≤t
M(τ)

t∫
0

(t− τ)α−1Eα,α(h2(t− τ)α)dτ

≤V (x(0))Eα(h2t
α) +

(
Eα(h2t

α)− 1
)

sup
−h2≤θ≤t−h1

x(θ)�PEx(θ),
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and hence

x(t)�PEx(t) ≤ϕ(0)�PEϕ(0)Eα(h2t
α)

+
(
Eα(h2t

α)− 1
)

sup
−h2≤θ≤t−h1

x(θ)�PEx(θ). (3.12)

We now estimate the value x(τ)�PEx(τ) on τ ∈ [−h2, t]. Firstly, note that
Eα(h2T

α) ≥ 1, using Lemma 2.1 we have for τ ∈ [−h2, 0] :

x(τ)�PEx(τ) ≤ sup
θ∈[−h2,0]

ϕ(θ)�PEϕ(θ)Eα(h2T
α).

Since Eα(.) is non-decreasing, applying the derived condition (3.12) for
0 ≤ τ ≤ t ≤ T, we get

x(τ)�PEx(τ) ≤ϕ(0)�PEϕ(0)Eα(h2τ
α)

+
(
Eα(h2τ

α)− 1
)

sup
−h2≤θ≤τ−h1

x(θ)�PEx(θ)

≤ sup
θ∈[−h2,0]

ϕ(θ)�PEϕ(θ)Eα(h2T
α)

+
(
Eα(h2T

α)− 1
)

sup
−h2≤θ≤t−h1

x(θ)�PEx(θ),

which implies

sup
−h2≤θ≤t

x(θ)�PEx(θ) ≤ sup
θ∈[−h2,0]

ϕ(θ)�PEϕ(θ)Eα(h2T
α)

+
(
Eα(h2T

α)− 1
)

sup
−h2≤θ≤t−h1

x(θ)�PEx(θ).

Let us denote

G(t) = sup
−h2≤θ≤t

x(θ)�PEx(θ), a = Eα(h2T
α), b = Eα(h2T

α)− 1,

we have

G(t) ≤ aG(0) + bG(t− h1), t ∈ [0, T ].

From Lemma 2.7 it follows that

G(t) ≤ G(0)q, t ∈ [0, T ],

where q :=
[T/h1]+1∑

j=0
(Eα(h2T

α)− 1)jEα(h2T
α). Consequently,

x(t)�PEx(t) ≤ G(t) ≤ G(0)q = sup
θ∈[−h2,0]

ϕ(θ)�PEϕ(θ)q, t ∈ [0, T ].

Besides, it is easy to see that

x(t)�PEx(t) = y(t)�G(PE)Gy(t) ≥ λmin(P1)‖y1(t)‖2,

ϕ(θ)�PEϕ(θ) ≤ λmax(PE)ϕ(θ)�ϕ(θ) ≤ λmax(PE)c1.
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Hence, we obtain

‖y1(t)‖2 ≤ λmax(PE)

λmin(P1)
qc1 = pqc1, t ∈ [0, T ]. (3.13)

Next, we estimate the second state ‖y2(t‖ as follows. Consider the second
equation of (2.2)

y2(t) = −[A22]
−1

[
A21y1(t) +D21y1(t− h(t)) +D22y2(t− h(t))

]
.

Applying estimation (3.13) for t ∈ [0, T ] gives

‖y1(t− h(t))‖2 ≤λmax([G
−1]�[G−1])c1 +

λmax(PE)

λmin(P1)
qc1 = (η2 + pq)c1,

and hence

‖y2(t)‖ ≤ζ
√
c1 + γ‖y2(t− h(t))‖, t ∈ [0, T ], (3.14)

where ζ = 2γ
√

pq + η2. On the other hand, using inequality (3.14) for
t ∈ [0, h1], we obtain that

‖y2(t)‖ ≤ (ζ + γη)
√
c1,

because of t− h2 ≤ t− h(t) ≤ t− h1 ≤ 0, and

‖y2(t− h(t))‖2 ≤ ‖y(t− h(t))‖2 = λmax([G
−1]�[G−1])c1 = η2c1.

By induction, for t ∈ [ih1, (i + 1)h1] ∩ [0, T ], ih1 ≤ T, i = 0, 1, ..., we have

‖y2(t)‖ ≤ ζ[

i∑
k=0

γk + ηγi+1]
√
c1,

and hence,
‖y2(t)‖ ≤

√
(η2 + pq)γ1c1, (3.15)

where γ1 =
[

max
i=0,1,2,...,[ T

h1
]
2

i∑
k=0

γk+1 + 2ηγi+2
]2
. Finally, combining condi-

tions (3.13), (3.15) with condition (3.3), we obtain that

‖x(t, φ)‖2 =x(t, φ)�x(t, φ) = y(t)�G�Gy(t) ≤ λmax(G
�G)‖y(t)‖2

=β(‖y1(t)‖2 + ‖y2(t)‖2)
≤β(pq + (η2 + pq)γ1)c1 ≤ c2, t ∈ [0, T ].

The proof of the theorem is completed. �

Remark 3.1. In Theorem 3.1 the conditions (3.1), (3.2) guarantee the
regularity and impulse-absence of the system. Note that the condition (3.3)
is not an LMI, but it can be reduced into a single strict LMI. Moreover,
since the parameters c1, c2, do not involve in the conditions (3.1), (3.2),
we first determine solutions P,U,R from the conditions and then verify
condition (3.3).
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Remark 3.2. In [5, 12, 25, 26], the authors proposed the delay-
dependent Lyapunov functional associated with the Riemann-Liouville frac-

tional integral V (xt) = Iα[x�(t)PEx(t)]+
∫ t
t−h x

T (s)Qx(s)ds, where Q > 0.
However, the constructed Lyapunov functional can not guarantee the posi-
tive definiteness of the function V (xt), since the second integral functional
is obviously not greater than λ||x(t)||2 for some λ > 0, and hence the use of
the fractional Lyapunov stability theorem was impossible. To avoid the use
of the fractional Lyapunov stability theorem, we have constructed delay-
independent Lyapunov-like functional V (x(t)) = x�(t)PEx(t), which is
only non-negative definite in order to apply Lemma 2.6. This approach
allows us not only to overcome the positive definiteness of the Lyapunov
functional, but also to derived delay-dependent sufficient conditions for
finite-time stability.

Example 3.1. Consider system (2.1), where α = 1/2, h(t) = 0.09 +
0.01sin2(t), and

E =

[
10 0
0 0

]
, A =

[−2 1
1 −10

]
,

D =

[
1 1
1 1

]
, M = G =

[
1 0
0 1

]
.

We have h1 = 0.09, h2 = 0.1. By using LMI Toolbox in Matlab, the matrix
inequalities (3.1), (3.2) are feasible with

P = 104
[
1.2553 0.0000
0.0000 0.5393

]
, U = 103

[
7.0204 −0.1299
−0.1299 1.3583

]
,

R = 103
[−3.0006 −0.7289
−6.8905 −1.2284

]
.

For c1 = 1; c2 = 3, T = 10, calculating

PE = E�P = 105
[
1.2553 0

0 0

]
,

β = η = p = 1; γ = 0.1,
[
T/h1

]
= 111, γ1 = 0.0123,

we can verify the condition (3.3) as

β
[
p(1 + γ1)

[T/h1]+1∑
j=0

(Eα(h2T
α)− 1)jEα(h2T

α) + η2γ1

]

=2.9449 <
c2
c1
.

Hence, by Theorem 3.1 the system (2.1) is finite-time stable w.r.t. (1, 3, 10).
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Figure 1 shows the trajectories of x�(t)x(t) of the system with the
initial condition ϕ(t) = (0.7, 0.7)�, t ∈ [−0.1, 0].

Time(sec)
0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

1.5

2

2.5

3

c1=1

c2=3

x(t)Tx(t)

x(t)Tx(t)
c1=1, c2=3

Figure 1. State response of x�(t)x(t)

4. Conclusion

We have studied the finite-time stability of SFDEs with interval time-
varying delay. By proposing an analytical approach based on the Laplace
transform and “inf-sup” method, we have derived delay-dependent suffi-
cient conditions for finite-time stability in terms of the Mittag-Leffler func-
tion and a tractable matrix inequality. An illustrative example with simu-
lation is given to show the validity and effectiveness of the derived result.
Extending the obtained results for the finite-time stability of singular non-
autonomous FDEs with time-varying delay is a worthy of attention research
subject for future works.
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